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History of some Particle Discoveries

* The electron:

* ~1700’s: To explain attraction caused by rubbing, Ben Franklin thought

that positive charges flowed from one material to another

* 1838: Richard Laming hypothesized electrons as part of atoms

* ~1891: G.J. Stoney (a.k.a. “electron Stoney”) named them

* 1897: J.J. Thomson discovered the electron by observing rays of

particles streaming from the cathode to the anode.
* The positron:

* Hypothesized by Dirac in 1928, discovered at Caltech ~1932
* The proton:

* Rays of +ve particles emerging from anodes were observed by Eugen
Goldstein in 1886, but different gases had different g/m ratios (unlike
for electrons). In 1919, a decade after winning a Nobel prize, Ernest
Rutherford showed that protons emerged when o + *N = 7O + p.
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The 1930s

* The neutron was more difficult to discover because it has no charge

* Models of the nucleus with just e and p had problems: the “Oscar Klein
Paradox” of too much energy for the e (uncertainty principle), and nuclear
spins. The n was discovered in 1932 by James Chadwick.

[a + Be — neutral particles (n); n + Paraffin = p]

* Nuclear physics developed very rapidly in the 1930°’s: by 1938 fission had
been discovered followed shortly by reactors and other applications.

* 1935: Fermi et al. Showed that n are very effective at disintegrating nuclei.
Bethe explained this beautifully in a 1935 paper.
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“Theory of
Disintegration of
Nuclei by
Neutrons”,
by H.A. Bethe,
Phys. Rev.
47.747 (1935)
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The large probability of nuclear disintegration by slow
neutrons as well as the large cross section for the elastic
scattering of slow neutrons can be explained without any
new assumption. Interaction between neutron and nucleus
is assumed to be only present when the neutron is inside the
nucleus or very near its boundary. The rate of change of
the potential energv of the neutron at the boundary of the
nucleus is important for the quantitative, but not for the
qualitative results; in agreement with other data, it has
been assumed that the potential drops to 1/e in a distance
1.5.1071% cm (range of the forces between neutron and
nucleus).

The large disintegration cross sections are due to two
factors. The first is elementary: the cross section is in-
versely proportional to the neutron velocity, because a slow
neutron stays longer in the nucleus. The second factor is
1/sin? ¢y, where ¢, is the phase of the neutron wave
function at the nuclear boundary. This resonance factor
explains the large differences between the cross sections of
different elements. ¢¢ cannot be predicted theoretically, but
reasonable assumptions lead to agreement with experi-
ment. The resonance factor occurs in all phenomena with
slow neutrons; therefore large capture cross sections should
always be accompanied by large elastic scattering. The
explanation of the large neutron cross sections on the basis
of ordinary wave mechanics makes one confident in the

M. V. Purohit. Unp» @PPlicability of orthodox quantum theory in nuclear phe-
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Scattering of incoming particles:
what we learn from Bethe’s paper

* We commonly assume that the incoming particles come along the
z-axis and collide with the target at the origin.

* The incoming wave is ~ exp(ikz), which can be resolved into
incoming spherical waves.

* At typically low energies, only S-waves ({ = 0) contribute because

higher (-values correspond to larger distances; alternatively the
“centrifugal barrier” is higher.
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O...vs. neutron energy at low energies
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Bl Weisskepf (1952)
380 VIII. Nuclear Reactions: General Theory

The wave function u; just inside the nuclear boundary (r <R) can
no longer be r - . wave

nly. It now must include also a term representing a wave returnin
rd the outside. This is indicated by

u; ~ exp (—iKr,) + b exp (+:2Kr,) (for r < R) >(7.1)

where b 1s the (complex) amplitude of the returning wave and depends

on the properties of the compound nucleus. At high incident energies

we expect b to be close to zero. In absolute value, b is never larger

than unity, since no more particles can approach 7, = R from the inte-

rior in channel o than have originally penetrated into the inside region.

