

Searches for rare B decays at **Belle and Belle II**

Debjit Ghosh (University and INFN Trieste) on behalf of the Belle II collaboration

Moriond QCD & high energy interactions 2025 La Thuile, April 01, 2025

debjit.ghosh@ts.infn.it

Physics

- Flavor changing neutral current progesses are forbidden in SM at tree level. Non-SM particles could enhance decay amplitude as "Bob" allows high-mass exchange:
 - new tree h • reduce (\bar{B}^0
- Recent exp decays hint at non-sive particles coupling with time generation and higher mass, τ [EPJC 83, 153 (2023)] PLB 848, 138411 (2024)
- Today's topics: $B^0 \to K^0_S \tau^{\pm} \ell^{\mp}, B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}, B^{0} \to K^{*0} \tau^{\pm}, B^{0} \to K$ $B^0 \rightarrow K^{*0} \tau^+ \tau^-$
- Experimental challenge: undetected neutrinos in the final states from τs

All new results since last Moriond QCD

Belle (II) advantage

- e^+e^- collision near $B\overline{B}$ production threshold makes Belle (II) ideally suited: low background, precisely known collision energy
- Hermetic detector: full event reconstruction
- Kinematic well constrained with companion *B* meson reconstruction (tagging)
- Advantageous for searches involving final states with multiple neutrinos
- Dataset: 772 M (Belle) + 387 M (Belle II) $B\bar{B}$ pairs

All results today involve hadronic tagging

See Bianca's slides for more details on detector

$b \rightarrow s \tau^{\pm} t$

- Forbidden decay. Non-SM particles, explaining recent anomalies, predict LFV with $\mathscr{B}(b \to s\tau \ell)$ at $\mathscr{O}(10^{-6})$ Near current experimental limits.
- World best limits from LHCb and Belle at $\mathcal{O}(10^{-5})$
- Advantage of one τ in the final state: restrict nonsignal *B* decays in fully hadronic states and compute recoil mass of τ , $M_{\text{recoil}}^2 = M_{\tau}^2 = (p_{e^+e^-} - p_K - p_\ell - p_{B_{\text{tag}}})^2$

Search for $B^{0} \to K^{0}_{c} \tau^{\pm} \ell^{\mp}$

- Never searched for before
- High K_{S}^{0} purity (> 98 %)
- Search in 1-prong τ decays: $\tau^+ \to \ell^+ \nu \overline{\nu}, \pi^+ \nu, \rho^+ \nu$. Use $\tau \to \rho \nu$ for the first time in $b \to s \tau^{\pm} \ell^{\mp}$ searches
- Restrict $m(K_S^0 t_{\tau})$ to suppress dominant semileptonic $B \to D^{(*)} \ell X$ backgrounds
- Suppress remaining background with classifier using $m(K_S^0 \mathscr{C})$, residual calorimeter energy, lepton kinematics and event topology
- Fit recoil τ mass (M_{τ}) for signal extraction in combined Belle + Belle II data set

Belle + Belle I $(711 + 365 \text{ fb}^{-1})$

6

$B^0 \to K_S^0 \tau^{\pm} \ell^{\mp}$: valida

- Correct simulated nonsignal *B* efficiency to match data from fits to recoil *D* mass in $B^+ \to \overline{D}^0 \pi^+$
- Validate signal shape and classifier selection efficiency from fits to recoil *D* mass in $B^0 \rightarrow D^- D_s^+ (\rightarrow \phi \pi^+, K_S^0 K^+)$
 - largest source of systematic uncertainty

 $\rightarrow K_{c}^{0} \tau^{\pm} \ell^{\mp}$: result

• Signal extraction: fit recoil τ mass (M_{τ})

$$\begin{split} \mathscr{B}(B^{0} \to K^{0}_{S}\tau^{+}\mu^{-}) < 1.1 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{0}_{S}\tau^{-}\mu^{+}) < 3.6 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{0}_{S}\tau^{+}e^{-}) < 1.5 \times 10^{-5} \\ \mathscr{B}(B^{0} \to K^{0}_{S}\tau^{-}e^{+}) < 0.8 \times 10^{-5} \\ \end{aligned}$$

