

Bianca Scavino (she/her)

Uppsala Universitet

bianca.scavino@physics.uu.se

Moriond QCD

La Thuile, March 30th / April 6th, 2025

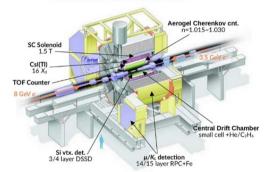
- Belle and Belle II
- Charm
 - BF of charmed baryons
 - A_{CP} in $D^0 \rightarrow K_S K_S$
- Quarkonium
 - Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ}(1P))$

Bianca Scavino (she/her)

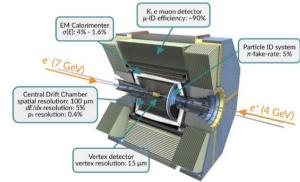
Uppsala Universitet

bianca.scavino@physics.uu.se

Moriond QCD


La Thuile, March 30th / April 6th, 2025

Belle and Belle II Experiments

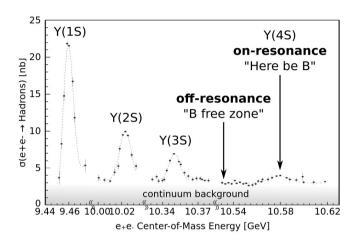

- Belle and Belle II collect(ed) data at asymmetric e⁺e⁻ colliders at or near the Y(4S) resonance
 - KEKB (1999-2010), peak lumi = $2x10^{34}$ cm⁻² s⁻¹, $L_{int} = 1/ab$
 - SuperKEKB, peak lumi = 5.1x10³⁴ cm⁻² s⁻¹ Run1 (2019-2022), L_{int} = 0.42/ab Run2 (2024 – present), L_{int} = 0.15/ab
- Belle & Belle II are now synergic experiments
 - Belle data can be analysed with the Belle II software
 - Common review procedures in place
 - Especially important for analyses where large statistics is crucial to improve the precision

BELLE @ KEKB

Belle II @ SuperKEKB

Bianca Scavino 2

Belle II: physics potential


Belle II operates mainly at \sqrt{s} = 10.58 GeV:

•
$$\sigma(e^+e^- \to b\overline{b}) \sim 1.1 \text{ nb}$$

 $L_{peak} = 2.7 \ 10^{34} \text{cm}^{-2} \text{ s}^{-1} \to 30 \ B\overline{B}/\text{s}$

•
$$\sigma(e^+e^- \rightarrow \tau\tau) \sim 0.9 \text{ nb}$$

•
$$\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3 \text{ nb}$$

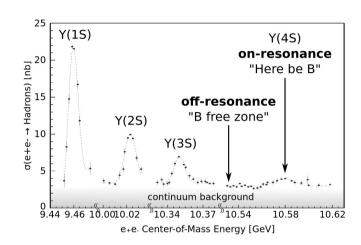
 $\rightarrow B \& \tau \& c$ factory

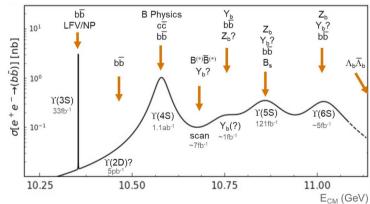
Belle II: physics potential

Belle II operates mainly at \sqrt{s} = 10.58 GeV:

•
$$\sigma(e^+e^- \to b\overline{b}) \sim 1.1 \text{ nb}$$

 $L_{peak} = 2.7 \ 10^{34} \text{cm}^{-2} \text{ s}^{-1} \to 30 \ B\overline{B}/\text{s}$