emphasized again that (7.1) i not an exact repre‘s%

mncmon u; inside the nucleus. For r <R, the wave f

tion describing the motion of the imcident particle depends on the

varlables of all other nucleons invalved:- it is no longer descrlbed by a caveat
unction u;(r,). Relation (7.1) is a very
pressmn which is used to describe only the main features of 1t

dependence of the actual wave function on 7, near the nuclear surface.
It expresses the fact that the incident par ticle possesses an average

Potential is
approximate

‘ LD
2BVl entrancechenael We are using (7.1) only to e logarith- e




Blatt & Weisskopf, continued

Let us now consider the opposite extreme where the energy of the
incident particle is so low that no other channel but the entrance channel
18 open, so that the compound system can decay only by re-emitting
the incident particle with the same energy with which it entered. An
example of this is a reaction in which the incident beam consists of
neutrons of an energy ¢, smaller than the lowest excitation energy of
the target nucleus, and smaller than the threshold of any nuclear
reaction. (In general, an energy e <100 kev will fulfill this condition
if we neglect the possibility of radiative capture and fission.) Then
the neutron must leave the compound nucleus again with an energy e.

The wave function ins‘de the surface can then be approximated by

ur ~ exp (—tKr,) + exp [¢(Kr, + 2¢)] (7.2)

in which the incoming and outgoing waves are equally strong (|b|=1),
-
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Blatt & Weisskopf, continued

the outgoing wave having a phase shift 2{ ({=real). The boundary
condition at r,=R on the wave function is now

Loaaﬂ“‘"‘“— ki
,D¢Y_‘\,aj<-w'€ f£=R( U )r—-}?

= — KR tan [KR + ¢(¢)] (7.3)

(7.3) is quite different from (4.7). The phase {(¢) with which the
wave returns depends quite sensitively on the complicated interactions
which the particle undergoes within the nucleus before it re-emerges
near the surface and is th ction of the energy of the enter-
— The cross sections, which follow from {7 il be
calculated in Section 8. Tn this section we restrict ourselves to quali®
tative reasoning, and an attempt will be made to explain or to make
p]ausible the most important qualitative features of the resonance
na. The quantitative calculations and the more_xI
derlva,tlons are Tound T tirestreeeedire-seettors; and in Chapter X.

The re-emergence of the particle gives rise to the occurrence of
resonances in the compound system. This can be seen qualitatively
in the following way:! Expression (7.2) shows that the wave function
just inside the nuclear surface can be written in the form

u ~ C cos [Kr + ¢{(¢)] (for r < R) (7.4)
where C 1s a constant@function must be joined smoothly to




Blatt & Weisskopf, continued

penetr rongly mto the nucleus.
the nucleus and form a ~“Tompoumnd state” only if the energy e is
equal or nearly equal to a ‘““resonance’ energy e;.

More conclusions can be drawn from our picture regarding the
scattering cross section. The smallness of C/A for energies off
resonance implies also that the outside wave assumes a very small
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Blatt & Weisskopf, continued
o S

L ‘ ﬂ r\ / -
Fic. 7.1. Schematic representation of neutron wave functions at the nuclear sur-
face. The wave functions are indicated as functions of the distance r from the
center of the nucleus. r=R is the nuclear radius. Case (a) corresponds to a

neutron energy between resonances, case (b) is near resonance, case (c¢) is in
resonance.

value at r=R. It almost could be written in the form A sin k(r—R),
which reaches zero at r=R. This would be just the solution for the
scattering at an impenetrable sphere of radius R, which would force the
wave function to vanish at r=R. Thus we conclude that the scatter-

ing away from resonance ought to be almost identical with that of an F=3)
1mpenetrable sphere of radius R.! -




Breit & Wigner, 1936

In their 1936 paper, G. Breit & E. Wigner, Phys. Rev. 49, 519 state:

