

G. DE MARINO (IJS) - 2025 PHYSICS WEEK 👯

- FCNC: suppressed in the SM, good probes of NP
- Anomalies \Leftrightarrow Final states with $\tau, \nu_{(\tau)} \Leftrightarrow$ missing energy

Looking for

- Alterations of SM couplings $C_9^{eff} = C_9^{SM} + C_9^{NP}$
- Additional operators

$$\mathcal{O}_{\mathbf{9,10}}^{'\ell\ell}$$

$$\mathcal{O}_{\mathbf{R}}^{
u_{\mathbf{i}}
u_{\mathbf{j}}}$$

$$\mathcal{O}_{\mathbf{9},\mathbf{10}}^{'\ell\ell} \qquad \mathcal{O}_{\mathbf{R}}^{\nu_{\mathbf{i}}\nu_{\mathbf{j}}} \qquad \mathcal{O}_{\mathbf{S}(\mathbf{P})}^{\ell_{1}\ell_{2}} = \frac{\mathbf{e}^{2}}{\mathbf{16}\pi^{2}} [\bar{\mathbf{s}}\mathscr{P}_{\mathbf{R}}\mathbf{b}] [\bar{\ell}_{1}(\gamma_{5})\ell_{2}]$$

G. DE MARINO (IJS) - 2025 PHYSICS WEEK B-FACTORIES, BELLE (II)

1. Threshold $B\overline{B}$ production

→ Two B's and nothing else

2. Relatively low qq-background

- → Can be calibrated in OFF-res. data
- → Suppressed with shape info

3. Known initial kinematics

- + almost- 4π detector coverage
- \rightarrow reconstruct final states with ν 's

G. DE MARINO (IJS) - 2025 PHYSICS WEEK : B-TAGGING FOR MISSING ENERGY

$\mathcal{O}(10 - 100\%)$ @ $\leq 1\%$ purity **INCLUSIVE**

Used for

- Background filtering
- Partial kinematic info

Efficiency

- Can maximise sensitivity for decays with specific signatures (e.g. one signal track)
- Uses global properties of the Rest Of Event (≡ B_{tag} + spurious objects)
 - kinematics, topology, final state composition

G. DE MARINO (IJS) - 2025 PHYSICS WEEK : B-TAGGING FOR MISSING ENERGY

Used for

- Background filtering
- Partial kinematic info
- Flavour info

Efficiency

 $\mathbf{E}_{\mathbf{ECL}} \rightarrow \mathbf{Sum}$ of the energy deposits in the calorimeter that cannot be associated with the reconstructed daughters of the B_{tag} or the B_{sig}

Signal events $\rightarrow E_{ECL} \sim 0$

Background events → Additional neutral clusters from unreconstructed particles

G. DE MARINO (IJS) - 2025 PHYSICS WEEK : B-TAGGING FOR MISSING ENERGY

The reconstruction of the $\mathsf{B}_{\mathsf{tag}}$ allows to know the 3-momentum of the B_{tag} on an event-by-event basis with excellent resolution

$$\mathsf{M}_{\mathsf{recoil}} = \left[\mathsf{m}_{\mathsf{B}}^2 + \mathsf{m}_{\mathsf{K}\ell}^2 - 2(\mathsf{E}_{\mathsf{beam}}^* \mathsf{E}_{\mathsf{K}\ell}^* + |\vec{\mathsf{p}}_{\mathsf{B}_{\mathsf{tag}}}^*| |\vec{\mathsf{p}}_{\mathsf{K}\ell}^*| \cos \theta) \right]^{1/2}$$

o svv

- 3.5σ from background-only hypothesis
- 2.7σ from SM-exp

 $(2.3 \pm 0.7) \times 10^{-5}$ (combined) $(1.1^{+1.2}_{-1.0}) \times 10^{-5}$ (hadronic) $(2.7 \pm 0.7) \times 10^{-5}$ (inclusive)

Belle II showed the first evidence of $B^+ \to K^+ \nu \bar{\nu}$ decays using hadronic and inclusive B-tagged samples PRD 109, 112006 (2024)

Important to corroborate the 2023 result

- More data

(ITA: stat~syst, with some syst being statistical in nature)

- Clarify the $K^{*0}\nu\bar{\nu}$
- Additional tagging approaches (uncertainty STA~ITA)

365 fb⁻

With sum-of-exclusive method

- $\mathcal{B}_{SM}(B \to X_s \nu \bar{\nu}) = (2.9 \pm 0.3) \times 10^{-5}$
 - Theoretically clean and complementary to exclusive searches) [2]
- Only measurement from ALEPH $\mathcal{B}_{\text{UI}} < 6.4 \times 10^{-4}$ [3]
- Only possible at e⁺e⁻ experiments

Full reconstruction in hadronic modes

- Multivariate analysis (BDT) for background suppression \mapsto output ${\mathcal O}$
- Calibrate simulations and obtain systematic uncertainties with
 - Off-resonance data $\rightarrow q\bar{q} (q=u, d, s, c)$ backgrounds
 - B \rightarrow X_sJ/ ψ ($\rightarrow \psi^*\psi^*$) \rightarrow BDT efficiency and feature validation
 - \mathcal{O} and M_{bc} sidebands \rightarrow B \bar{B} background normalisation (syst. unc.)

