

Search for decoherence of *BB* quantum entanglement at Belle II

Timothy Mahood, Alexei Sibidanov, Lucas Stoetzer, Sven Vahsen Belle II Summer School - Virginia Tech 06/26/25 University of Hawai'i at Manoa

lucassto at hawaii.edu

Entanglement and decoherence in HEP Collider experiments

Tests of quantum entanglement

- 2024: <u>https://arxiv.org/pdf/2406.03976</u>)
- KLOE-2 \Rightarrow Decoherence in entangled neutral Kaon systems (2022, <u>https://arxiv.org/pdf/2111.04328</u>, <u>Conference Talk</u>)

Lucas Stoetzer

Tests of quantum decoherence

• Emerging new field in HEP collider experiments in the recent years (ATLAS, CMS, Belle, Belle II, KLOE-2 etc.) • ATLAS/CMS \Rightarrow Entanglement of top pair $(t\bar{t})$ spins (ATLAS 2024: <u>https://arxiv.org/pdf/2311.07288</u>, CMS

Entanglement and Decoherence at $\Delta t = 0$

flavor events

- other instantaneously the B
- Decoherence would allow same flavor \rightarrow Interesting to test!

• When the BB decay at the same time ($\Delta t=0$), one is tagged to be the B, which makes the

06/26/2025 - Belle II Summer School VT

Creation of the $\Upsilon(4S)$ state

- In the beam pipe we achieve pressures of $10^{-7}\ \mathrm{Pa}$

• $\Upsilon(4S)$ is created in the interaction point (IP) region by colliding e^- and e^+

Production of flavor entangled BB pair

- $\Upsilon(4S)$ decays instantly in two neutral $B\overline{B}$ mesons
- $\Upsilon(4S) \rightarrow B^0 \overline{B}^0$ via strong interaction
 - $\Rightarrow \Upsilon(4S)$ is a C = -1 charge conjugate eigenstate \Rightarrow conserved in strong interaction
 - $\Rightarrow B^0 \overline{B}^0$ will be flavor entangled

Lucas Stoetzer

$$\left| B^{0}\left(-\vec{p}\right) \right\rangle - \left| \bar{B}^{0}\left(\vec{p}\right) B^{0}\left(-\vec{p}\right) \right\rangle \right|$$

B meson decay and flavor tagging

- First *B* meson decays and the entanglement is broken
 - \rightarrow The first *B* decays into one flavor specific eigenstate at time t_1
 - The second meson will instantaneously collapse into the opposite flavor state
 - But now (after first *B* decayed), undergoes flavor oscillation until it decays
- Reconstruct B_{sig} decay exclusively: Get flavor from charge of final state particles (self tagging)
- Reconstruct other $B(B_{tag})$ inclusively via flavor tagger neural network algorithm \rightarrow not perfect will observe wrong tagging

Lucas Stoetzer

Self tagging decay modes and expected #Events in 385 fb^{-1}

Decay modes							
$B^0 \rightarrow J/\psi K^+ \pi^-$	$J/\psi \rightarrow \ell^+ \ell^-$						
$B^0 \rightarrow J/\psi K^0 (1270)$	$J/\psi \to \ell^+ \ell^-$ $K^0 (1270) \to K^* (892) \pi^0$ $K^0 (1270) \to K^* (1430) \pi^0$	$K^* (892) \to K^+ \pi^-$ $K^* (1430) \to K^+ \pi^-$					
$B^0 \rightarrow D^- \pi^+$	$D^- \to K^+ \pi^- \pi^-$						
$B^0 \rightarrow D^{*-} \pi^+$	$D^{*-} \to \bar{D}^0 \pi_s^-$	$\begin{array}{c} \bar{D}^0 \rightarrow K^+ \pi^- \\ \bar{D}^0 \rightarrow K^+ \pi^- \pi^0 \\ \bar{D}^0 \rightarrow K^+ \pi^- \pi^+ \pi^- \end{array}$					

- Self tagging means we can identify the flavor of the *B* via the final state charges
- Run 1 data set ~ 385 fb^{-1} , expect ~ 164755 entangled $B\bar{B}$ events