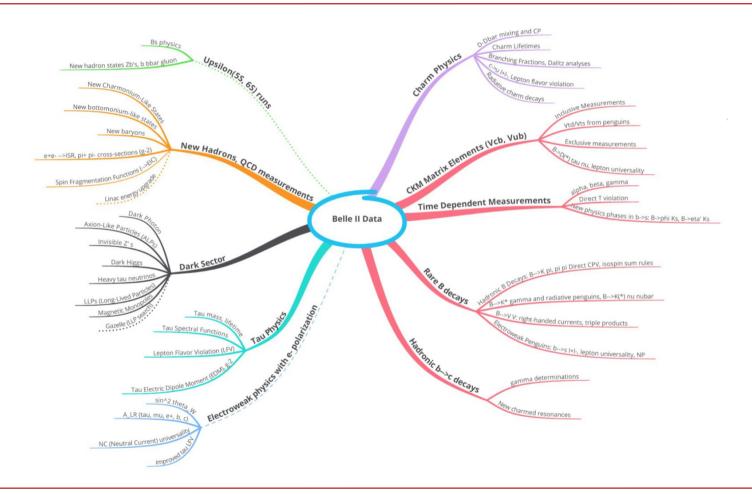

•
$$\sigma(e^+e^- \rightarrow \tau\tau) \sim 0.9 \text{ nb}$$


•
$$\sigma(e^+e^- \rightarrow c\bar{c}) \sim 1.3 \text{ nb}$$

 $\rightarrow B \& \tau \& c$ factory

B-Factories can extend their physics programs with non-Y(4S) data

Belle II: 2019 unique energy scan at ~10.75 GeV



Belle II: physics program

[See: BIITIP, Snowmass Whitepaper]

Belle II: physics program

Bianca Scavino

[See: BIITIP, Snowmass Whitepaper]

Charm

Charm physics at B-Factories

Two ways of producing charm at B-Factories:

- One or more charmed hadrons produced in B decays
- Two charmed hadrons produced from continuum, along with fragmentation particles

Ample physics program

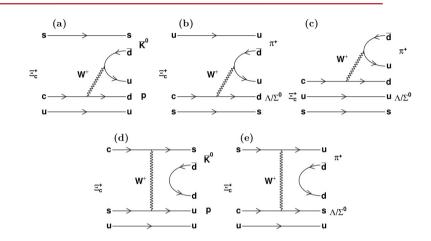
- Baryons: conflicting or missing predictions for BF and lifetimes, results to verify models Today: Ξ_c^+ branching fractions, $\Lambda^+_c \to p$ K_S π BF
- Mesons: precise measurement in Cabibbo-suppressed decays, where non-SM physics can contribute at a detectible level Most interesting probes: CPV measurements, expect low values (O(10⁻³)) in charm sector
 - Today: A_{CP} in $D^0 \rightarrow K_sK_s$

Ξ_{c}^{+} branching fractions

 Ξ^{+}_{c} decay channels: (many) not yet measured

Currently many predictions

→ need measurement to rule out some of them

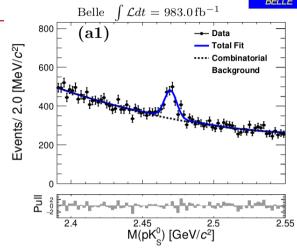

Reconstruct

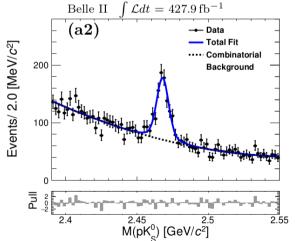
• (CF)
$$\Xi^+_c \to \Sigma^+ K_s, \ \Xi^+_c \to \Xi^0 \Pi^+$$

• (SCS)
$$\Xi_c^+ \to \Xi_c^0 K$$
, $\Xi_c^+ \to pK_S$, $\Xi_c^+ \to \Lambda \Pi$, $\Xi_c^+ \to \Sigma \Pi$

Analysis strategy:

- From Π , K and p reconstruct intermediate baryons Λ , Σ , Ξ , then optimize selection ranges on each invariant mass
- Measure signal yields fitting the invariant mass, extract branching fractions using $\Xi^+_c \to \Xi^- \Pi^+ \Pi^+$ as normalization mode

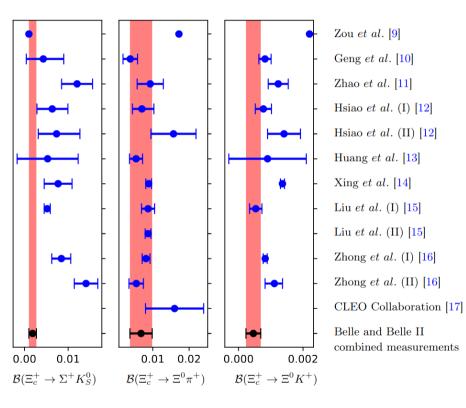


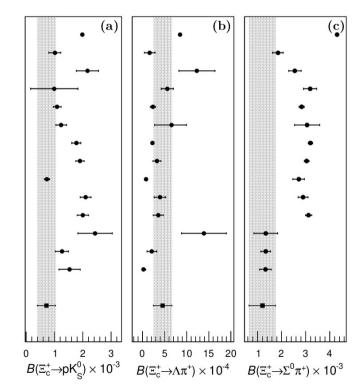

Ξ_{c}^{+} branching fractions

First or most precise measurements!