- [1] <u>JHEP02(2015)184</u>
- [2] <u>JHEP12(2021)118</u>
- [3] EPJC 19,2130227(2001)

$B \rightarrow X_s \nu \bar{\nu}$ SEARCH

With sum-of-exclusive method

2D signal region $\mathcal{O} \times \mathsf{M}_{\mathsf{X}_{\varepsilon}}^{\mathsf{reco}}$ plane mapped into a 1D index Regions I, II, III are enhanced in K, $K^*(892)$ and $(Kn\pi)$ modes $M_{X_{\mathtt{c}}}^{reco}$ to $M_{X_{\mathtt{c}}}(true)$ for the signal extraction

$0.0 < M_{X_s}^{reco} < 0.6 \text{ GeV/c}^2$ $0.6 < M_{X_s}^{reco} < 1.0 \text{ GeV/c}^2$ $1.0 < M_{X_s}^{reco} < 2.0 \text{ GeV/c}^2$									
Events	700	Belle II	<u>B</u> , B,						
Eve	600	∫ L dt = 365.4 fb ⁻¹	u <u>u</u>						
	500 P	reliminar	u <u>u</u> dd ss cc SIGNAL → data						
	400	(II)							
	300								
	200		*						
	100								
	0								
MC	1.2 1.1	• 1	<u> </u>						
data/MC	0.9 0.8 0.70	· · · · · · · · · · · · · · · · · · ·	* * *						
	0.70 2 4	6 8 1	0 12 14						
	0.70 2 4	6 8 1	0 12 14 bin index						

			$\mathcal{B} \ [10^{-5}]$		
$M_{X_s} \left[\text{GeV}/c^2 \right]$	ϵ	$N_{ m sig}$	Central value	$\mathrm{UL}_{\mathrm{obs}}$	$\overline{\mathrm{UL}_{\mathrm{exp}}}$
$\overline{[0,0.6] \red{\$}}$	0.26%	$10^{+18}_{-17}{}^{+18}_{-16}$	$0.5^{+0.9}_{-0.8}{}^{+0.9}_{-0.8}$	2.5	2.4
[0.6, 1.0]	0.12%	37^{+27+31}_{-25-26}	$3.8^{+2.8}_{-2.6}{}^{+3.3}_{-2.7}$	10.1	7.3
$[1.0, m_B]$	0.06%	$33^{+44}_{-42}{}^{+63}_{-53}$	$7.3^{+9.6}_{-9.2}{}^{+13.8}_{-11.5}$	35.1	27.9

*Compatible with the hadronically-tagged Belle II $B^+ \to K^+ \nu \bar{\nu}$

Combined
$$\mathscr{B}(B \to X_s \nu \bar{\nu}) = [11.6 \pm_{8.6}^{8.9} (\text{stat}) \pm_{11.3}^{13.5} (\text{syst})] \times 10^{-5}$$
 $\mathscr{B}(B \to X_s \nu \bar{\nu}) < 3.6 \times 10^{-4} (90 \% \text{CL})$

Most stringent UL on the inclusive rate

- Finite size of the MC samples used for the templates
- ±20% background normalisation from M_{bc} and ${\it O}$ sidebands
- Uncertainties on B_{sig} decay modes
- Non-resonant M_{X_s} threshold (set at 1.1 GeV/c²)

- Search for $B^+ \rightarrow \{\pi^+, K^+, Ds^+, p\}X$ and $B^0 \rightarrow D^0X$
 - X invisible because
 - it decays outside of detector $(X \rightarrow \gamma \gamma)$
 - it decays to dark sector $(X \rightarrow \chi \chi)$
- Optimised for the two-body decay kinematics
- B_{tag} in hadronic decay modes
- Signal extracted from the fits to the momentum of the hadron in the signal B rest frame
- Narrow SM resonances are vetoed
- Limits reinterpreted to several model couplings

PRL118,111802

D™⇒STT

G. DE MARINO (IJS) - 2025 PHYSICS WEEK

- $\mathcal{B}_{SM} \sim \mathcal{O}(10^{-7})$ PRD 107, 014511 (2023)
- Before 2025, very few experimental results and upper limits ~ $\mathcal{O}(10^{-3})$
- **Pre-CKM 2025**
 - Belle II $B^0 \to K^{*0}\tau\tau$ result improved Belle's (×2) [2504.10042 PRL accepted]
 - Indirect measurement on $\mathscr{C}_{\mathsf{g}}^{\tau\tau}$ from LHCb in $\mathsf{B}^0\!\to\!\mathsf{K}^{*0}\mu\mu$
- **CKM 2025:**
 - First B⁺ \rightarrow K⁺ $\tau\tau$ (Belle and Belle II) result UL@90%CL = 8.7×10⁻⁴
 - First direct search at LHCb $B^0 \rightarrow K^{*0} \tau \tau$ result UL@90%CL ~ 2.4×10-4
- Limits for B \rightarrow P $\tau\tau$ and B \rightarrow V $\tau\tau$ provide complementary information in constraining NP Next talk (Claudia)