Lucas Stoetzer

BB quantum entanglement at Belle II

- So far flavor entanglement assumed "perfect" in *BB* mixing analysis
- If there is decoherence, would observe decrease in amplitude of flavor oscillation (especially at $\Delta t = 0$)
 - Belle II will be especially well suited:
 - More data than Belle
 - Smaller interaction point (IP) region \Rightarrow access to absolute decay times of the Bmesons

I. Adachi et al, https://arxiv.org/pdf/2402.17260

Spontaneous and environmental decoherence

- Spontaneous decoherence/ ulletdisentanglement $\Rightarrow B$ states evolve independently from their production on
 - Searched for in Belle[†] but no significant evidence
- Environmental decoherence $\Rightarrow BB$ system interacts with environment, leading to disentanglement
 - ⇒ e.g. Linblad Decoherence*
 - ➡ No search performed yet, in quantum entangled $B\overline{B}$ system!

Environmental decoherence effects

- Can get "Same Flavor" (SF) events when decaying simultaneously ($\Delta t = 0$)

Environmental Effect	Timescale for (in picoseconds)			
	Dust Grain size $a = 10^{-3}$ cm	Molecule size $a = 10^{-6}$ cm	Particle size $a = 10^{-1}$	13 cm
Cosmic background radiation	10 ¹²	10^{36}	10^{92}	
Photons at room temperature	10^{-6}	10^{18}	10^{74}	
Best laboratory vacuum	10^{-2}	10^{10}	10 ³⁸	Table from: Maximilia
Air at normal pressure	10^{-19}	10^{-7}	10 ²¹	Schlosshauer,
Other e^-/e^+ in the colliding bunch	???	???	???	Decoherence And The
Dark matter	???	???	???	Quantum - To -
Quantum Gravity	???	???	???	Classicast Transition, Springer 2010, p. 135

Lucas Stoetzer

06/26/2025 - Belle II Summer School VT

• Environment interacts with the $B\bar{B}$ system and breaks the entanglement before first B decays

And The

Lindblad type decoherence

- λ characterizes how strong the decoherence is in the system
- Former UH undergrad, Hershel Weiner, started developing a binned fitter that I inherited

$$N = \frac{\exp\left(-\Gamma\left(t_1 + t_2\right)\right)}{4} \left[\cosh\left(\frac{\Delta\Gamma\Delta t}{2}\right) - q\exp\left(-\lambda t_{\rm m}\right)\right]$$

• No absolute decay time \Rightarrow Lindblad decoherence difficult to distinguish from wrong tagging in Δt projection only

Lindblad decoherence: *B* flavor vs t_1 , t_2

- Increasing decoherence parameter λ , increases same-sign B meson pairs at $\Delta t = 0$

Increasing decoherence λ

Lindblad decoherence: B flavor vs t_1 , t_2 with wrong tagging

Observe wrong tagging is a constant effect in $t_1 \sim t_2$ plane \bullet

 \Rightarrow t_1 and t_2 reveal a decoherence pattern, distinct from wrong tagging

Lucas Stoetzer

Size of the beam spot, asymmetric beam energies and crossing angle!

- point (IP) region

Boost, not only in z, but also in x direction enables B mesons to leave the interaction

Therefore, we can use the Btube fitting method determine the individual decay times!

Generating toy MC in semi-realistic conditions

- We want to generate multiple toy MC data sets to test low and high λ values (low: $\lambda \leq 0.01 \text{ ps}^{-1}$; high: $\lambda > 0.01 \text{ ps}^{-1}$)
- For each λ value generate 100 toy experiments = Each toy experiment consists of 72k events $\left(72k/\text{ toy exp.} \sim \mathscr{L}_{\text{int}} = 385 \text{ fb}^{-1}/\text{ toy exp.}\right)$

 \rightarrow Use random exponential to create t_1 and t_2 pairs

To make the toy MC study semi-realistic introduce two major effects
(1) Wrong tagging
(2) Resolution effects

te t_1 and t_2 pairs alistic introduce two major effects

Linearity Test Unbinned Fitter without wrong tagging

Lucas Stoetzer

- On truth level toy MC the unbinned fitter performs well
- However, we need to incorporate wrong tagging and resolution effects to obtain the total picture

