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[Belle II B → Kνν ’23] [Nonleptonic B → DK ]

http://ckmfitter.in2p3.fr/www/results/plots_summer23/ckm_res_summer23.html
https://indico.cern.ch/event/1440982/contributions/6567354/attachments/3138090/5569635/CKM_2025_Smith_final.pdf
https://arxiv.org/pdf/2311.14647
https://arxiv.org/pdf/2411.09458
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Lorentz Decomposition (ex: B → D`−ν Form Factors)

〈D(k)|cγµb|B(p)〉 =
∑
n

Sµn (p, k) Fn(q2 ≡ (p − k)2)
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https://arxiv.org/pdf/2507.03569
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I hadronic form factors are genuinely
hadronic quantities

I generally, require non-perturbative methods
to access them

I lattice gauge theory is currently the only
ab-initio method to access them

I provide values at few points in phase space
(here: q2)

I requires parametrization to extra-/intrapolate
to full phase space
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How to handle the systematic uncertainty inherent in the parametrization?

https://arxiv.org/pdf/2305.06301


Enter Unitarity Bounds / Dispersive Bounds 4/14

Π(q2) ≡ i
∫

d4xeiq·x 〈0|T {J†(x), J(0)}|0〉

+ + . . .

Partonic 2-point Function
I discontinuity accessible in

operator product expansion

DiscΠ + + . . .

Hadronic 2-point Function
I discontinuity expressible in terms

of hadronic form factors

Global Quark-Hadron Duality
When summing & integrating over all on-shell intermediate states, the two disconti-
nuities lead to the same result. [Chibisov,Dikeman,Shifman,Uraltsev ’96]

[Ling-Fong,Pagels ’71] [Okubo ’71] [Boyd,Grinstein,Lebed ’94] [Caprini,Neubert ’96]

[see also “Functional Analysis and Optimization Methods in Hadron Physics” (I. Caprini)]

https://arxiv.org/pdf/hep-ph/9605465
https://doi.org/10.1103/PhysRevD.3.2191
https://doi.org/10.1103/PhysRevD.4.725
https://arxiv.org/pdf/hep-ph/9412324
https://arxiv.org/pdf/hep-ph/9603414
https://link.springer.com/book/10.1007/978-3-030-18948-8


Wait, what? 5/14

How does this relate to the form factors? 〈BD|J|0〉?

Crossing Symmetry

〈D(k)|J|B(+p)〉 =
∑
n

Sµn (+p, k) Fn(q2 ≡ (+p − k)2)

〈D(k)B(−p)|J|0〉 =
∑
n

Sµn (−p, k) Fn(q2 ≡ (−p − k)2)

I the same function / form factor describes the semileptonic decay and the
pair production for different regions of q2

I for 0 ≤ q2 ≤ (MB −MD)
2, it describes the semileptonic decay B → D`−ν

I for (MB +MD)
2, it describes the pair production `+ν → BD

I form factors appear “squared”



Creating the Bound 6/14

I Π is typically divergent, but its derivatives become finite

I define χ

χ(Q2) =
dn

d(Q2)n
Π(Q2) =

1
2πi

dn

d(Q2)n

∮
C
dt Π(t)

t −Q2

I select n as the smallest number of derivatives so that χ(Q2) is finite
I choose contour C to avoid singularities

I compute χ(Q2 = 0) in an Operator Product Expansion (OPE)

I we can relate DiscΠ to the form factors, but not Π to the formfactors!



Properties of Π in a Nutshell 7/14

Π(q2) ≡ i
∫

d4xeiq·x 〈0|T {J†(x), J(0)}|0〉
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relevant here:
I pair production branch cut
I integration contour

I
Π(t)
tn+1 → 0 as |t | → ∞

contour shrinks to two rays
I below the cut (moving left)
I above the cut (moving right)

Π(t + iε)− Π(t − iε) ≡ DiscΠ(t + iε)



Creating the Bound (2) 8/14

χFF(Q2) =
1
2πi

dn

d(Q2)n

∮
C
dt ΠFF(t)

t −Q2 =
1
2πi

dn

d(Q2)n

∫ ∞

(MB+MD)2
dt DiscΠ

FF(t)
t −Q2

I compute discontinuity of Π in terms of the hadronic form factors, single out
one form factor F and its (positive) kinematic weight function

i DiscΠFF(t) = ω(t)|F(t)|2 + positive terms

I drop positive terms to create inequality, the dispersive bound

χOPE(0) ≥ 1
2π

dn

d(Q2)n

∫
dt ω(t)|F(t)|

2

t −Q2

∣∣∣∣
Q2=0



Boyd-Grinstein-Lebed Idea 9/14

I create separate bounds for vector and axialvector currents

I can we create a parametrization that manifestly respects the bound?