Strategy

- Hadronic B-tagging
- Multivariate analysis based on missing energy, residual energy in calorimeter, q², K^{*0} properties, ...
- Calibration and validation:
 - off-resonance sample
 - same-flavor B⁰B⁰ sample
 - $B^0 \rightarrow K^{*0}J/\psi(\mu\mu)$
- Simultaneous fit to BDT output in four $\tau\tau$ categories: $\ell\ell$, $\ell\pi$, $\pi\pi$, ρX

 $\mathcal{B}(B^0 \to K^{*0}\tau\tau) = [-0.15 \pm 0.86 \text{ (stat)} \pm 0.52 \text{ (syst)}] \times 10^{-3}$ $\mathscr{B}(B^0 \to K^{*0}\tau\tau) < 1.8 \times 10^{-3} (90 \% CL)$

G. DE MARINO (IJS) - 2025 PHYSICS WEEK \div $B^+ \rightarrow K^+ \tau \bar{\tau} SEARCH$

Strategy

- Hadronic B-tagging
- Focus on **leptonic** τ **decays** and background-depleted region above D-mass, $m(K^+\ell^-) > 1.9 \text{ GeV}$
- Optimise selection on lepton momentum, missing mass and signal window of E_{ECL}
- E_{ECL} shape validation in side bands. Residual mismodeling cured by fitting the simulation to match data in the control samples and extrapolating it into the signal region

G. DE MARINO (IJS) - 2025 PHYSICS WEEK $\stackrel{\bullet}{L}$ $\longrightarrow K^+ \tau \bar{\tau} SEARCH$

Strategy

- Hadronic B-tagging
- Focus on **leptonic** τ **decays** and background-depleted region above D-mass, $m(K^+\ell^-) > 1.9 \text{ GeV}$
- Optimise selection on lepton momentum, missing mass and signal window of E_{ECL}
- E_{ECL} shape validation in side bands. **Residual mismodeling cured by** fitting the simulation to match data in the control samples and extrapolating it into the signal region

Residual calorimeter energy [GeV]

b stł

G. DE MARINO (IJS) - 2025 PHYSICS WEEK : CHARGED LEPTON FLAVOR VIOLATION IN B DECAYS

• Can occur in the SM via ν mixing but highly suppressed ($\propto m_{\nu}^2/m_{W}^2$)

NP models explaining B-related tensions can lead to sizeable LFV but must obey the constraints from other flavor observables [1602.00881, 1606.00524, 1611.06676, 1806.05689, 2103.16558, 2206.09717, ...]

K*0: JHEP08(2025)184 K_S⁰: PRL 135 (2025) 4, 041801

- 711 fb⁻
- 365 fb⁻

- K⁰ and K^{*0} probe different NP mediators
- Similar analysis strategy for the two modes
 - 1. Hadronic B-tagging and Belle+Belle II datasets
 - → Signal extraction from fit to the recoil mass **Excellent resolution for signal** No peaking backgrounds, even for irreducible contributions like $B^0 \rightarrow D_s^-(\tau^-\bar{\nu})K^{(*)0}\ell^+\nu$

$$\begin{split} \mathsf{M}_{\text{recoil}}^2 &= (\mathsf{p}_{\mathsf{e}^+\mathsf{e}^-} - \mathsf{p}_{\ell} - \mathsf{p}_{\mathsf{K}} - \mathsf{p}_{\mathsf{B}_{\mathsf{tag}}})^2 \\ &= \mathsf{M}_{\mathsf{K}\ell}^2 + \mathsf{m}_{\mathsf{B}}^2 - 2(\mathsf{E}_{\mathsf{K}\ell}\sqrt{\mathsf{s}}/2 + \vec{\pmb{p}}_{\mathsf{B}_{\mathsf{tag}}} \cdot \vec{\pmb{p}}_{\mathsf{B}_{\mathsf{K}\ell}}) \end{split}$$

K*0: <u>JHEP08(2025)184</u>

K_S⁰: PRL 135 (2025) 4, 041801

K⁰ and K^{*0} probe different NP mediators

• Similar analysis strategy for the two modes

1. Hadronic B-tagging and Belle+Belle II datasets

ightharpoonupSignal extraction from fit to the recoil mass Excellent resolution for signal No peaking backgrounds, even for irreducible contributions like $B^0
ightharpoonup D_s^-(\tau^-\bar{\nu})K^{(*)0}\ell^+\nu$

2. Background suppression with BDT

- → Optimisation performed for each final state and separately for Belle and Belle II
- → Agreement checked in M_{recoil} sidebands

- 3. Calibration with $B^0 \rightarrow D_s^+ (\rightarrow K_S K^+/\phi \pi^+) D^{(*)-}$
 - Signal PDF
 - BDT output efficiency