Linearity Test Unbinned Fitter with wrong tagging

Lucas Stoetzer

 $b = -0.000 \pm 0.000$ Fitted λ = Simulated λ Fit Line $a = 0.990 \pm 0.002$, $b = 0.000 \pm 0.000$ Fit Line $a = 0.993 \pm 0.002$, $b = -0.000 \pm 0.000$ Fit Line $a = 1.018 \pm 0.002$, $b = -0.001 \pm 0.000$ Fit Line $a = 1.022 \pm 0.004$, $b = -0.002 \pm 0.000$ Fit Line $a = 0.952 \pm 0.005$, $b = 0.010 \pm 0.000$ Fit Line $a = 1.253 \pm 0.020$, $b = 0.037 \pm 0.001$ wqr6 = 0.0157wqr5 = 0.0865wqr4 = 0.1545wqr3 = 0.2283wqr2 = 0.319wqr1 = 0.4089wqr0 = 0.479

Fit Line $a = 1.000 \pm 0.002$,

No time resolution, yet!

- Take wrong tagging ratio into account for each w_{qr} bin
- Observe large bias for the two highest wrong tagging bins (black and purple)
- Bias comes from low MC statistics!

➡ Correct fitting bias:

$$\lambda_{\rm cor} = \frac{\lambda_{\rm fit} - b}{a}$$

Lucas Stoetzer

06/26/2025 - Belle II Summer School VT

Summary

- Search for quantum decoherence of flavor entangled B mesons
- Absolute decay times distinguish decoherence from wrong tagging
- We have access to the absolute decay times in Belle II
- Exploring measurement only using the absolute decay times (not Δt)
- Developing a new unbinned fitter
- Preliminary: Observe 5σ sensitivity for $\lambda \ge 0.004 \text{ ps}^{-1}$ in 385 fb^{-1} of toy MC

Thank you for your attention!

06/26/2025 - Belle II Summer School VT

Backup: B flavor vs t_1 , t_2 with wrong tagging

Lucas Stoetzer

- o 9 Probability Flavor Same
- If wrong tagging ratio reaches $50\,\%$ no hints of decoherence can be observed
 - \rightarrow The closer we get to 50 % wrong tagging the fitter will get more and more problems fitting for λ

Backup: Linearity Test Unbinned Fitter with wrong tagging

Lucas Stoetzer

06/26/2025 - Belle II Summer School VT

Lucas Stoetzer

- Simulate 1M events
- Keep wrong tag ratio the same
 - Large wrong tag ratio = Large bias
 - → Float numbers causing a small bias?

Lucas Stoetzer

• Simulate 1M events

- Round wrong tag ratio that we get integer
 - \Rightarrow Small effect on the scale of $\sim 1\%$

Lucas Stoetzer

 Small wrong tag ratio ➡ Bias is of statistical nature

100k	0k events Gen			Wrong tagging bins (fraction of data)				
$\lambda =$	0.002 ps^{-1}	$w_{qr0} \ (15.5\%)$	$w_{qr1} \ (15.8\%)$	$w_{qr2} \ (16.5\%)$	$w_{qr3}~(13.4\%)$	$w_{qr4} \ (11.6\%)$	$w_{qr5} \ (11.0\%)$	$w_{qr6} \ (16.2\%)$
•	Normal	0.0372 ± 0.0217	-0.0007 ± 0.0038	0.0069 ± 0.0018	0.0016 ± 0.0013	0.0007 ± 0.0011	0.0022 ± 0.0007	0.0021 ± 0.0003
atio	All 5%	0.0020 ± 0.0005	0.0021 ± 0.0005	0.0029 ± 0.0005	0.0020 ± 0.0005	0.0015 ± 0.0005	0.0018 ± 0.0005	0.0018 ± 0.0005
й 100	All 25%	0.0028 ± 0.0013	0.0023 ± 0.0013	0.0052 ± 0.0013	0.0024 ± 0.0015	-0.0014 ± 0.0017	0.0019 ± 0.0015	0.0004 ± 0.0014
ta	All 30%	0.0018 ± 0.0016	0.0010 ± 0.0016	0.0062 ± 0.0017	0.0018 ± 0.0020	-0.0032 ± 0.0023	0.0002 ± 0.0020	-0.0002 ± 0.0019
ng	All 32%	0.0003 ± 0.0018	0.0004 ± 0.0018	0.0069 ± 0.0018	0.0015 ± 0.0022	-0.0044 ± 0.0026	0.0023 ± 0.0023	0.0002 ± 0.0021
/ro	All 33%	0.0011 ± 0.0019	-0.0001 ± 0.0019	0.0075 ± 0.0019	0.0018 ± 0.0022	-0.0055 ± 0.0028	0.0017 ± 0.0025	0.0000 ± 0.0022
5	All 40%	0.0030 ± 0.0034	-0.0001 ± 0.0035	0.0129 ± 0.0031	0.0016 ± 0.0038	-0.0116 ± 0.0049	0.0017 ± 0.0043	0.0012 ± 0.0036