First search for $B^0 \to K^0_S \tau^{\pm} \ell^{\mp}$ decays

400

$$\begin{array}{c}
 Belle+Belle II preliminary & -- Data \\
 Simulation \int Ldt = 4 \times (711+365) \text{ fb}^{-1} & -- B^0 \rightarrow D^- D_s^+ \\
 N_{DD_s} = 1412 \pm 69 & --- B^0 \rightarrow D^- D_s^+ \\
 Background & --- Background
\end{array}$$

Belle + Belle II $(711 + 365 \text{ fb}^{-1})$

Search for $B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}$

- World best limit in $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ by LHCb: $\mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-) < 1.0 \times 10^{-5};$ $\mathscr{B}(B^0 \to K^{*0} \tau^- \mu^+) < 0.8 \times 10^{-5}$
- No search for $B^0 \to K^{*0} \tau^{\pm} e^{\mp}$ yet
- Inclusive 1-prong τ reconstruction: $K^{*0}(\rightarrow K^+\pi^-)\ell^+$ one track from τ — covers ~ 80 % of τ decay-width
- Suppress background with classifier using $m(K^{*0}\ell)$, $m(K^{*0}t_{\tau})$, residual tracks and clusters properties, K^{*0} vertex information, event topology, etc.
- Simultaneous fit recoil τ mass (M_{τ}) in Belle and Belle II data set

Belle + Belle I $(711 + 365 \text{ fb}^{-1})$

SSe 0.12 $B\overline{B}$ Belle II (simulation) $q\overline{q}$ $B^0 \rightarrow K^{*0} \tau^- e^+$ 0.10Arbitrary units 90°0 anits 0.020.20.60.80.40.0Classifier score

$v_{\tau}^{\pm}\ell^{\mp}$: validation

- Correct simul $B^0 \rightarrow D^- \pi^+$: 2 100
- Validate sign: efficiency fro $\mathbb{R}^{0} \rightarrow D^{-}D^{+}_{c}$ $B^0 \rightarrow D^- D_s^+$
- $D \rightarrow D D_{s}$ Dominant sys selection effic • Dominant sys

 $^{\prime}c^{2}$ Gel es/0.022

Belle + Belle I

Search for $B^0 \to K^{*0} \tau$

- $\mathscr{B}_{SM} = (0.98 \pm 0.10) \times 10^{-7}$
- Non-SM particles, explaining recent anomalies, would enhance BF up to $\mathcal{O}(10^3)$ due to presence of two τ s
- Main challenge: no signal peaking kinematic observable due to multiple undetected neutrinos
- Relies on missing energy information and residual calorimeter energy; Belle II is ideally suited
- World best result from Belle: UL at 3.1×10^{-3} (90% CL) Searched in 1-prong τ decays: $\tau^+ \to \ell^+ \nu \overline{\nu}, \pi^+ \nu$
- Include $\tau^+ \to \rho^+ (\to \pi^+ \pi^0) \nu$ decays for the first time

Belle II (365 fb^{-1})

$\square R_{D^{(\star)}} \& R_{J/\Psi} 2\sigma$ $\blacksquare R_{D^{(*)}} \& R_{J/\Psi} 1\sigma$

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$: strategy

- Analyze separately in four final-state categories from $\tau^+\tau^-$ pair: $\ell\ell$, $\ell\pi$, $\pi\pi$, $\rho X (X = \ell, \pi, \rho)$
- Train classifier using missing energy, residual calorimeter energy, $m(K^{*0}t)$, square ditau mass, etc.
- Simultaneous fit classifier score of each category for signal extraction

$v_{\tau^+\tau^-}$: validation

- Signal efficiency validation in $B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-)$ with modified kinematics to match signal
- Background yield correction from same-flavor $(B^0B^0, \overline{B}^0\overline{B}^0)$ control samples and off-resonance data
- Correct shape of residual calorimeter energy (E_{extra}), most important discriminator, from same-flavor control sample
- Dominant systematics sources: poor knowledge of semileptonic $B \rightarrow D^{**}$ decays, limited simulated sample size, etc.

$\tau^+ \tau^-$: result

• Simultaneous fit classifier score of each category for signal extraction

$$\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 1.8 \times 10^{-3}$$

at 90% C.L.