G. DE MARINO (IJS) - 2025 PHYSICS WEEK $^{(*)0}$ $\rightarrow K^{(*)0}$ $\tau \mathcal{C}$ SEARCHES

- K⁰ and K^{*0} probe different NP mediators
- Main differences
 - $\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}$:

 τ decays are exclusively reconstructed in their $\,\ell,\pi,\rho$ modes Belle and Belle II samples are fitted together

 $- K^{*0}$:

au decays are inclusively reconstructed in their 1,3-prong modes Belle and Belle II samples are fitted simultaneously

Belle II simulation preliminary

10

 $M^2(K^{*0}\ell) \ [\text{GeV}^2/c^4]$

15

 $M^2(K^{*0}t_{ au}) \left[{
m GeV}^2/c^4
ight]$

Selection efficiency as a function of dof ($q^2,...$) for the phase space model allow to reinterpret the results in specific BSM models

$$\Delta\mathscr{C}_{9}^{\tau\ell} = -\Delta\mathscr{C}_{10}^{\tau\ell} \neq 0, \quad \Delta\mathscr{C}_{S}^{\tau\ell} \neq 0$$
 HEPData

G. DE MARINO (IJS) - 2025 PHYSICS WEEK CONCLUSION&OUTLOOK

- EW and LFV B decays allow to test SM and probe NP
- Many (Belle+)Belle II recent results, most world-leading
- While analysing more data and waiting for next data-taking period, working on the tools to improve sensitivity
 - tagging approaches/new constraints
 - better control on systematics
 - new modes, $b \rightarrow d$, ...

reinterpret results

Talk right next (Lorenz)!

A model-agnostic likelihood for the reinterpretation of the $B^+ \to K^+ \nu \bar{\nu}$ measurement at Belle II

Lorenz Gärtner¹ on behalf of the Belle II Collaboration

¹LMU Munich

October 6, 2025

New theory, new analysis?

Measurements

How much signal do we find?

(Re)interpretations

What can we learn about theory?

ATI AS-FXOT-2020-25

Belle II has reported "Evidence for ${\it B}^+ ightarrow {\it K}^+ u ar{ u}$ decays"

PRD 109.112006

 \rightarrow 2.7 σ excess w.r.t. SM

Based on p(n|SM)

Implications for p(n|NP)?

Signal templates for new physics

$$p(n|\text{model A}) \neq p(n|\text{model B})$$

A reinterpretation framework focussed on distributability, speed and simplicity

EPJC 84, 693 (2024) github.com/lorenzennio/redist

Reinterpretation through reweighting

Template likelihood

$$p(n|\nu) = \prod_{\text{bin } b} \text{Pois}(n_b|\nu_b) \qquad \nu_b = \sum_{\text{sample } s} \nu_{bs}$$

Reinterpretation through reweighting

Template likelihood

$$p(n|\nu) = \prod_{\text{bin } b} \text{Pois}(n_b|\nu_b) \qquad \nu_b = \sum_{\text{sample } s} \nu_{bs}$$

New signal templates with joint number density $\nu(x,z)$

$$w(z) = \sigma_B(z)/\sigma_A(z)$$
 – ratio of predictions z – kinematic d.o.f., x – reconstruction variable(s)

Constraining $b \to s \nu \nu$ Weak Effective Theory (WET) Wilson coefficients*

arXiv:2507.12393

Does it work? Says Proof on concept: EPJC 84, 693 (2024)

^{*}See Wolfgang Altmannshofer's and David Marzocca's talks.

$b \rightarrow s \nu \nu$ WET decay kinematics

WET = low energy **EFT** including NP above the electroweak scale

$$\frac{d\mathcal{B}}{dq^2} = \alpha(q^2) \left| C_{\text{VL}} + C_{\text{VR}} \right|^2$$
$$+\beta(q^2) \left| C_{\text{SL}} + C_{\text{SR}} \right|^2$$
$$+\gamma(q^2) \left| C_{\text{TL}} \right|^2$$

SM contains only *vector* contribution.

arXiv:2111.04327

8 / 11

WET marginal posterior

First ever direct constraints on $b \to s\nu\bar{\nu}$ WET Wilson coefficients \triangleright

HEPData

Repository for publication-related High-Energy Physics data

- Data tables, likelihoods, ...
- 10.6k publications
- >4 million page views / year
- 43 Belle, 9 Belle II entries
- $B^+ \to K^+ \nu \bar{\nu}$ entry (coming soon): likelihood & joint number densities

raketa Histagory Search for $B^0 o K^{*0} au^+ au^-$ decays at the Belle II experiment

The Belle-II collaboration Adachi, I.; Adamczyk, K.; Aggarwal, L.; et al.