I problematic quantity:

1
2π

dn

d(Q2)n

∫ ∞

(MB+MD)2
dt ω(t)|F(t)|

2

t −Q2

∣∣∣∣
Q2=0

?−→
∫ ∞

(MB+MD)2
dt |F̃(t)|2

I can we “diagonalise” the contribution to the integral by expanding F̃ in a
suitable basis of functions?

[Boyd,Grinstein,Lebed ’95]

https://arxiv.org/pdf/hep-ph/9504235


Mapping 10/14

t 7→ z(t) ≡
√
(MB +MD)2 − t −

√
(MB +MD)2 − (MB −MD)2√

(MB +MD)2 − t −
√
(MB +MD)2 − (MB −MD)2
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dn

d(Q2)n

∫ ∞

(MB+MD)2
dt ω(t)|F(t)|

2

t −Q2

∣∣∣∣
Q2=0

=

∫ +π

−π

dϑ

2π zJz→t(z)
[

dn

d(Q2)n
ω(t)|F(t)|2
t −Q2

]
z=eiϑ,Q2=0



Boyd-Grinstein-Lebed Parametrization 11/14

I absorb χ, weight factor ω, and kernel 1/(t −Q2) into “outer function” φ

1 ≥ 1
χ(0)

∫ +π

−π

dϑ

2π z Jz→t(z)
[

dn

d(Q2)n
ω(t)|F(t(z))|2

t −Q2

]
z=eiϑ,Q2=0

≡
∫ +π

−π

dϑ

2π
∣∣φ(z)F(t(z))∣∣2∣∣∣∣

z=eiϑ

I use an orthonormal basis of analytic functions on the unit circle∫ +π

−π

dϑ

2π zkz∗,l = δkl for k, l ≥ 0

I expand φ(z)F(t(z)) into a series around z = 0

F(t) = 1
φ(z(t))

∞∑
k=0

ak [z(t)]k ⇒
∞∑
k=0

|ak |2 ≤ 1

I each expansion coefficient is absolutely bounded to the interval [−1,+1]



Practical Considerations 12/14

I truncate series at order K

FK (t) =
1

φ(z(t))

K∑
k=0

ak [z(t)]k

I what is the truncation error?

εK (z) ≡
∣∣∣∣φ(z)[F(t(z))− FK (t(z))

]∣∣∣∣ =
∣∣∣∣∣∣

∞∑
k=K+1

akzk
∣∣∣∣∣∣

≤


 ∞∑
k=K+1

|ak |2
 ∞∑

k=K+1
|zk |2


1/2

=
√
AK · ZK (z)

I identify AK ≤ 1−
∑K

k=0 |ak |2 < 1 and ZK (z) ≤ |z2|K+1 ∑∞
k=0 |z2|k = |z2|K+1

1−|z2|

εK (z) < constant× |z|K+1



Further Literature / Not Covered 13/14

I subthreshold branch cuts / multiple branch cuts [Blake,Meinel,Rahimi,DvD ’22] [Flynn,Jüttner,Tsang ’23]

I including resonances / working on the branch cut [Buck,Lebed ’98] [Kirk,Kubis,Reboud,DvD ’24]

I nonlocal form factors (“charm loop” in B → Kµ+µ−) [Gubernari,DvD,Virto ’20]

[Gubernari,Reboud,DvD,Virto ’22]

I dispersive matrix / avoiding truncation [Okubo ’71] [Lellouch ’95]

[Di Carlo,Martinelli,Naviglio,Sanfilippo,Simula,Vittorio ’21]

https://arxiv.org/pdf/2205.06041
https://arxiv.org/pdf/2303.11285
https://arxiv.org/pdf/hep-ph/9802369
https://arxiv.org/pdf/2410.13764
https://arxiv.org/pdf/2011.09813
https://arxiv.org/pdf/2206.03797
https://doi.org/10.1103/PhysRevD.4.725
https://arxiv.org/pdf/hep-ph/9509358
https://arxiv.org/pdf/2105.02497


Summary 14/14

I hadronic form factors are relevant to a large number of processes relevant to
Belle II measurements (and beyond!)

I control of systematic uncertainties in hadronic form factors crucial to
interpretation of measurements

I dispersive bounds provide excellent tool to control these uncertainties
I in simple cases (as in the example shown here), dispersive bounds provide strict

upper bound on expansion coefficients

I active field of research, revitalized in recent years with applications beyond
what was originally envisaged
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What about the Poles?
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I e.g. for vector form factor
B∗
c,B∗

c(6842), . . .

I F receives contributions form
one-shell intermediate 1-body states

I produce poles in complex z plane
I can we remove them without

changing the integral on the circle?
I replace φF → BφF before expansion,

where

B(z = zpole) = 0∣∣∣B(z = eiϑ)
∣∣∣ = 1

I solutions for B are called “Blaschke
factors”


	Appendix
	Backup Slides


