

Tau and dark sector measurements at Belle and Belle II

Zuzana Mediankin Gruberová (on behalf of the Belle 11 collaboration)

58th Rencontres de Moriond 2025, QCD & High Energy Interactions March 30th – April 6th, 2025, La Thuile

Belle and Belle II experiments

B-factories with broad physics program

- » B-factories at KEK (Tsukuba, Japan)
- asymmetric e^+e^- colliders, running at the $\Upsilon(4S)$ energy (10.58 GeV)
- » Belle @ KEKB accelerator (1998-2010)
- recorded limunosity pprox 1 ${
 m ab}^{-1}$
- » Belle II @ SuperKEKB accelerator (2019-)
- major upgrade of both accelerator and detector, new analysis techniques
- special triggers for low-multiplicity events (single track/muon/photon triggers)
- $\rightarrow\,$ allows for the selection of signals that were not possible to trigger at Belle
- excellent tracking efficiency and improved vertex resolution
- \rightarrow enables new measurement approaches
 - recorded limunosity = 575 ${\rm fb}^{-1}$
 - world record inst. luminosity of $5.1 imes 10^{34} \ {
 m cm}^{-2} {
 m s}^{-1}$

Light dark sector

B-factories can access the mass range favored by light dark sectors

- » Existence of dark matter had been established in astrophysics
- rotation curves of galaxies
- » No dark matter candidate in the Standard Model
- searches for dark matter is one of the main goals of particle physics

- » Mediator portals
- scalar portal: Dark Higgs, Dark Scalar
- pseudo-scalar portal: Axion Like Particle (ALP)
- vector portal: Dark photon
- fermion portal: Sterile neutrinos

- » Sub-GeV scale dark sector scenario
- dark sector weakly coupled to Standard Model through a light mediator particle

» Advantages of B-factories

- well-defined kinematics of initial state
- hermetic detector
- $\rightarrow\,$ good missing energy reconstruction
- \rightarrow searching for signatures with invisible particles

Tau physics

B-factories provide a great environment for precision measurements

- » 3rd generation particle
- the heaviest known lepton
- can decay to lighter leptons but also hadrons
- » The τ properties are known with much worse precision compared to e and μ !

- » Searches for forbidden τ decays
- lepton flavour/number violation
- » Possible au physics probes
- lepton universality, CKM unitarity, new sources of CP violation, ...
- some NP scenarios predict enhanced au couplings to NP

» Advantages of B-factories

-
$$\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92$$
 nb

- \rightarrow B-factories are also au-factories!
- excellent vertexing and tracking capabilities
- sophisticated trigger system and particle ID
- → ability to trigger low-multiplicity event
- taupair events are produced back-to-back and each tau is reconstructed via 1 or 3 charged tracks

Dark sector at Belle II

Inelastic dark matter with a dark Higgs

- » Probing a non-minimal DS model predicting 4 new particles
- dark photon A', dark Higgs h' and two DM states $\chi_{\mathbf{1}}, \chi_{\mathbf{2}}$
- 7 free parameters:
 - 3 masses, 2 mixings, 2 couplings

- » Looking for simultaneous production of A' and h'
- 4 tracks in the final state:
- 2 forming a pointing dispaced vertex
- other 2 forming a non-pointing dispaced vertex
- mising energy

- \rightarrow challening for tracking and trigger
- » Exploring 3 final states: $h' \rightarrow x^+ x^-, x = \mu, \pi, K$

Inelastic dark matter with a dark Higgs

» Signal selection

- using requirements on pointing angles and vertex distance from the interaction point
- \rightarrow very low SM background
- » Signal yield
- cut-and-count strategy in M_{h'}(x⁺x⁻) distributions
- with background estimated from sidebands in data
- \rightarrow not relying on MC simulation

- » No significant excess found in the individual final states or the combination
- 9 events observed (8 of 9 are $\pi^+\pi^-$) consistent with expected background
- search performed using 365 fb⁻¹ of Belle II data analysis statistically limited

Inelastic dark matter with a dark Higgs

- » 95% CL upper limits on $\sigma(e^+e^- \rightarrow \chi_1\chi_2h') \times \mathcal{BR}(\chi_2 \rightarrow \chi_1e^+e^-)[\times \mathcal{BR}(h' \rightarrow x^+x^-)]$
- strong limits on θ and $\varepsilon \times \alpha_D$ (mixing angles of h' and A'), but depend on 5 other parameters
- provide interpretations for around 30 model parameter configurations

New!