Main takeaways

- Public likelihoods & reinterpretability increase analyses' impact!
- **&** Created a **publishable**, **reinterpretable likelihood** for $B^+ \to K^+ \nu \bar{\nu}$
 - Bias-free BSM inference, reproducibility, combinations, ...
 - On HEPData soon!
 - Precedent case for future Belle II analyses.
- First ever direct constraints on $b \to s\nu\bar{\nu}$ WFT Wilson coefficients

EPJC 84, 693 (2024) arXiv:2507.12393

Approaches to reinterpretation

Simulation based reinterpretation Simplified model reinterpretation Is

- Produce and analyse new MC samples for each point in theory space
- Resource-heavy

- Assume that efficiencies are unaffected by kinematic shape changes
- Potentially biased results

arXiv:2109.04981 [hep-ph]

accurate reinterpretation without new MC samples possible?

4 Yes, we can reweight samples or even histograms directly!

Templates from kinematic predictions

$$n(x|\sigma) = \int dz \; L \; \varepsilon(x|z) \; \sigma(z) = \int dz \; n_{\sigma}(x,z)$$

$$z(=q^2)$$
 – kinematic d.o.f.

L. Gärtner (LMU)

$$\dot{x}$$
 – reconstruction / fitting variable(s)

 $\varepsilon(x|z)$ – conditional efficiency $n_{z}(x,z)$ – joint number density

October 6, 2025

Reweight to new model

$$n(x|B) = \int dz \, L \, \varepsilon(x|z) \quad \sigma_B(z) = \int dz \, L \, \varepsilon(x|z) \quad \sigma_A(z) \quad \frac{\sigma_B(z)}{\sigma_A(z)} = \int dz \, \underbrace{n_A(x,z)}_{\text{main object}} \quad w(z).$$

$$p(x|n_A, \theta)$$
 = model-agnostic likelihood

3 / 16

Method limitations

Substantial model changes → large weights

Minimal requirement:

$$supp(\sigma_B) \in supp(\sigma_A)$$

Always possible to compare only in $supp(\sigma_{\Lambda})$

Joint number densities

5 / 16

Main object for reinterpretation, $n(x,z) \rightarrow$ **Essential for publication**.

Kinematic binning: $q^2 = [-1, (0, 22.885, 100)] \text{ GeV}^2$

Weak Effective Theory for $B \to K \nu \bar{\nu}$

The effective Lagrangian is

$$\mathcal{L}^{WET} = \sum_{X=I,R} C_{VX} O_{VX} + \sum_{X=I,R} C_{SX} O_{SX} + C_{TL} O_{TL} + h.c.$$

The d = 6 contributing operators in and beyond the SM are given by

$$\begin{aligned}
\mathcal{O}_{\text{VL}} &= \left(\overline{\nu_{L}}\gamma_{\mu}\nu_{L}\right)\left(\overline{s_{L}}\gamma^{\mu}b_{L}\right) \\
\mathcal{O}_{\text{SL}} &= \left(\overline{\nu_{L}}\gamma_{\mu}\nu_{L}\right)\left(\overline{s_{R}}\gamma^{\mu}b_{R}\right) \\
\mathcal{O}_{\text{SL}} &= \left(\overline{\nu_{L}^{c}}\nu_{L}\right)\left(\overline{s_{R}}b_{L}\right) \\
\mathcal{O}_{\text{TL}} &= \left(\overline{\nu_{L}^{c}}\sigma_{\mu\nu}\nu_{L}\right)\left(\overline{s_{R}}\sigma^{\mu\nu}b_{L}\right)
\end{aligned}$$

arXiv:2111.04327

WET decay kinematics

$$\begin{split} \frac{d\mathcal{B}\left(\mathcal{B}\to K\nu\bar{\nu}\right)}{dq^{2}} &= \frac{3G_{F}^{2}\alpha^{2}\tau_{B}}{32\pi^{5}m_{B}^{3}}\left|V_{ts}^{*}V_{tb}\right|^{2}\sqrt{\lambda_{BK}}q^{2}\left[\frac{\lambda_{BK}}{24q^{2}}\left|f_{+}(q^{2})\right|^{2}\left|C_{VL}+C_{VR}\right|^{2}\right] \\ &+ \frac{\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{8\left(m_{b}-m_{s}^{2}\right)^{2}}\left|f_{0}(q^{2})\right|^{2}\left|C_{SL}+C_{SR}\right|^{2} \\ &+ \frac{2\lambda_{BK}}{3\left(m_{B}+m_{K}^{2}\right)^{2}}\left|f_{T}(q^{2})\right|^{2}\left|C_{TL}\right|^{2} \end{split}$$

for $J^P = 0^-$ kaon states. Note $q^2 \neq q_{12}^2$

arXiv:2111.04327

Goodness of fit

$$P_{\rm gof} = \int_{t_{obs}}^{\infty} dt \; p(t, \quad t = -2 \ln \frac{p(n, \alpha \mid \hat{\eta}, \hat{\chi})}{p_{\rm sat}(n, \alpha \mid \bar{\chi})},$$
 SM WET
$$B^{+} \rightarrow K^{+}X$$

$$\begin{bmatrix} 0.10 & 0.08 & 0.10 &$$

8 / 16

Validation through closure testing

- Build simple statistical model on MC data
- Inject new physics in MC data
- Infer a posterior in the Wilson coefficients

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

EPJC 84, 693 (2024)

Necessity of reinterpretation

 Infer Wilson coefficients only from

$$\mathcal{B}(\{C_i\})/\mathcal{B}_{SM}$$

- Ignore effect of kinematic shape changes
- → No constraining power!