	Belle	Belle II	Combined
$\frac{\mathcal{B}(\Xi_c^+ \to pK_S^0)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(2.36 \pm 0.27 \pm 0.08)\%$	$(2.56 \pm 0.19 \pm 0.11)\%$	$(2.47 \pm 0.16 \pm 0.07)\%$
$\frac{\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(1.72 \pm 0.29 \pm 0.11)\%$	$(1.47 \pm 0.16 \pm 0.09)\%$	$(1.56 \pm 0.14 \pm 0.09)\%$
$\frac{\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+)}{\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)}$	$(3.97 \pm 0.42 \pm 0.23)\%$	$(4.26 \pm 0.33 \pm 0.24)\%$	$(4.13 \pm 0.26 \pm 0.22)\%$

Mode	Belle	Belle II	Combined
$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) / \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$0.062 \pm 0.009 \pm 0.004$	$0.067 \pm 0.012 \pm 0.005$	$0.064 \pm 0.007 \pm 0.003$
$\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) / \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$0.232 \pm 0.014 \pm 0.013$	$0.234 \pm 0.010 \pm 0.014$	$0.233 \pm 0.008 \pm 0.010$
$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) / \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$	$0.015 \pm 0.003 \pm 0.001$	$0.017 \pm 0.003 \pm 0.001$	$0.016 \pm 0.002 \pm 0.001$
$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) / \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+)$	$0.064 \pm 0.015 \pm 0.005$	$0.073 \pm 0.015 \pm 0.006$	$0.068 \pm 0.011 \pm 0.004$





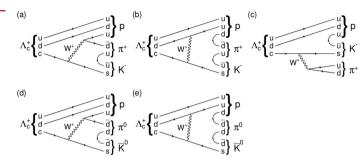
Ξ_c⁺ branching fractions

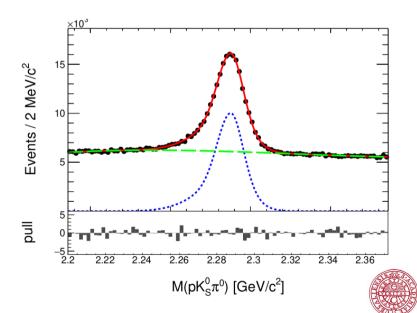
First or most precise measurements!

Zou et al. [12]
Geng et al. [13]
Geng et al. [14]
Huang et al. [15]
Zhong et al. (I) [16]
Zhong et al. (II) [16]
Xing et al. [17]
Geng et al. [18]
Liu [19]
Zhong et al. (I) [20]
Zhong et al. (II) [20]
Zhao et al. [21]
Hsiao et al. (I) [22]
Hsiao et al. (II) [22]

Belle and Belle II combined measurement

BF of $\Lambda^+_c \rightarrow p K_S \Pi^0$

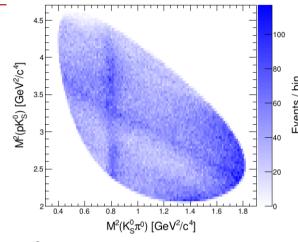


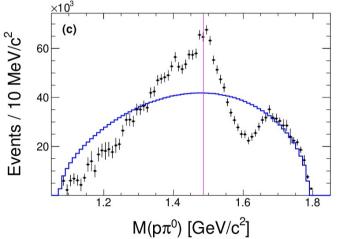

Nonleptonic weak decays of Λ^+_c : unique testing ground for understanding $c \rightarrow s$ transition and final-state interactions

• Precise measurement of the relative BF for $\Lambda^+_c \to p K_S \Pi^0$

$$\frac{\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0)}{\mathcal{B}(\Lambda_c^+ \to p K^- \pi^+)} = 0.339 \pm 0.002 \pm 0.009,$$