Twice better than current world best inspite of half sample size

Most stringent limit on $b \rightarrow s\tau\tau$ transition

Belle II (365 fb $^{-1}$)

Summary

- Flavor changing neutral current transitions are prime processes to probe non-SM particles Belle (II) offers unique abilities that are advantageous for these searches.
- New exciting Belle (II) results are shown today with many having world best results
 - $B^0 \to K_s^0 \tau^{\pm} \ell^{\mp}$: world best limits and new searches. [Submitted to PRL, <u>arxiv 2412.16470</u>]
 - $B^0 \to K^{*0} \tau^{\pm} \ell^{\mp}$: world best limits in electron modes and new searches.
 - $B^0 \to K^{*0} \tau^+ \tau^-$: world best limits.

Additional materials

$\rightarrow K^{*0}\tau^+\tau^-$: systematics

Source

 $B \to D^{**} \ell / \tau \nu$ branching f Simulated sample size $q\bar{q}$ normalization ROE cluster multiplicity π and K ID B decay branching fraction Combinatorial $B\overline{B}$ normal Signal and peaking $B^0 \overline{B}{}^0$ Lepton ID π^0 efficiency f_{00} $N_{\Upsilon(4S)}$ $D \to K_L$ decays Signal form factors Luminosity Total systematics Statistics

Belle II (365 fb^{-1})

	Impact on $\mathcal{B} \times 10^{-3}$
ractions	0.29
	0.27
	0.18
	0.17
	0.14
n	0.11
lization	0.09
normalization	0.07
	0.04
	0.03
	0.01
	0.01
	0.01
	0.01
	< 0.01
	0.52
	0.86

$B^0 \to K^0_{\mathcal{S}} \tau^{\pm} \ell^{\mp}$: systematics

	Belle	Belle II	Combined Systematic U.			
Lepton	0.3% for μ	0.5% for μ	0.24% for μ			
identification	0.4% for e	1.0% for e	0.43% for e			
Pion identification	1.0%	1.0%	0.74%			
Tag side efficiency	4.9%	5.2%	3.7%			
$N_{\pi^0}^{ROE}$ veto	1.1%	2.8%	1.2%			
π^0 reconstruction	0.5%	3.8%	1.3%			
BDT			$OS_{\mu}:17.1\%, SS_{\mu}:17.5\%$			
selection	_	_	$OS_e:16.6\%, SS_e:19.2\%$			
Signal PDF shape	_	_	15.7%			
Linearity			$OS_{\mu}:1.6\%, SS_{\mu}:1.4\%$			
	_	_	$OS_e: 0.8\%, SS_e: 1.4\%$			
Number of BB pairs	1.4%	1.6%	1.1%			
Other sources	f^{+-}/f^{oo} (2.3 %)+ MC statistics (0.0004%)					

Belle + Belle II (711 + 365 fb⁻¹)

$B^0 \rightarrow K^{*0} \tau^{\pm} \ell^{\mp}$: systematics (711 + 365 fb⁻¹)

Sourco	Bollo				Bollo II					
Source		Dene				Dene II				
	OSe	SSe	$OS\mu$	$SS\mu$	OSe	SSe	$OS\mu$	$SS\mu$		
FEI efficiency [%]	4.9	4.9	4.9	4.9	6.2	6.1	6.1	6.2		
Lepton ID efficiency $[\%]$	2.0	2.4	2.2	2.2	0.7	1.1	0.7	0.6		
Hadron ID efficiency [%]	1.9	2.0	1.9	2.0	3.7	3.7	3.6	3.7		
BDT efficiency [%]	27	21	18	23	29	31	34	31		
Tracking efficiency [%]	1.4				1.1					
Total efficiency $[\%]$	$\overline{27.6}$	$\overline{21.8}$	18.9	23.7	29.8	31.8	$\bar{34.7}$	$\overline{31.7}$		
Signal PDF μ (×10 ⁻⁵)	0.04	0.00	0.01	0.01	0.04	0.00	0.01	0.01		
Signal PDF λ (×10 ⁻⁵)	0.11	0.01	0.04	0.01	0.11	0.01	0.04	0.01		
Background PDF ($\times 10^{-5}$)	0.11	0.28	0.09	0.02	0.11	0.28	0.09	0.11		
$N_{\Upsilon(4S)}$ [%]	1.4					1.6				
f^{00} [%]	0.8									
$\mathcal{B}(K^{*0} \to K^+ \pi^-) \ [\%]$	0.021									
Total impact on UL $(\times 10^{-5})$	0.1	0.3	0.1	0.1	0.1	0.3	0.1	0.1		