EPJC 84, 693 (2024)

Prior sensitivity WET

Alternative priors

$$p\left(\eta_i\right) = egin{cases} \mathcal{N}(\eta_i | \mu = C_i^{\mathrm{SM}}, \sigma = 20) & \eta_i \geq 0 \\ 0 & \eta_i < 0 \end{cases}$$
 (1) Alternative priors

$$p\left(\eta_{i}\right) \propto \begin{cases} \eta_{i} & \eta_{i} \leq 30\\ 0 & \eta_{i} > 30 \end{cases}$$

Uniform priors

Parameters	Mode	68% HDI	95% HDI
$- C_{ m VL} + C_{ m VR} $	11.3	[7.82, 14.6]	[1.86, 16.2]
$ C_{\rm SL} + C_{\rm SR} $	0.00	[0.00, 9.53]	[0.00, 15.4]
$ C_{\mathrm{TL}} $	8.21	[2.29, 9.62]	[0.00, 11.2]

	Priors	Parameters	Mode	68% HDI	95% HDI
		$ C_{ m VL} + C_{ m VR} $	11.4	[7.97, 14.6]	[2.21, 16.4]
(2)	(1)	$ C_{\rm SL} + C_{\rm SR} $	0.00	[0.00, 9.16]	[0.00, 14.7]
(2)		$ C_{\mathrm{TL}} $	7.69	[1.54, 8.75]	[0.00, 11.0]
		$ C_{\mathrm{VL}} + C_{\mathrm{VR}} $	11.6	[8.21, 14.0]	[4.17, 16.0]
	(2)	$ C_{\rm SL} + C_{\rm SR} $	8.93	[4.56, 12.6]	[1.27, 15.6]
		C	7.17	[3.89, 9.59]	[1.41, 11.7]

11 / 16

A comparative scale

Naive reinterpretation

For each Wilson coefficient

$$\mu_{ extsf{SM}}\mathcal{B}_{ extsf{SM}}=\int d extsf{q}^2rac{d\mathcal{B}_{ extsf{WET}}}{d extsf{q}^2}$$

$$|C_{\text{VL}} + C_{\text{VR}}| = 14.2^{+1.9}_{-2.2}$$

 $|C_{\text{SL}} + C_{\text{SR}}| = 8.38^{+1.12}_{-1.30}$
 $|C_{\text{TL}}| = 6.93^{+0.93}_{-1.08}$

Our results

Parameters	Mode	68% HDI
$ C_{ m VL} + C_{ m VR} $	11.3	[7.82, 14.6]
$ C_{\rm SL} + C_{\rm SR} $	0.00	[0.00, 9.53]
$ C_{\mathrm{TL}} $	8.21	[2.29, 9.62]

WET marginal posteriors (individual)

HistFactory model

Likelihood function for observed event counts *n* is

$$L(n, \alpha | \eta, \chi) = \prod_{\substack{c \in \text{channels } b \in \text{bins}}} \operatorname{Pois}\left(n_{cb} | \nu_{cb}(\eta, \chi)\right) \qquad \prod_{\substack{\chi \in \chi}} c_{\chi}\left(\alpha_{\chi} | \chi\right)$$
multiple channels constraint terms

Expected number of events per channel per bin are

$$\nu_{cb}(\eta,\chi) = \sum_{s \in \text{samples}} \underbrace{\prod_{\kappa \in \kappa} \kappa_{scb}(\eta,\chi)}_{\text{multiplicative modifiers}} (\nu_{scb}^0(\eta,\chi) + \underbrace{\sum_{\Delta \in \Delta} \Delta_{scb}(\eta,\chi)}_{\text{additive modifiers}}).$$

Modifiers and constraints

Description	Modification	Constraint Term c_χ	Input
Uncorrelated Shape	$\kappa_{scb}(\gamma_b) = \gamma_b$	$\prod_b \operatorname{Pois} \left(r_b = \sigma_b^{-2} ig ho_b = \sigma_b^{-2} \gamma_b ight)$	σ_b
Correlated Shape	$\Delta_{scb}(lpha) = f_p\left(lpha \Delta_{scb,lpha=-1}, \Delta_{scb,lpha=1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\Delta_{scb,lpha=\pm 1}$
Normalisation Unc.	$\kappa_{scb}(lpha) = g_p\left(lpha \kappa_{scb,lpha=-1}, \kappa_{scb,lpha=1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\kappa_{scb,\alpha=\pm1}$
MC Stat. Uncertainty	$\kappa_{scb}(\gamma_b) = \gamma_b$	$\prod_b \operatorname{Gaus}\left(a_{\gamma_b}=1 \gamma_b,\delta_b ight)$	$\delta_b^2 = \sum_s \delta_{sb}^2$
Luminosity	$\kappa_{scb}(\lambda) = \lambda$	$\mathrm{Gaus}(l=\lambda_0 \lambda,\sigma_\lambda)$	λ_0,σ_λ
Normalisation	$\kappa_{scb}(\mu_b)=\mu_b$		
Data-driven Shape	$\kappa_{scb}(\gamma_b) = \gamma_b$		