S=2L+1 (13)

in these special circumstances. For s terms S=1.
The total cross section

0'=0';+qu

where o, is the cross section due to scattering
and o, is the cross section due to capture.. We

have

A2 I, A2 | A
Gom S g= ST (1Y)

T (v—wvo)?+1" T (v—pg)+1"2

Caveat:
The above value of ¢, corresponds to the value
*la,|? and docs not take into account the fact The states “s” of the free
that there is scattering in the abscence of the neutron are assumed not to
quasi-stationary level. If this is strong one must interfere with scattered states;
correct ¢, for interference of the states s with if so, interference must be
. . . accounted for.

the spherical wave present in so. In the applica-
tions made below the scattering effect duc to
either cause will be small and the correction need

not be considered. According to (14) the extra

scattering can be expected to be of the order

I'./1', times the capture and is quite small for
Belle I small I',.

ty of South Carolina

Universit uth
High Energy Physics Group



General description of Decays

* There are 3 degrees of freedom (momenta) for each final state
particle, and 4 energy-momentum constraints. Thus, for an n-body
decay we expect (3n — 4) degrees of freedom. Calculations are
usually done in the rest frame of the decaying particle.

* In a 2-body decay, 0 = 1+2, the final state has 2 degrees of
freedom. The energies and momenta of 1 and 2 are fixed, while the
azimuthal and polar angles of the back-to-back decay line are not.

* In a 3-body decay, there should be 5 degrees of freedom. If the
decaying particle is spinless, e.g., a B-meson, there is no
dependence on the direction of one particle, eliminating two
degrees of freedom. The azimuthal angle of the other two around
this direction can also be eliminated, leaving us with two degrees
of freedom: E, and Es, or some other variation thereof.
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P, M4

From the PDG: Decays ,,

, m
49.4 Particle decays P> My

The partial decay rate of a particle of mass M into n bodies in its rest frame is given in terms
of the Lorentz-invariant matrix element .Z by
(2m)*
2M

where d®,, is an element of n-body phase space given by

dl' = A2 AP, (P; py, ..., pn), (49.11)

(49.12)

,:13

AP, (P; p1, ..., pn) =6" (P =) _pi)

=1 =1

(27 32E

This phase space is reduced by combinatoric factors whenever there are identical particles in the
final state. The phase space can be generated recursively, viz.

d®,(P; p1, ..., pn) =d®;(q; p1, ..., Dj)
X d(I)'n,—j—i—l (Pa q, Pj+1s -+ pn)(Qﬂ_)SdQQ ) (4913)

2
. This form is particularly useful in the case where a particle

where ¢ = (37_, E;)? —‘ g

decays into another particle that subsequently decays.
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From the PDG: Scattering

49.3 Lorentz-invariant amplitudes
The matrix elements for a scattering or decay process are written in terms of an invariant
amplitude —i.#. As an example, the S-matrix for 2 — 2 scattering is related to .# by

(Piph |S — 1] pipe) = i(27)* 6*(p1 + p2 — P — Ph)-4 (p1, p2; P}, Ph) - (49.8)
The state normalization is such that
(P'lp) = (27)° 2E, 6°(p' — p) , (49.9)

with £, = /p? + m?.
For a 2 — 2 scattering process producing unstable particles 1’ and 2’ decaying via 1’ — 3’4’
and 2" — 5’6’ the matrix element for the complete process can be written in the narrow width

approximation as:
vs BW

(49.10)

(12 = 120 (1 — 344 (2 — 56

m3,, —m3, +imy Ly ) (m2, — m3, + imy Ty

AM(12 = 3456") = H
hyrhor

Here, m;; is the invariant mass of particles 7 aTrd=—s e mass and total width of
particle k, and the sum runs over the helicities of the intermediate particles. This enables the cross
section for such a process to be written as the product of the cross section for the initial 2 — 2
scattering process with the branching ratios (relative partial decay rates) of the subsequent decays.
A more sophisticated treatment, beyond the narrow width approximation, can be found in the
review on 'Resonances".
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From the PDG: Resonances

Resonance phenomena are very rich: while typical hadronic widths are of the order of 100 MeV
(e.g., for the meson resonances p(770) or 1(4040) or the baryon resonance A(1232)) corresponding
to a lifetime of 107%* s, the widths can also be as small as a few MeV (e.g. of $(1020) or J/4) or
as large as several hundred MeV (e.g. of the meson resonances f,(500) or D;(2430) or the baryon
resonance N (2190)).