- Small wrong tag ratios observe good fit precision
- Lager wrong tag ratios observe larger fit bias
- many events go into each wrong tag bin?

100k events Gen		Wrong tagging bins (fraction of data)						
$\lambda=0.002~{\rm ps}^{-1}$		$w_{qr0} \ (\sim 14.3\%)$	$w_{qr1} \ (\sim 14.3\%)$	$w_{qr2} \ (\sim 14.3\%)$	$w_{qr3} \ (\sim 14.3\%)$	$w_{qr4} \ (\sim 14.3\%)$	$w_{qr5} \ (\sim 14.3\%)$	$w_{qr6} \ (\sim 14.3\%)$
0	Normal	0.0003 ± 0.0204	0.0072 ± 0.0043	0.0014 ± 0.0019	0.0011 ± 0.0014	0.0024 ± 0.0009	0.0017 ± 0.0007	0.0019 ± 0.0003
/rong tag ratio	All 5%	0.0014 ± 0.0005	0.0014 ± 0.0005	0.0020 ± 0.0005	0.0023 ± 0.0005	0.0021 ± 0.0004	0.0019 ± 0.0005	0.0023 ± 0.0005
	All 25%	0.0020 ± 0.0013	0.0033 ± 0.0013	0.0024 ± 0.0012	0.0012 ± 0.0015	0.0043 ± 0.0012	0.0012 ± 0.0014	0.0038 ± 0.0014
	All 30%	0.0030 ± 0.0016	0.0026 ± 0.0018	0.0019 ± 0.0017	0.0018 ± 0.0020	0.0041 ± 0.0017	0.0013 ± 0.0019	0.0044 ± 0.0017
	All 32%	0.0030 ± 0.0018	0.0039 ± 0.0020	0.0016 ± 0.0019	0.0010 ± 0.0023	0.0050 ± 0.0019	0.0012 ± 0.0020	0.0049 ± 0.0019
	All 33%	0.0029 ± 0.0019	0.0041 ± 0.0020	0.0021 ± 0.0020	0.0008 ± 0.0024	0.0050 ± 0.0020	0.0010 ± 0.0021	0.0052 ± 0.0020
Δ	All 40%	0.0029 ± 0.0038	0.0058 ± 0.0039	0.0032 ± 0.0035	0.0019 ± 0.0046	0.0119 ± 0.0035	0.0013 ± 0.0039	0.0075 ± 0.0037

Lucas Stoetzer

06/26/2025 - Belle II Summer School VT

• Larger wrong tag ratio, bias can switch from positive to negative bias \rightarrow quantization effect in choosing how