- » NP searches in flavour changing neutral current B decays
- FCNC heavily suppressed in SM
- NP can appear at the same order as SM processes
- » Search for an Axion-Like Particle (ALP) emission by W boson in $B \to K^{(*)}a'$ decay
- ${\cal BR}(a' o \gamma \gamma) \simeq$ 100% for $m_{a'} << m_{W^\pm}$
- probing $0.16 4.50 \text{ GeV/c}^2$ mass range
- including 4 kaon modes: $K_{\boldsymbol{s}}^{\boldsymbol{0}}, K^{\pm}, K^{*\boldsymbol{0}}, K^{*\pm}$
- using full Belle dataset
- » Signal reconstruction
- *B* meson reconstructed from an ALP candidate (pair of photons) and a kaon candidate (charged or neutral)
- » Background suppression
- main background from continuum $e^+e^-
 ightarrow qar q$
- employ multiple BDTs exploiting event shape and kinematics variables, as well as energy cluster information to suppress π^0 backgrounds

New

Search for $B \to K^{(*)}a'(\to \gamma\gamma)$

- » Signal extracted from a scan over $M_{\gamma\gamma}$
- veto regions with peaking background

- » No significant excess observed in 711 fb⁻¹
- simultaneous fit in all 4 kaon modes
- \rightarrow 90% CL upper limits on $g_{a'W}$
- → world-leading result

Tau at Belle II

- Probing the SM >>>
- lepton flavour universality (LFU): $g_e = g_\mu = g_\tau$
- R_{μ} measurement at Belle II: >
- test of $e \mu$ universality
- world's most precise measurement in au decays from a single measurement
- Searching for NP »
- Searching for NP lepton flavour violation (LFV) expected in SM due to neutrino masses and oscillations at rates 10^{-55} \rightarrow beyond any current sensitivity
- several models (new Z', charged Higgs boson) could enhance rates up to $10^{-10} 10^{-8}$ \rightarrow any observation would be unambiguous sign of NP
- Belle II already set world-leading limits: >>
- $\tau \rightarrow 3\mu$: most accessible
- $\tau \to \Lambda(\bar{\Lambda})\pi$: baryon number violation \to condition for matter/antimatter asymmetry
- $\tau \rightarrow \ell \alpha$: new boson candidate for dark matter
- Belle II is expected to push forward the existing limits by at least 1 order of magnitte

Neutrinoless 2-body or 3-body decays to 52 final states.

CLEO (1997) $0.9777 \pm 0.0063 \pm 0.0087$

BaBar (2010)

HELAV fit (2021) 0.9762 ± 0.0028

Belle II (2024)

1.00

 $0.9796 \pm 0.0016 \pm 0.0036$

 $0.9675 \pm 0.0007 \pm 0.0036$

1.04

 $R_{ii}^{SM} = 0.9726$

0.98

0.96

Search for $\tau \to e 2 \ell$

- » Extending the $au
 ightarrow 3 \mu$ study
- clean channel, low SM background
- untagged reconstruction, reject main $ee \rightarrow qq$ background using BDT classifier
- signal yield from 2D plane $(M_{\mathbf{3}\mu} \Delta E_{\mathbf{3}\mu})$
- 90% CL upper limit: $\mathcal{BR}(au
 ightarrow 3\mu) < 1.9 imes 10^{-8}$
- the inclusive tag and BDT-based background rejection give 2.7× the Belle signal efficiency at similar purity
- \rightarrow world-leading result set by Belle II
- » Studying 5 more channels
- $e^-e^+e^-, e^-e^+\mu^-, e^-\mu^+e^-, \mu^-\mu^+e^-, \mu^-e^+\mu^-$
- higher background contamination
- untagged reconstruction, data-driven BDT classifier trained on sideband data
 → reject main 4ℓ background relying on ROE and kinematic variables
- signal from M_{eℓℓ} fit
- » No significant excess was observed in 424 fb⁻¹
- 90% CL upper limit on \mathcal{BR} : $1.4 2.4 \times 10^{-8}$
- → new world-leading results for all 5 modes