Typically, a resonance appears as a peak in the total cross section. If the structure is narrow
and if there are no relevant thresholds or other resonances nearby, the resonance properties may be
extracted employing a Breit—Wigner parameterization, if necessary improved by using an energy-
dependent width (c¢f. Sec. 50.3.1 of this review). However, in general, unitarity and analyticity
call for the use of more refined tools as outlined here as well as in recent review articles [1, 2].
When there are overlapping resonances with the same quantum numbers, the resonance terms
should not simply be added but combined in a non-trivial way either in a K-matrix approach
(cf. Sec. 50.3.2 of this review) or using other advanced methods (cf. Sec. 50.3.5 of this review).
Additional constraints from the S-matrix allow one to build more reliable amplitudes and, in turn,
to reduce the systematic uncertainties of the resonance parameters: pole locations and residues.
In addition, for broad resonances there is no direct relation between pole location and the total
width /lifetime — then, the pole residues need to be used in order to quantify the decay properties.

For simplicity, throughout this review the formulas are given for resonances in a system of
distinguishable, scalar particles. The additional complications that appear in the presence of spins
can be controlled in the helicity framework developed by Jacob and Wick [3], or in a non-covariant [4]
or covariant [5] tensor-operator formalisms. Within these approaches, sequential (cascade) decays
are commonly treated as a coherent sum of two-body interactions. Most of the expressions below
are given for two-body kinematics.
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PDG: 3-body Decays
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Figure 49.3: Dalitz plot for a three-body final state. In this example, the state is 77 K% at
3 GeV. Four-momentum conservation restricts events to the shaded region.
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Dalitz Example 1

Recent charm results from Belle

Longke Li
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Dalitz Example 2

Recent charm results from Belle Longke Li
https://arxiv.org/pdf/2102.03703
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Some results from Scattering Theory
(see PDG note on “Resonances”)

* Thereaction amplitude can be expressed as a function of two variables, M(s,t).

* The Optical Theorem: Im M, (5,0) = 2¢4/S Otot (@ — anything)
* Partial wave expansion of O(ghe scattering amplitude (scalars; a—b):

Mgals, 1) = Z(2j -+ 1)M§Q(S)Pj(cos(9))

j=0
Upon normalizing the scattering amplitude by phase space factors:
foa(8) = /P Mpa(s) v/Pa - (50.12)
The unitarity condition for fp, follows from Eq. (50.10):
Im fiq(s Z £ (8) fea(s) . (50.13)

It leads us to deduce that the inverse of the imaginary part of f;, is equal to —dy,. Moreover,
S =1+ 2:f is a unitary matrix. Hence, the diagonal elements of f can be parameterized as

Job = (np exp(2idp) — 1) /21 , (50.14)
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Some results from Scattering Theory, continued

where 0, denotes the phase shift for the scattering from channel b to channel b and 7, is the elasticity
parameter, also known as inelasticity. Building upon Eq. (50.13), we can further deduce that,

Im fyp(s) = (1 —mp cos(203))/2 = Z [fen(s)|” - (50.15)

Using Eq. (50.14) for the last term in the sum, we obtain a relation highlighting the meaning of
the inelasticity,

1
T (1=m) =2 fal(s) . (50.16)
c#£b

It is important to note that the parameter 7, is confined within the range [0, 1], where the case,
ny = 1 is referred to as a purely elastic scattering. Thus, the function n,(s) is a direct measure of
the contribution of the inelastic channels on the scattering amplitude in a given channel.