1M	events Gen	Wrong tagging bins (fraction of data)						
$\lambda =$	0.002 ps^{-1}	$w_{qr0} (15.5\%)$	w_{qr1} (15.8%)	$w_{qr2} \ (16.5\%)$	$w_{qr3} (13.4\%)$	$w_{qr4} \ (11.6\%)$	w_{qr5} (11.0%)	$w_{qr6}~(16.2\%)$
	Normal	0.0073 ± 0.0063	0.0021 ± 0.0014	0.0015 ± 0.0006	0.0021 ± 0.0004	0.0016 ± 0.0003	0.002 ± 0.0002	0.0019 ± 0.0001
ati	All 5%	0.0021 ± 0.0002	0.0021 ± 0.0001	0.0021 ± 0.0002	0.0019 ± 0.0002	0.0016 ± 0.0002	0.0018 ± 0.0002	0.0018 ± 0.0002
ы 50	All 25%	0.0025 ± 0.0004	0.0018 ± 0.0004	0.0017 ± 0.0004	0.0019 ± 0.0005	0.0014 ± 0.0005	0.0015 ± 0.0005	0.0017 ± 0.0004
ta	All 30%	0.0023 ± 0.0006	0.0022 ± 0.0006	0.0014 ± 0.0005	0.0021 ± 0.0006	0.0015 ± 0.0007	0.0013 ± 0.0007	0.0020 ± 0.0006
ng	All 32%	0.0022 ± 0.0006	0.0019 ± 0.0006	0.0014 ± 0.0006	0.0023 ± 0.0007	0.0014 ± 0.0008	0.0011 ± 0.0008	0.0023 ± 0.0006
Vro	All 33%	0.0022 ± 0.0007	0.0019 ± 0.0007	0.0012 ± 0.0006	0.0023 ± 0.0007	0.0016 ± 0.0008	0.0013 ± 0.0008	0.0023 ± 0.0007
\sim	All 40%	0.0030 ± 0.0012	0.0021 ± 0.0013	0.0014 ± 0.0010	0.0032 ± 0.0013	0.0031 ± 0.0015	0.0016 ± 0.0013	0.0032 ± 0.0012
$\begin{array}{l} 1 \mathrm{M} \text{ events Gen} \\ \lambda = 0.002 \ \mathrm{ps}^{-1} \end{array}$		Wrong tagging bins (fraction of data)						
		$w_{qr0} \ (\sim 14.3\%)$	$w_{qr1} \ (\sim 14.3\%)$	$w_{qr2} \ (\sim 14.3\%)$	$w_{qr3} \ (\sim 14.3\%)$	$w_{qr4} \ (\sim 14.3\%)$	$w_{qr5} \ (\sim 14.3\%)$	$w_{qr6} \ (\sim 14.3\%)$
0	Normal	0.0022 ± 0.0064	0.0035 ± 0.0014	0.0023 ± 0.0007	0.0021 ± 0.0004	0.0019 ± 0.0003	0.0020 ± 0.0002	0.0019 ± 0.0001
ati	All 5%	0.0020 ± 0.0002	0.0022 ± 0.0002	0.0022 ± 0.0002	0.0021 ± 0.0002	0.0018 ± 0.0002	0.0020 ± 0.0002	0.0019 ± 0.0002
й 60	All 25%	0.0019 ± 0.0005	0.0020 ± 0.0004	0.0025 ± 0.0005	0.0020 ± 0.0005	0.0017 ± 0.0005	0.0016 ± 0.0004	0.0020 ± 0.0005
ng ta	All 30%	0.0017 ± 0.0007	0.0024 ± 0.0005	0.0023 ± 0.0006	0.0022 ± 0.0006	0.0021 ± 0.0006	0.0013 ± 0.0005	0.0022 ± 0.0006
	All 32%	0.0020 ± 0.0007	0.0026 ± 0.0006	0.0023 ± 0.0007	0.0018 ± 0.0006	0.0026 ± 0.0007	0.0015 ± 0.0006	0.0023 ± 0.0007
Vro	All 33%	0.0021 ± 0.0008	0.0027 ± 0.0007	0.0024 ± 0.0007	0.0016 ± 0.0007	0.0027 ± 0.0008	0.0016 ± 0.0007	0.0022 ± 0.0008
M	All 40%	0.0018 ± 0.0013	0.0033 ± 0.0012	0.0023 ± 0.0012	0.0013 ± 0.0012	0.0035 ± 0.0013	0.0009 ± 0.0011	0.0025 ± 0.0013

- other within its errors
- Bias seems to have statistic nature!

Lucas Stoetzer

With more data we observe fit values in same fraction of data agree with each

Backup: Btube algorithm

Lucas Stoetzer

06/26/2025 - Belle II Summer School VT

Backup: Absolute times using the Btube method

• Reconstruction of the absolute times of B_{sig} and B_{tag} is working!

06/26/2025 - Belle II Summer School VT

Lucas Stoetzer

