

 $\bar{\nu}_{\ell}$

Jack Jenkins 08 October 2025

In collaboration with

M. Fael, E. Lunghi, Z. Polonsky

Theoretical Particle Physics

Center for Particle Physics Siegen Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Scope of semileptonic FCNC decays:

- $ar{B} o X_s
 u ar{
 u}$ top loop dominated, very clean theoretically
- $ar{B} o X_s \ell^+ \ell^-$ complementary channel with LD effects and angular observables

Phenomenology of $b\to s\nu\bar\nu$ will be limited by experimental precision (Belle/II) for the forseeable future The inclusive rate has x10 higher statistics of $B\to K$, may be possible to leverage against systematic effects

Outline: Refine SM prediction from 10+ years ago

$${
m Br}(ar B o X_s
uar
u)=(3.48\pm0.12) imes10^{-5}$$
 (this work, preliminary)
$$=(2.9\pm0.3) imes10^{-5}$$
 Buras, Noe, Niehoff, Straub [1409.4557] Altmannshofer, Buras, Straub, Wick [0902.0160]

Various theoretical developments

- Updated Wilson coefficients and QCD corrections in the heavy quark limit
- Heavy quark expansion including corrections up to $1/m_b^3$
- Analysis of the neutrino pair invariant mass spectrum
- ullet Comparison with experimental prospects / thoughts on leveraging the M_X distribution

Scope of semileptonic FCNC decays:

- $ar{B} o X_s
 u ar{
 u}$ top loop dominated, very clean theoretically
- $\bar{B} o X_s \ell^+ \ell^-$ complementary channel with LD effects and angular observables

Phenomenology of $b\to s\nu\bar\nu$ will be limited by experimental precision (Belle/II) for the forseeable future The inclusive rate has x10 higher statistics of $B\to K$, may be possible to leverage against systematic effects

Outline: Refine SM prediction from 10+ years ago

$$\begin{split} {\rm Br}(\bar{B}\to X_s\nu\bar{\nu}) &= (3.48\pm0.12)\times10^{-5} \quad \text{(this work, preliminary)} \\ &= (2.9\pm0.3)\times10^{-5} \quad \begin{array}{l} {\rm Buras, Noe, \, Niehoff, \, Straub \, [1409.4557]} \\ {\rm Altmannshofer, \, Buras, \, Straub, \, Wick \, [0902.0160]} \end{split}$$

Various theoretical developments

- Updated Wilson coefficients and QCD corrections in the heavy quark limit
- Heavy quark expansion including corrections up to $1/m_b^3$
- Analysis of the neutrino pair invariant mass spectrum
- ullet Comparison with experimental prospects / thoughts on leveraging the M_X distribution

Scope of semileptonic FCNC decays:

- $ar{B} o X_s
 u ar{
 u}$ top loop dominated, very clean theoretically
- $\bar{B} o X_s \ell^+ \ell^-$ complementary channel with LD effects and angular observables

Phenomenology of $b\to s\nu\bar\nu$ will be limited by experimental precision (Belle/II) for the forseeable future The inclusive rate has x10 higher statistics of $B\to K$, may be possible to leverage against systematic effects

Outline: Refine SM prediction from 10+ years ago

$$\begin{split} {\rm Br}(\bar{B} \to X_s \nu \bar{\nu}) &= (3.48 \pm 0.12) \times 10^{-5} & \text{(this work, preliminary)} \\ &= (2.9 \pm 0.3) \times 10^{-5} & \text{Buras, Noe, Niehoff, Straub [1409.4557]} \\ {\rm Altmannshofer, Buras, Straub, Wick [0902.0160]} \end{split}$$

Various theoretical developments:

- Updated Wilson coefficients and QCD corrections in the heavy quark limit
- Heavy quark expansion including corrections up to $1/m_b^3$
- Analysis of the neutrino pair invariant mass spectrum
- ullet Comparison with experimental prospects / thoughts on leveraging the M_X distribution

Standard model matches to the V-A operator only

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[C_\nu Q_\nu + \text{h.c.} \right] \,, \\ C_\nu &= \frac{\alpha(M_Z)}{2 \sin^2 \theta_W(M_Z)} X_t \,, \quad Q_\nu = \bar{b}_L \gamma_\mu s_L \sum_{l,l} \bar{\nu}_L \gamma^\mu \nu_L \end{split}$$