Custom modifiers

SUPPORTING MATERIAL

G. DE MARINO (IJS) - 2025 PHYSICS WEEK : PERFORMANCE

(K ID)

 $\varepsilon \sim 90\%$ $\pi \rightarrow K \sim 6\%$

Good kaon identification in full momentum range

 (γ,π^0)

High photon efficiency $\varepsilon > 90 \%$ (p > 1 . 5 GeV/c)

Belle-like resolution on π^0 mass

Good lepton ID and similar $e - \mu$ performance

$B \to K \tau \bar{\tau}$ MOTIVATION

- $\mathscr{B}_{SM}(B^0 \to K^0 \tau^+ \tau^-) |_{q^2 \in (4m_\tau^2, q_{max}^2)} = 0.78 \times 10^{-7} [1]$
- Correlation with $R_{D^{(*)}}$ [2] \rightarrow Large enhancements to SM BF $\mathcal{O}(10^2 10^3)$ [3]
- B⁺ \rightarrow K⁺ $\nu\bar{\nu}$ excess, combined with R_{K*} constraints, suggest LFUV in τ 's [4,5]

$$C_{9}^{\tau\tau} = C_{10}^{\tau\tau} \sim -\frac{2\pi}{\alpha} \frac{V_{cb}}{V_{tb}V_{ts}^{*}} \left(\sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)}}^{SM}}} - 1 \right)$$
$$\frac{\mathscr{B}(B \to K^{*}\tau\tau)}{\mathscr{B}(B \to K^{*}\tau\tau)^{SM}} \in [16, 48]$$

$$\begin{split} \mathscr{O}_{9(10)}^{\tau\tau} &= \frac{e^2}{16\pi^2} [\bar{\mathbf{s}}\gamma_{\mu}\mathscr{P}_L \mathbf{b}] [\bar{\tau}\gamma^{\mu}(\gamma_5)\tau] \\ \mathscr{L}_{\text{eff}} &= \frac{4G_F}{\sqrt{2}} \lambda_t \sum_i \left(\begin{array}{cc} C_i(\mu) & \mathscr{O}_i(\mu) \end{array} \right) \\ C_i^{\tau\tau} &= C_i^{\tau\tau} \big|_{SM} + C_i^{\tau\tau} \big|_{NP} \end{split}$$

G. DE MARINO (IJS) - 2025 PHYSICS WEEK *****

Tensions in *b*-transitions

 $b \rightarrow s \nu \nu$

 $b \rightarrow s\mu\mu$

3.8
$$\sigma$$
 for R(D)-R(D*)

$$R(D^{(*)}) = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$$

See Boyang's talk later today

$$\frac{\mathscr{B}(\mathsf{B}^+ \to \mathsf{K}^+ \nu \nu)}{\mathscr{B}_{\mathsf{SM}}(\mathsf{B}^+ \to \mathsf{K}^+ \nu \nu)} = 5.4 \pm 1.5 \ (2.7\sigma)$$

 $1-3\sigma$ in branching ratios/ angular observables

Is there a joint explanation?

G. DE MARINO (IJS) - 2025 PHYSICS WEEK **
WHY B-DECAYS

Case study - $B^0 o K^{*0} au^+ au^-$

- Event kinematics fully reconstructable (with 4-fold ambiguity)
- Expect 3σ significance with nominal IDEA detector
 - Extensive detector study: strong dependence on vertex resolution and material budget

https://indico.global/event/11057/contributions/131852/

Tristan Miralles et al.

xunwu.zuo@cern.ch

10

G. DE MARINO (IJS) - 2025 PHYSICS WEEK SELLE II AND LHCb

Better with muons/charged particles that can be vertexed Richer b-hadron program high backgrounds / high σ_b

Properties	LHCb	Belle II
σ_b	$\mathscr{O}(100\mu b)$	$\sim 1~\mathrm{nb}$
$\int \mathcal{L} dt \ (fb^{-1})$	$18 \rightarrow 300$	$(1+)0.6 \to 30-50$
Background level	\sim 60 mb	\sim 4 nb
Typical efficiency	Low	High
π^0, K_S^0 efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Good
Collision spot size	Large	Tiny
Heavy bottoms hadrons	$B_{u,d,s,c}, b$ —baryons	$B_{u,d(,s)}$
B-flavour tagging capability	$\sim 5\%$	~ 35%
τ physics capability	Limited	Excellent

Better with γ and ν Higher tagging efficiency Low backgrounds / low $\sigma_{\rm b}$

- Dominant systematic uncertainties in terms of BF (\times 10⁻³):
 - poor knowledge of semileptonic $B \to D^{**}$ decays: 0.29
 - limited simulated sample size: 0.27