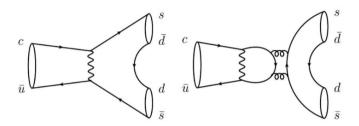
$$\mathcal{B}(\Lambda_c^+ \to p K_S^0 \pi^0) = (2.12 \pm 0.01 \pm 0.05 \pm 0.10)\%,$$




BF of $\Lambda^+_c \rightarrow p K_S \Pi^0$

Nonleptonic weak decays of Λ^+_c : unique testing ground for understanding $c \rightarrow s$ transition and final-state interactions

- Precise measurement of the relative BF for $\Lambda^+_c \to p K_S \Pi^0$
- First investigation of intermediate resonances: Observation of a peaking structure in the pπ⁰ system near the pη threshold
- → Further amplitude analysis required to understand the contributions of intermediate resonances and to estimate the non-resonant contribution


10

A_{CP} in $D^0 \rightarrow K_S K_S$

 $D^0 \rightarrow K_s K_s$: Singly Cabibbo-suppressed decays

- Involves the interference between $c \rightarrow us\bar{s}$ and $c \rightarrow ud\bar{d}$
- Expect A_{CP}~1% [PRD 92, 054036]
- → Larger values would indicate non-SM physics

World average value of the A_{CP} symmetry is limited by statistics A_{CP} ($D^0 \rightarrow K_S K_S$) = (-1.9 ± 1.0)%

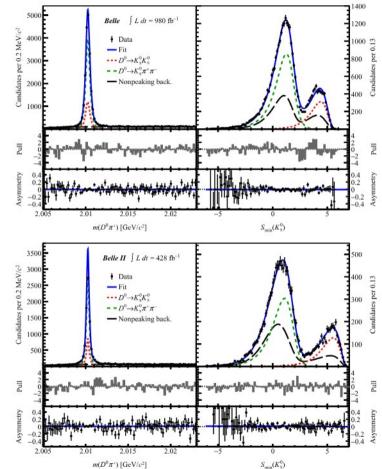
$$A_{CP} \equiv \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}$$

$$A_{CP}(D^0 \to K_S^0 K_S^0) = -0.02 \pm 1.53 \text{(stat.)} \pm 0.02 \text{(syst.)} \pm 0.17 \text{ (cont. mode)}$$
 Belle [PRL 119, 171801 (2017)]
 $A_{CP}(D^0 \to K_S^0 K_S^0) = -3.1 \pm 1.2 \text{(stat.)} \pm 0.4 \text{(syst.)} \pm 0.2 \text{ (cont. mode)}$ LHCb [PRD 104, L031102 (2021)]

There are nuisance asymmetries induced by production and detection mechanisms Take $D^0 \to K^+K^-$ as control channel to calibrate A_{CP}

A_{CP} in $D^0 \rightarrow K_S K_S$: D^* -tagged D^0

Reconstruct $D^{*+} \rightarrow \Pi^{+} D^{0} (\rightarrow K_{S}K_{S})$


• Main background: same-final-state $D^0 \rightarrow K_S \Pi^+\Pi^-$ decays

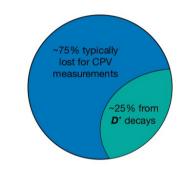
Separate with K_s flight distance significance L/σ : $S_{min} = log[min(L1/\sigma 1, L2/\sigma 2)]$

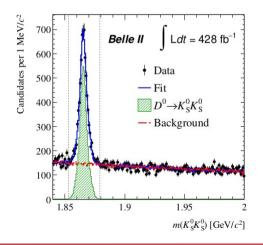
Fit Δm and S_{min} , subtract detection asymmetries using $D^0 \rightarrow K^+K^-$ decays