The evolution of the partial-wave amplitude f;, with energy can be displayed as a trajectory
in the Argand plot, as shown in Fig 50.5. In case of a two-channel problem, 1; = 12 = 7, and the
off-diagonal element is fi2 = /1 —n?/2 exp(i(d1 + d2)). The unitarity condition Eq. (50.14) sets
the limit to the squared amplitude fg,b.

| fn|* = (% — 2mp cos(20,) + 1) < —(mp +1)% (50.17)

m_».|H
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Some results from Scattering Theory, continued

where the maximum value is reached for §, = n/2. For the absolute square of the partial-wave-
projected scattering amplitude the unitarity bound thus reads:
1 87

M| < 2—%(77b+1) a\/g} (50.18)

IA

where the second inequality comes from 7, < 1. For energies much larger than the masses of the
scattering particles the upper bound for |My,| tends to 167 for large s.

The partial-wave projected production amplitude A(s) (note that the label 7 has been omitted
for consistency) is also constrained by unitarity. As derived from Eq. (50.8):

ImA, =) M, pp As (50.19)
b

where the summation encompasses all open channels. In the realm of elastic scattering, solely one
channel, denoted by a, contributes to the sum. Consequently, the phase of A, must align with the
phase of M., given that the left-hand side of Eq. (50.19) represents a real value. This principle
is recognized as the Watson theorem [57|. To illustrate, consider the phase of the pion vector form
factor: it agrees to that of 7w scattering in the vector isovector channel (aside from effects of
the isospin-violating p — w mixing) up to about 1 GeV, where inelastic contributions start gaining
significance.
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50.3.1 The Breit—Wigner parameterization
The relativistic Breit—Wigner parameterization represents a dressed propagator for an isolated
resonance. The production amplitude for a resonance observed in a channel a, is given by

_ Na(s)
f't/f]%“; — 85— iﬂ”fBWr(S)

Aa(s) (50.30)

where Mpw represents the Breit—Wigner mass, and Igw = F(M'%W) denotes the Breit—Wigner
width. The function I'(s) is defined by the channels to which the resonance can decay. The
numerator function N,(s) is tailored to the production process, encompassing kinematic factors
and couplings pertinent to both the production and decay processes.

No(s8) = a gang(s) (50.31)
1 .
I'(s) = stnzs., 50.32
() = gy SAIE(S) (50.32)
Here the index b = 1,2, ... runs over all decay channels of the resonance. The coupling constants

are represented by g, and py is the phase-space factor as defined in Eq. (50.11). The expression
for ng(s) is:

e = (4a/q0)" Fl, (¢a/q0) (50.33)

where [, indicates the orbital angular momentum in channel a, g,(s) is the break-up momentum
as defined in Eq. (50.7), and qq is a suitably selected momentum scale. The term (g,)'* ensures the
amplitude’s appropriate threshold behavior. The rapid growth of this factor for angular momenta
lo > 01is offset at specific s values by a phenomenological form factor, represented here by Fj, (g, qo0)
— the presence of these suppression factors is also a requirement from positivity which demands
that the dressed propagator, the denominator of Eq. (50.30) and similar equations below, is not
allowed to drop faster than 1/s [27]. The Blatt-Weisskopf form factors are frequently employed in
the literature [70-72] to model Fj:

, (50.34)

where z = q/qo, the scale parameter 1/qg typically falls within the range of 1 GeV! to 5GeV L.
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Partial wave decomposition

50.1.3 Partial-wave decomposition

It is often convenient to expand a two-body scattering amplitude of a two-body subsystem of
a production amplitude in partial waves. Since resonances have a well-defined spin, they appear

only in a specific partial wave of the reaction amplitude. For scalar particles, the expansion reads:

o0

Mua(s,t) = > (2j + 1) M, (5) Pj(cos(0)) (50.9)

Im(fyy,)

1 .
-12 12 Relfon)

Figure 50.5: |Argand plot|showing a trajectory of the diagonal element of a partial-wave amplitude,

fop, as a function of energy in the complex plane. As the energy increases the amplitude follows the

line counter clockwise. The amplitude leaves the unitary circle (solid line) as soon as inelasticity
sets in, n < 1 (dashed line).




