

The 21st International Conference on Hadron Spectroscopy and Structure

Measurement of Branching Fraction of $\Lambda_c^+ \to p K_S^0 \pi^0 \text{ at Belle}$

YoungJun Kim (Korea University) On behalf of Belle & Belle II Collaborations

March 27, 2025

Presentation about paper (submitted to PRD) Please find <u>arXiv:2503.04371</u>

27, Mar., 2025.

YoungJun Kim

2

- Motivation
- Branching ratio measurement
 - Reconstruction and Efficiency
 - Yield Extraction
 - Relative and absolute Branching Ratios
- Intermediate structures
- Dalitz plots

HADRON 2025

Two particle mass projections

- $\Lambda_c^+ \to N\bar{K}\pi$ decays are good playground testing the isospin properties.
- Λ_c^+ decays result in a final state with $I_3 = 1$ ($c \rightarrow su\bar{d}$ transition, $\Delta S = 1$)
 - → Isospin symmetry: $\sqrt{2}\mathscr{A}(p\bar{K}^0\pi^0) + \mathscr{A}(pK^-\pi^+) + \mathscr{A}(n\bar{K}^0\pi^+) = 0 \rightarrow \text{amplitude and phase}$
- (a), (b), (d), (e) are color-suppressed, (c) is color-allowed
 - → Direct π^+ emission leaves the *ud* in the Λ_c^+ as a spectator, *uds* cluster is pure I = 0.
 - → If direct π^+ emission(c) is dominant, $\Lambda_c^+ \to \Lambda \pi^+$ is favored over $\Lambda_c^+ \to \Sigma^0 \pi^+$. However, in experiment results, they are comparable. How about Λ^* and Σ^* ?

HADRON 2025

27, Mar., 2025.

Physics analysis motivation

• Update of the $\Gamma(\Lambda_c^+ \to pK_S^0\pi^0)/\Gamma(\Lambda_c^+ \to pK^-\pi^+)$ with x100 statistics than previous reports

First investigation of intermediate resonances in the $\Lambda_c^+
ightarrow p K_S^0 \pi^0$ decay

HADRON 2025

27, Mar., 2025.

Physics analysis motivation

- Update of the $\Gamma(\Lambda_c^+ \to pK_S^0\pi^0)/\Gamma(\Lambda_c^+ \to pK^-\pi^+)$ with x100 statistics than previous reports
- First investigation of intermediate resonances in the $\Lambda_c^+ \to p K_S^0 \pi^0$ decay

HADRON 2025

27, Mar., 2025.

Λ_c^+ Reconstruction

- $\Lambda_c^+ \rightarrow p K_S^0 \pi^0$ (Signal mode)
 - Λ_c^+ : Scaled momentum x_p , vertex fit χ^2
 - *p*: PID, Impact parameters
 - $\pi^0(\gamma\gamma)$: mass, momentum, E_{γ}
 - $K_S^0(\pi^+\pi^-)$: Belle standard K_S^0 , vertex fit χ^2
- ➡ Selection criteria are optimized to maximize $FoM = N_{sig} / \sqrt{N_{sig} + N_{bkg}}$ (Statistical significance)

27, Mar., 2025.

- $\Lambda_c^+ \to p K^- \pi^+$ (Normalization mode)
 - Λ_c^+ : Scaled momentum x_p , vertex fit χ^2

YoungJun Kim

6

• p, K^-, π^+ : PID, Impact parameters

Detection Efficiency

In order to perform a resonance model-independent efficiency correction

- → Intermediate resonances are shown in Dalitz plot. (horizontal, vertical, diagonal)
- → Yield extraction and efficiency correction are performed on 5×10 Dalitz bins

27, Mar., 2025.

YoungJun Kim

7

Signal PDF

• Signal line shapes are constrained for each bin. Only m_0 and scale parameter σ are floated

HADRON 2025

27, Mar., 2025.

 $N(\Lambda_c^+ \to pK_S^0\pi^0)$ and $N(\Lambda_c^+ \to pK^-\pi^+)$ extraction

27, Mar., 2025.

YoungJun Kim

9

Relative and Absolute BFs

Dalitz plots

- There is no clear peak structure in the pK_S^0 system (horizontal axis)
- $K^*(892)$ clearly seen and, in the $p\pi^0$ system, a peak appears at 1.5 GeV
- Enhancements are seen in the boundary of the bottom and right side

HADRON 2025

27, Mar., 2025.

One dimensional mass projections $\Lambda_c^+ \rightarrow p K_S^0 \pi^0$

12

Efficiency corrected mass spectra

HADRON 2025

27, Mar., 2025.

Absence of peak structure in the $M(pK_S^0)$

• Compared with Dalitz plots, there is no narrow peak structure (Σ^{*+}) in the $M(pK_S^0)$, while Λ^* s are clearly seen in the $M(pK^-)$

27, Mar., 2025.

YoungJun Kim

14

Threshold cusp in $M(p\pi^0)$

- The threshold cups near the $p\eta$ mass threshold enhanced by $N(1535)^+$.
- The same situation with the $\Lambda\eta$ threshold cusp enhanced by $\Lambda(1670)$

HADRON 2025

27, Mar., 2025.

Threshold cusp in $M(p\pi^0)$

HADRON 2025

27, Mar., 2025.

$\Delta(1232)$ suppression in $M(p\pi^0)$

27, Mar., 2025.

YoungJun Kim

17

- The $\Delta(1232)$ is not clearly seen in the $M(p\pi^0)$
 - Isospin sum rule $-\mathscr{A}(\Lambda_c^+ \to K^- \Delta^{++}) + \sqrt{3}\mathscr{A}(\Lambda_c^+ \to \bar{K}^0 \Delta^+) = 0$ indicates suppression of Δ^+ in the $M(p\pi^0)$

Same line shapes in $K\pi$ systems

- $K^*(892)$ and high mass $M(K\pi)$ enhancements are clearly seen
- Same line shapes. $\Lambda_c^+ \to p \bar{K}^{*0}$; $\bar{K}^{*0} \to K^- \pi^+ / K_S^0 \pi^0$

HADRON 2025

27, Mar., 2025.

Summary

- We have been analyzing $\Lambda_c^+ \to p K_S^0 \pi^0$ using the Belle 980/fb data sample.
 - ➡ 130k signal candidates (100 times larger statistics than current PDG)
- We report
 - $\Gamma(\Lambda_c^+ \to pK_S^0 \pi^0) / \Gamma(\Lambda_c^+ \to pK^- \pi^+) = 0.339 \pm 0.002 (\text{stat.}) \pm 0.009 (\text{syst.})$

27, Mar., 2025.

YoungJun Kim

19

- $\mathscr{B}(\Lambda_c^+ \to pK_S^0 \pi^0) = 2.12 \pm 0.01(\text{stat.}) \pm 0.05(\text{syst.}) \pm 0.10(\text{norm.})$
- Mass projection spectra (Intermediate resonances)
 - → Absence of Σ^*
 - → Possible $p\eta$ threshold cusp
- Paper has been submitted to PRD.
 - You can find the paper at <u>arXiv:2503.04371</u>

Thank you