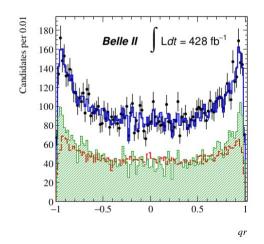
Combine Belle and Belle II data:

$$A_{CP} = (-1.4 \pm 1.3 \pm 0.1) \%$$

UNIVERSITET


A_{CP} in $D^0 \rightarrow K_S K_S$: Charm-flavor-tag D^0



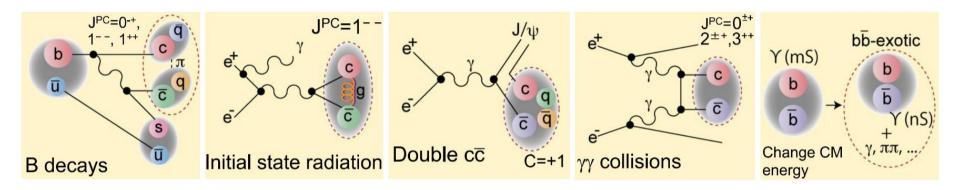

Charm favor tagger [PRD107,112010] : novel method to tag flavor of D $^{\circ}$ meson from other collision products (K $^{\pm}/\mu$ from other charm hadron) \rightarrow new CFT-tag independent sample

Larger bkg wrt D*-tag: train BDT with kinematic information, then cut on BDT output and S_{min}

Fit $m(K_sK_s)$ and product of tagged flavor q and tag quality r Calibrate r with data to correct any detection asymmetry

Method	A _{CP} [%]	
D*-tag [PRD 111, 012015]	$-1.4 \pm 1.3 \pm 0.1$	
CFT-tag	$1.3 \pm 2.0 \pm 0.3$	
Combination	$-0.6 \pm 1.1 \pm 0.1$	

World's best determination



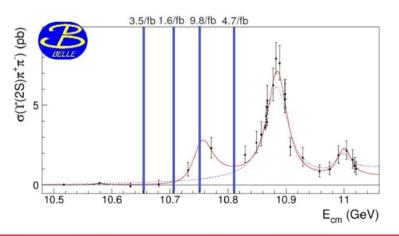
Quarkonium

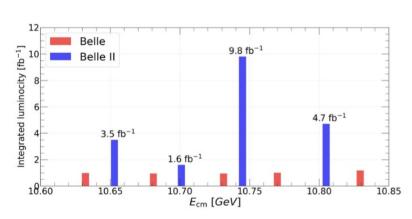
Quarkonium physics at B-Factories

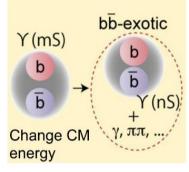
Multiple production mechanisms

- Full event reconstruction, decays with neutral/soft particles
- Nominal \sqrt{s} = 10.58 GeV = m(Y(4S)), potential to reach ~11 GeV

Quarkonium: above Y(4S) energy scan

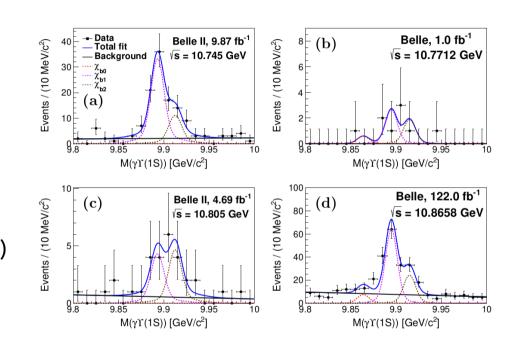

Today's focus: Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ}(1P))$


• above Y(4S) energy scan


Nov 2021: Belle II collected 19 fb⁻¹ of unique data at energies above Y(4S) \rightarrow 4 energy scan points around 10.75 GeV in this region

Main motivation

- Confirm and study the Y(10753)
- Improve the precision of exclusive cross-section below the Y(5S)

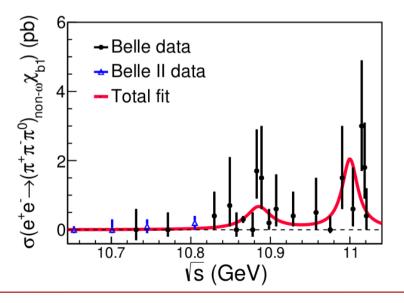


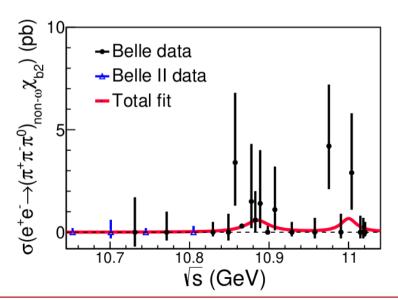
B(Y(10753) →
$$\omega X_{b1}$$
)
B(Y(10753) → ωX_{b2}) predictions:

- Pure Y(3D) state: ~15
 PLB 738, 172 (2014)
- 4S-3D mixed state: **~0.2** PRD 104, 034036 (2021)

Data: Belle + Belle II scan data (10.73-11.02 GeV)

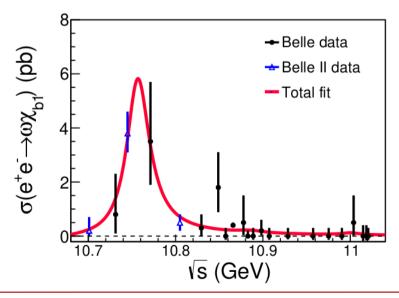
- Full reconstruction of $e^+e^- \rightarrow \omega X_{bJ}$ (1P), $\omega \rightarrow \pi^+\pi^-\pi^0$, X_{bJ} (1P) $\rightarrow \gamma Y(1S)$, $Y(1S) \rightarrow l^+l^-$ ($l=e, \mu$)
- Search for $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega} X_{bJ}$ (1P), same final state

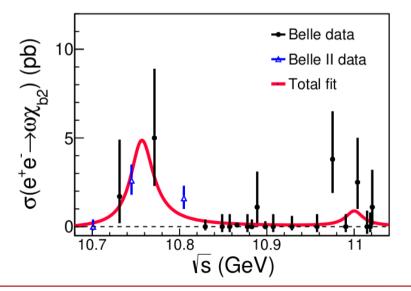



Energy dependence of $\sigma(e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega}X_{bJ}(1P))$

$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.00 \pm 0.05 \pm 0.02) \text{ eV } (< 0.08 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.00 \pm 0.03 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.26 \pm 0.08 \pm 0.12) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.17 \pm 0.05 \pm 0.04) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b1})$	$(0.48 \pm 0.19 \pm 0.18) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to (\pi^+\pi^-\pi^0)_{\mathrm{non}-\omega}\chi_{b2})$	$(0.14 \pm 0.12 \pm 0.10) \text{ eV}$

- Decays of Y(5S) and Y(6S) into (π⁺π⁻π⁰)_{non-ω} X_b (1P)
- → Possible explanation: cascade decay of Y(10860, 11020) \rightarrow Z_b Π \rightarrow X_bJ $\rho\Pi$



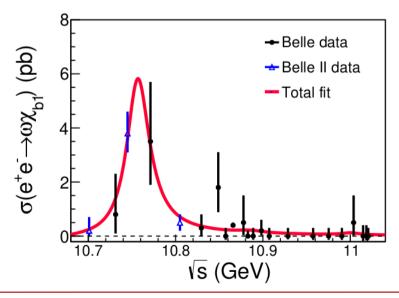


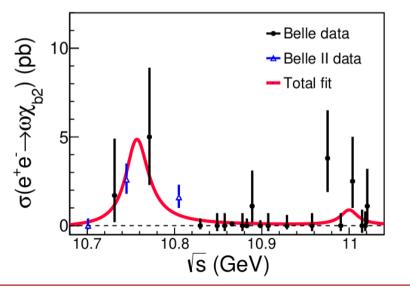
$M(\Upsilon(10753))$	$(10756.1 \pm 3.4 \pm 2.7) \text{ MeV}/c^2$
$\Gamma(\Upsilon(10753))$	$(32.2 \pm 11.3 \pm 14.9) \text{ MeV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$(1.46 \pm 0.25 \pm 0.17) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$(1.29 \pm 0.38 \pm 0.30) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b1})$	$(0.02 \pm 0.04 \pm 0.04) \text{ eV} (< 0.09 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b2})$	$(0.00 \pm 0.04 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b1})$	$(0.01 \pm 0.02 \pm 0.03) \text{ eV } (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b2})$	$(0.17 \pm 0.16 \pm 0.05) \text{ eV } (< 0.43 \text{ eV})$