More caveats (PDG)

Equation (50.32) incorporates a threshold for each of the coupled channels. The expression
is straightforward to use in the physical region above all the thresholds. Its evaluation elsewhere
requires a careful analvtic continuation. As outlined in Refs. [73,74], the choice

the physical region of the lighter channel computed with Eq. (50.36). When a resonance’s coupling
to the channel with a higher threshold is notably strong, the parameterization displays scaling
invariance. This implies that it is not possible to extract individual partial decav widths: only their
ratios can be determined [75].

The Breit—Wigner parameterization is an accurate representation of resonance phenomena
strictly in the I'/A — 0 limit. where I" is the resonance width and A is the distance to the
closest unaccounted singularity. be it a pole of a higher resonance or a kinematic threshold related
to a coupled channel. However, the situation is often more complex due to multiple singularities
in the complex plane around the resonance with different importance. For instance, in P-wave
mm scattering, the Breit—Wigner parameterization aptly describes the p-meson resonance over an

applicability. If there is more than one resonance in one partial wave that significantly couples to
the same channel. it is generally inappropriate to employ a sum of Breit—Wigner functions. Such an
approach often results in a breach of unitaritv constraints. potentially introducing an indeterminate
bias to the inferred resonance properties from the reaction amplitude. For overlapping resonances
in the same partial wave, more sophisticated methods. such as the K-matrix approach detailed in
the subsequent section. are recommended.




Enforcing Unitarity

50.3.2 K-matrixz approach

The K-matriz method offers a comprehensive framework for modelling coupled-channel ampli-
tudes [78]. This method ensures two-particle unitarity. However, it traditionally omits the left-hand
cuts. The scattering amplitude My, (s) can be derived from the equation:

ny Mb_al Ng = }Cb_al — f,i(ﬁ'bapani_ (50.37)

Here, K, represents a real function and is subject to modeling. The factor n, is elaborated

upon in Eq. (50.33). Since there is no unique recipe to build IC, it is essential to explore various
parameterizations to gauge the theoretical systematic uncertainty. A commonly adopted choice for
the /C-matrix is given by:

IR
Kpa(s) = E 5 + bpa (50.38)

where mpg is referred to as the bare mass of the resonance R (not to be confused with the physical
mass), and the g? represents the bare couplings of the resonance R to the channel a (not to be
confused with the residues). The by, is a matrix that parameterizes the non-pole components of the
K-matrix. Provided all parameters in Eq. (50.38) are real, the amplitude My, (s) remains unitary.
From Eq. (50.37), the scattering amplitude M can be directly computed using its matrix form:

M =n[l - Kipn?| 'Kn (50.39)
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Final Note from the PDG review

There has been considerable interest in the 3 — 3 scattering recently. particularly in light of
new data on three-hadron interaction [127] and advancements in lattice calculations [128]. One
finds that the methodologies devised for accounting for one-pion exchange bear a resemblance to
the two-potential decomposition. For details see Ref. [129], also Eq. (93) in Ref. [130].
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BaBar: Dalitz Plot Analysis of D — wtn =™

~13,000 events
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BaBar: Dalitz Plot Analysis of D — 7w~ w™

The "' mass distribution is then weighted by the spherical harmonic Y1°(cos 8) (L. = 1 — 6). The resulting
distributions of the Y° are shown in Fig. 4. A straightforward interpretation of these distributions is difficult,
due to reflections originating from the symmetrization. However, the squares of the spin amplitudes appear in
even moments, while interference terms appear in odd moments.