Source	Impact on $\mathcal{B} \times 10^{-}$
$B \to D^{**} \ell / \tau \nu$ branching fractions	0.29
Simulated sample size	0.27
$qar{q}$ normalization	0.18
ROE cluster multiplicity	0.17
π and K ID	0.14
B decay branching fraction	0.11
Combinatorial $B\overline{B}$ normalization	0.09
Signal and peaking $B^0\overline{B}^0$ normalization	0.07
Lepton ID	0.04
π^0 efficiency	0.03
f_{00}	0.01
$N_{\Upsilon(4S)}$	0.01
$D \stackrel{\cdot}{ o} K_L ext{ decays}$	0.01
Signal form factors	0.01
Luminosity	< 0.01
Total systematics	0.52
Statistics	0.86

$$BF = \frac{N_{\text{obs}} - N_{\text{exp}}}{2\epsilon f^{+-} N_{B\overline{B}}}$$

Belle

Belle II

Observed events
$$(N_{\rm obs}) = 11^{+3.66}_{-2.99}$$
 Observed events $(N_{\rm obs}) = 6^{+2.80}_{-2.13}$ Expected background $(N_{\rm exp}) = 14.05 \pm 2.45$ Expected background $(N_{\rm exp}) = 3.48 \pm 1.17$ Signal efficiency $(\epsilon) = (1.40 \pm 0.16) \times 10^{-5}$ Signal efficiency $(\epsilon) = (1.26 \pm 0.18) \times 10^{-5}$ $f^{+-}=0.5113^{+0.0073}_{-0.0108}$ $N_{B\overline{B}}$: $(772 \pm 11) \times 10^6$ $N_{B\overline{B}}$: $(387 \pm 6) \times 10^6$ BF = $(-2.76^{+3.31}_{-2.70} \pm 2.24) \times 10^{-4}$

G. DE MARINO (IJS) - 2025 PHYSICS WEEK SYST K*0

A. Addıtıve:

1. Expected background yield

B. Multiplicative:

- 1. FEI scale factor: $0.76 \pm 0.08 (0.75 \pm 0.09)$
- 2. Simulated sample-size: statistical uncertainty of the signal efficiency due to limited size of the generated signal simulation.
- 3. PID correction
- 4. π^0 veto efficiency: $1.03 \pm 0.02 \ (1.03 \pm 0.03)$
- 5. Tracking efficiency: 0.35% (0.27%) per track
- 6. Signal decay model: uncertainty due to generated model dependence
- 7. f^{+-} : 0.511 $^{+0.007}_{-0.011}$ from HFLAV, taken its uncertainty as systematics
- 8. $N_{B\bar{B}}$: 772 ± 11(387 ± 6) × 10⁶,

taken its uncertainty as systematics

Sources	Impact on BF (Belle)	Impact on BF (Belle II)
Expected bkg yield	±2.5 events	±1.2 events
FEI scale factor	10.1%	12.6%
Simulated sample size	3.3%	3.5%
PID correction	1.0%	1.6%
pi0 veto	1.9%	2.9%
Tracking efficiency	1.1%	0.8%
Signal decay model	3.5%	4.3%
f+-	+1.4 % -2.1 %	+1.4 % -2.1 %
Number of BBbar pairs	1.4%	1.6%

Source	Impact on $\sigma_{\mathcal{B}}$ [10 ⁻⁵]
MC statistics	6.4
Background normalization	6.1
Branching ratio of major B meson decay	2.5
Non-resonant $X_s \nu \bar{\nu}$ generation point	2.3
\mathcal{O} selection efficiency	2.3
Photon multiplicity correction	2.2
$q\bar{q}$ background efficiency	1.9
Other subdominant contributions	3.2
Total systematic sources	12.4

G. DE MARINO (IJS) - 2025 PHYSICS WEEK

$B_{\scriptscriptstyle S} ightarrow au au$ and $B ightarrow K^{(*)} au au$

• Extremely difficult measurement — <u>Tera-Z machine</u> such as FCC-ee needed! [Kamenik et al. '17]

Exp. limits (90%CL.):

[Belle-II. '25] see e.g. [Capdevilla et al. '17]

Effectively, "null tests" for NP effects given the current exp. sensitivity — $\approx \times 10^4$ above the SM values.

Current reach:

$$\frac{|\mathcal{C}_{bs\tau\tau}|}{\Lambda^2} \lesssim (1.3 \text{ TeV})^{-2}$$

Complementarity to $pp \rightarrow \tau \tau$ at the **LHC!**

see e.g. [Faroughy et al. '16], [Allwicher et al. (OS), 22]

G. Isidori – The Flavor of New Physics

KMI2025, Nagoya – 6th March 2025

A brief look to current data & future prospects

The idea of flavor non-universal interactions – with a 1st layer of new physics already at the TeV scale – has several interesting implications for various low-energy measurements (with different degree of model-dependence)

E.g.: III) Potential large enhancement of $b \rightarrow s\tau\tau$ rates

b→svv rates are affected at the LQ exchange already at the tree-level (contrary b→svv) and involve only 3rd gen. leptons → possible <u>huge</u> effect compared to SM