$$M = 10756.1 \pm 3.4 \pm 2.7 \text{ MeV}$$

 $\Gamma = 32.2 \pm 11.3 \pm 14.9 \text{ MeV}$

 Mass and width consistent with e⁺e⁻ → Y(nS) π π

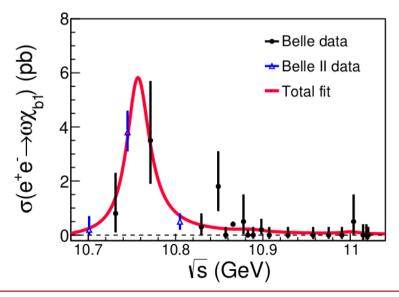


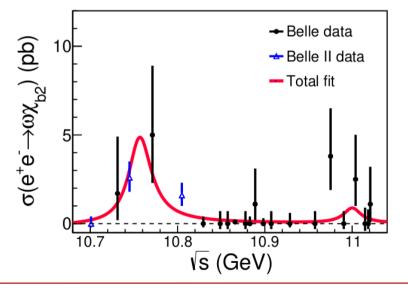


$M(\Upsilon(10753))$	$(10756.1 \pm 3.4 \pm 2.7) \text{ MeV}/c^2$
` ` ' //	,
$\Gamma(\Upsilon(10753))$	$(32.2 \pm 11.3 \pm 14.9) \text{ MeV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$(1.46 \pm 0.25 \pm 0.17) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$(1.29 \pm 0.38 \pm 0.30) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b1})$	$(0.02 \pm 0.04 \pm 0.04) \text{ eV} (< 0.09 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b2})$	$(0.00 \pm 0.04 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b1})$	$(0.01 \pm 0.02 \pm 0.03) \text{ eV} (< 0.07 \text{ eV})$
$\underline{\Gamma_{ee}\mathcal{B}(\Upsilon(11020)\to\omega\chi_{b2})}$	$(0.17 \pm 0.16 \pm 0.05) \text{ eV } (< 0.43 \text{ eV})$

$$\left. \frac{\sigma(e^+e^- \to \omega \chi_{b1})}{\sigma(e^+e^- \to \omega \chi_{b2})} \right|_{\Upsilon(10753)} = 1.5 \pm 0.6$$

Does not support pure 3D,
2.2σ discrepancy from S-D mixing





$M(\Upsilon(10753))$	$(10756.1 \pm 3.4 \pm 2.7)~{ m MeV}/c^2$
$\Gamma(\Upsilon(10753))$	$(32.2 \pm 11.3 \pm 14.9) \text{ MeV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b1})$	$(1.46 \pm 0.25 \pm 0.17) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10753) \to \omega \chi_{b2})$	$(1.29 \pm 0.38 \pm 0.30) \text{ eV}$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b1})$	$(0.02 \pm 0.04 \pm 0.04) \text{ eV} (< 0.09 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(10860) \to \omega \chi_{b2})$	$(0.00 \pm 0.04 \pm 0.02) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b1})$	$(0.01 \pm 0.02 \pm 0.03) \text{ eV} (< 0.07 \text{ eV})$
$\Gamma_{ee}\mathcal{B}(\Upsilon(11020) \to \omega \chi_{b2})$	$(0.17 \pm 0.16 \pm 0.05) \text{ eV } (< 0.43 \text{ eV})$

$$\frac{\Gamma(\Upsilon(nS)\pi^{+}\pi^{-})}{\Gamma(\omega\chi_{bJ})} = \begin{cases} < 0.9 \text{ at } \Upsilon(10753) \\ > 28.1 \text{ at } \Upsilon(5S) \end{cases}$$

• Different structure?

Summary

The Belle II physics program has strong potential both in charm and bottomonium physics

- charm physics: baryon decays, CPV measurements, ...
- quarkonium: unique potential above Y(4S)

Today showed:

- First observation and best measurement of Ξ_c^+ branching fractions
- $\Lambda^+_c \to p K_s \pi$ BF measurement and first investigation of intermediate resonances
- World's best measurements of A_{CP} in $D^0 \rightarrow K_S K_S$
- Energy dependence of $\sigma(e^+e^- \rightarrow \omega X_{bJ}(1P))$

Only 1% of target lumi collected so far

 Run2 ongoing, with record-breaking instantaneous luminosity, with the goal of further testing the Standard Model

19