1~~~ 1 7T S L 50:"I""II
50 150 25
(o] [ o~ (o]
2 C 2 2
0 L 0
> : % 100 o
] [ 6] I O Lk
g g | q P
= r = 50 i = -50 ¢
S -100 F < S .
= C = T 75 F
E‘f L g 0 L S-) F
o -150 5} N L0 E
200 By e so bt vy 25 B
0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
m(t* ) (GeV/ic?) m(r* ) (GeV/c?) m(r' ) (GeV/c?)
150 75
0 _
N, ™~ | <Y5> N' SU o
=2 2 100 § =2 i
> > I > _
L8] L8] L] -
] ) O 25 F
wy ) o w C
o a5 - o
= = L = 0
S S S
= = e 25 F
S S 3 -
- - -
4] 5] a
i -50
R AN e T N _50_..1.1..1L..,J.... R T BN R
0.5 | 15 2 0.5 1 1.5 2 0.5 | 15 2
- - el - )
m(n* ) (GeV/c?) m(tt” ) (GeV/c) m(nt’" ) (GeV/c)

FIG. 4: Unnormalized spherical harmonic moments (Yf > as a function of 777~ effective mass. The data are presented with
error bars, the histograms represent the fit projections.



Experimental Results: 1.ASS, 1988
D. Aston et al, “A study of K-nti+ scattering in the reaction K-p - K-n+n at 11 GeV/c”
Nuclear Physics B, 296(3), 493-526

Abstract

Results from a high statistics study of the reaction K'p - Knt'n are presented. These results are
based on data obtained with an 11 GeV/c beam using the LASS spectrometer at SLAC. The
mass dependence of the spherical harmonic moments provides clear evidence for the production
of the complete leading orbitally excited K* series up through J2 = 5-. These moments are used
to perform an energy independent partial wave analysis of the K't* system from threshold to 2.6
GeV/c? using a t-dependent parametrization of the production amplitudes. The amplitudes
corroborate the leading K*(892), K,*(1430), K5*(1780), K4*(2060), and Ks*(2380) resonances
observed directly in the moments, and also provide new evidence for underlying states. The

0" amplitude contains the K*(1350) and a second 0*K*(1950) at higher mass. The 1-K*(1790)
seen in earlier two and three-body analyses is confirmed, and evidence is provided for a
suppressed K" decay mode of a second 1" state, the K*(1410), which has been seen in earlier
three-body analyses.
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Experimental Results: L. ASS, 1988
D. Aston et al, “A study of K-ni+ scattering in the reaction K-p - K-n+n at 11 GeV/c”
Nuclear Physics B, 296(3), 493-526

~Partial Waves.

helicity frame. The production angular distribution Iproq Of the K~#* system can
be expanded as

| ] |
IProd(qur’ t', Q) = ﬁ L,%;otg{(ml(m t')(2 - 8M0)Re[YLM(‘Q)] , (3.1)
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PHYSICAL REVIEW D 73, 032004 (2006)

Model-independent measurement of S-wave K~ 7" systems using D™ — Ko decays
from Fermilab E791