Search for $\tau \to \ell K_S^0$

- » Belle + Belle II search for $\tau \to \ell K_{\boldsymbol{S}}^{\boldsymbol{0}}(\ell = e, \mu)$
- require 4 charged particles with 0 net charge in 3×1 -prong topology
- reconstruct K_{s}^{0} from $\pi^{+}\pi^{-}$
- $au
 ightarrow \ell ar{
 u_\ell}
 u_ au / \pi
 u_ au (\ell=e,\mu)$ on the tag side
- » Cut-based preselection, BDT classifier trained using track kinematics, event shape and neutral variables
- resulting efficiency: 10%
- signal yield from 2D plane $(M_{ au} \Delta E)$ $(\Delta E = E_{ au} E_{
 m b\,eam})$
- » No significant signal was observed in 424 fb⁻¹ + 980 fb⁻¹ (Belle + Belle II)
- combined 90% CL upper limit on $\mathcal{BR}s$:

 $\mathcal{BR}(\tau \to K^{\mathbf{0}}_{\mathbf{S}} e) < 0.8 \times 10^{-8}$ $\mathcal{BR}(\tau \to K^{\mathbf{0}}_{\mathbf{S}} \mu) < 1.2 \times 10^{-8}$

→ new world-leading upper limits

Summary

- » Belle II has a unique sensitivity to new physics, setting world-leading limits in light dark sector and LFV searches
- » Recent tau and dark sector searches:

- IDM with a dark Higgs first search for associated production of h' and IDM
- $B o {\cal K}^{(*)} a'(o \gamma \gamma)$ Belle analysis employing several BDTs
- $au
 ightarrow e2\ell$ setting world's most stringent limits in 5 channels
- $\tau \rightarrow \ell K_s^0$ combined Belle+Belle II search

 \rightarrow New world-leading results! \rightarrow To be submitted to journals (JHEP, PRL)

» Strive to improve further

- increasing the statistics with larger data sample at Belle II
- improving analysis techniques for reconstructing displaced vertices and reducing systematic uncertainties
- develop even more robust trigger selecting low-multiplicity processes against higher background conditions coming with higher instantaneous luminosity

Stay tuned for more exciting results from Belle & Belle II!

Thank you!

Backup

Belle II luminosity

Belle II at SuperKEKB accelerator (2019–)

Goals

- 50× Belle data-sample size by increasing luminosity
- Renewed detector, trigger, analysis techniques, ...
- Run 1 (2019–2022)
 - Collected about
 - $1/2 \times$ Belle data-sample size $1 \times$ BaBar data-sample size

Parameters in the search for IDM with a dark Higgs

- Mass of the $\chi_1 \ m_{\chi_1}$
- Mass of the dark photon $m_{\rm A'}$
- Mass of the dark Higgs boson $m_{\mathbf{h}'}$
- Mixing angle of the dark photon ϵ
- Mixing angle of the dark Higgs θ
- Coupling between DM and dark photon $g_X = \sqrt{4\pi\alpha_D}$
- Coupling between DM and dark Higgs $f = \sqrt{4\pi\alpha_f}$

In addition, the mass of the χ_2 can be calculated via the mass splitting

$$\Delta m = m_{\chi_2} - m_{\chi_1}$$

LFU test in tau decays

» Testing $e - \mu$ universality

$$R_{\mu} = \frac{B(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{B(\tau^- \to e^- \bar{\nu}_{e} \nu_{\tau})} \stackrel{\text{SM}}{=} 0.9726 \qquad \left(\frac{g_{\mu}}{g_{e}}\right)_{\tau}^2 \propto R_{\mu} \times \frac{f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)} \stackrel{\text{SM}}{=} 1$$

- R_μ measured in 1×1 prong topology with $au o \pi \pi^{m 0}
 u$ tag
- using 365 fb-1 Belle II data
- » Signal selection
- cut-based preselection followed by a neural network training
- $\rightarrow~$ 94% purity with 9.6% signal efficiency after NN selection
 - main systematics are from PID (0.32%) and trigger (0.1%)
- » World's most precise result

 $R_{\mu} = 0.9675 \pm 0.0007 (\text{stat.}) \pm 0.0036 (\text{sys.})$

- in agreement with SM
- » Analysis continuation
- ongoing study using events with $3{\times}1$ topology with inclusive tag
- improved trigger selection, reducing leading systematics