Analyses typically use an isobar model formulation in
which the decays are described by a coherent sum of a
nonresonant three-body amplitude NR, usually taken to be
constant in magnitude and phase over the entire Dalitz plot,
and a number of quasi two-body (resonance + bachelor)
amplitudes where the bachelor particle 1s one of the three
final state products, and the resonance decays to the re-
maining pair. It is assumed that all resonant and NR
processes taking part in the decay are described by ampli-
tudes that interfere and have relative phases and magni-
tudes determined by the decay of the parent meson. In
cases where all three decay products are pseudoscalar (P)
particles, angular momentum conservation requires that
the resonances produced are scalar (S-wave), vector
(P-wave), etc . For D mesons, decays beyond D-wave
4 are highly suppressed by the angular momentum barrier
| factor and can be neglected.
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FIG. 1 (color online). Dalitz plot for D™ — K~ ar, 7j; decays.
The squared invariant mass sz of one K~ 7" combination is
plotted against s4, the squared invariant mass of the other
combination. The plot is symmetrized, each event appearing
twice. Lines in both directions indicate values equally spaced
in squared effective mass at each of which the S-wave amplitude
is determined by the MIPWA described in Sec. III. Kinematic
boundaries for the Dalitz plot are drawn for three-body mass
values M = 1.810 and M = 1.890 GeV/c?, between which data
are selected for the fits.
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FIG. 3 (color online). (a) _Phases ;= ¢o(s,) and
(b) magnitudes ¢, = |Co(s,)| of S-wave amplitudes for K_ 7"
systems from D™ — K~ @" 7" decays with the amplitude and
phase of the K*(892) as reference. Solid circles, with error bars,
show the values obtained from the MIPWA fit described in the
text. The effect of adding systematic uncertainties in quadrature
is indicated by extensions on the error bars. The P-wave and
D-wave phases are plotted in (c) and (e) and their magnitudes
in (d) and (f), respectively. These curves are derived from
Egs. (7) and (8), respectively, evaluated with the parameters
and error matrix resulting from the MIPWA. Curves appear as
shaded areas bounded by solid line curves representing 1 stan-
dard deviation limits for these quantities. In all plots, the dashed
curves show | standard deviation limits for the predictions of the
isobar model fit described in Sec. V. These curves are computed
in the same way, using Eq. (17) in addition to (7) and (8) with
parameters and error matrix from the isobar model fit.
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FIG. 9 (color online). A second solution for the S-wave am-
plitude from MIPWA fits to D" — K~ 7" 7" decays with P-
and D-wave parametrized by the xk model described in the text.

® Plots show the (a) phase and (b) magnitude for solution B for the
S-wave obtained by using different starting values for the
amplitudes. The dashed curves delineate the regions that lie
within 1 standard deviation of the isobar model fit described in
M. V. Purohit, Univ. of S. C Sec. V. The P-wave is shown in (¢) and (d) and the D-wave in (e)
Belle II and (f),




E791: The Watson Theorem

It is interesting to compare the amplitudes C; (s) defined
in Sec. III and measured in Sec. IV with those from K~ 7"
scattering, T (s). The relationship between C; and T, is
given by Eq. (6). If the K~ 77 systems produced in D™ —
K~ 7y decays do not interact with the bachelor 7,
then the factor P, (s) describes the production of K~ 7" as
a function of s from these decays. Also, under the same
assumptions, the Watson theorem [24] requires that, in the

s range where K~ T scattering is purely elastic, 7, (s) for
each partial wave labeled by L and by isospin /, should

carry no s-dependent phase. In other words, ¢, the phase

E.M. AITALA et al.

could differ, however, due to any s-dependence of the
production rate of Kz~ systems in D" decay.

The validity of the Watson theorem therefore relies on
the assumption that no final state scattering between
(K~7;) and 7, occurs. This assumption, for decays
such as those studied here in which the final state consists
of strongly interacting particles, has often been assumed to
hold. However, it has never been tested objectively. The
MIPWA results from the present data provide, therefore, an

of C; (s) for each partial wave, should differ, at most, by a

interesting opportunity to make such a test and also the

constant relative to that of the corresponding elastic scat-

opportunity to examine the form for the production factor

tering amplitude 77 (s). The magnitudes |C, (s)| and |7 ()

& (s).

The observed shift in S-wave phase and difference in
slope, and the difference in P-wave phase behavior evi-
denced in Figs. 6(a)—6(c), do not conform to the precise

expectations_of the Watson_theorem.,
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Conclusions

* There are many complexities in fitting hadronic decays data and
many open questions on how best to carry out these fits

* B decays at Belle II have a wider mass range and larger datasets

* Better fits should lead to a better understanding of hadronic
* Internal structure
* Spectroscopy
* Interactions

* Would be nice if we can accurately predict distributions from
every hadronic interaction and from every decay!
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Extra Slides
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Decay angles

. helicity angle 6, which is defined as the angle between the
n~ and the D in the 77~ rest frame (or 71 for D)
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