At NLO QCD: Misiak, Urban [9901278] and NLO EW: Brod, Gorbahn, Stamou [1009.0947]

$$X_t = 1.462(9)_{
m QCD}(2)_{
m EW}(5)_{
m par} = 1.462(10)$$
 (this work)
$$= 1.462(17) \qquad {
m Brod, Gorbahn, Stamou [2105.02868]}$$

- We include higher order running of the top mass $\overline{m}_t(\mu)$
- Perturbative uncertainty will be be clarified when complete NNLO is available
- The NLO corrections are small, but are likely not accidentally so, since the NNLO QCD corrections are under control for the perturbative series in $\bar{B}_s \to \mu^+ \mu^-$ Hermann, Misiak, Steinhauser [1311.1347]

Standard model matches to the V-A operator only

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[C_\nu Q_\nu + \text{h.c.} \right] \,, \\ C_\nu &= \frac{\alpha(M_Z)}{2 \sin^2 \theta_W(M_Z)} X_t \,, \quad Q_\nu = \bar{b}_L \gamma_\mu s_L \sum_\nu \bar{\nu}_L \gamma^\mu \nu_L \end{split}$$

At NLO QCD: Misiak, Urban [9901278] Buchalla, Buras [9901288] and NLO EW: Brod, Gorbahn, Stamou [1009.0947]

$$X_t = 1.462(9)_{ extsf{QCD}}(2)_{ extsf{EW}}(5)_{ extsf{par}} = 1.462(10)$$
 (this work)
$$= 1.462(17) \qquad extsf{Brod, Gorbahn, Stamou [2105.02868]}$$

- We include higher order running of the top mass $\overline{m}_t(\mu)$
- Perturbative uncertainty will be be clarified when complete NNLO is available
- The NLO corrections are small, but are likely not accidentally so, since the NNLO QCD corrections are under control for the perturbative series in $\bar{B}_s \to \mu^+ \mu^-$ Hermann, Misiak, Steinhauser [1311.1347]

Standard model matches to the ${\cal V}-{\cal A}$ operator only

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[C_\nu Q_\nu + \text{h.c.} \right] \,, \\ C_\nu &= \frac{\alpha(M_Z)}{2 \sin^2 \theta_W(M_Z)} X_t \,, \quad Q_\nu = \bar{b}_L \gamma_\mu s_L \sum_\nu \bar{\nu}_L \gamma^\mu \nu_L \end{split}$$

At NLO QCD: Misiak, Urban [9901278] Buchalla, Buras [9901288] and NLO EW: Brod, Gorbahn, Stamou [1009.0947]

$$X_t = 1.462(9)_{
m QCD}(2)_{
m EW}(5)_{
m par} = 1.462(10)$$
 (this work)
$$= 1.462(17) \qquad {
m Brod, Gorbahn, Stamou [2105.02868]}$$

- We include higher order running of the top mass $\overline{m}_t(\mu)$
- Perturbative uncertainty will be be clarified when complete NNLO is available
- The NLO corrections are small, but are likely not accidentally so, since the NNLO QCD corrections are under control for the perturbative series in $\bar{B}_s \to \mu^+ \mu^-$ Hermann, Misiak, Steinhauser [1311.1347]

Standard model matches to the V-A operator only

$$\begin{split} \mathcal{L}_{\text{eff}} &= -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left[C_\nu Q_\nu + \text{h.c.} \right] \,, \\ C_\nu &= \frac{\alpha(M_Z)}{2 \sin^2 \theta_W(M_Z)} X_t \,, \quad Q_\nu = \bar{b}_L \gamma_\mu s_L \sum_\nu \bar{\nu}_L \gamma^\mu \nu_L \end{split}$$

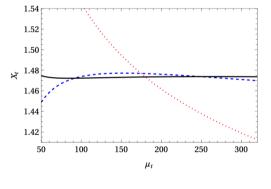
At NLO QCD: Misiak, Urban [9901278] Buchalla, Buras [9901288] and NLO EW: Brod, Gorbahn, Stamou [1009.0947]

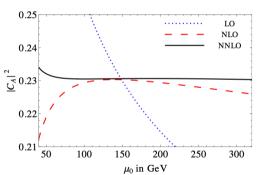
$$X_t = 1.462(9)_{ extsf{QCD}}(2)_{ extsf{EW}}(5)_{ extsf{par}} = 1.462(10)$$
 (this work)
$$= 1.462(17) \qquad extsf{Brod, Gorbahn, Stamou [2105.02868]}$$

- We include higher order running of the top mass $\overline{m}_t(\mu)$
- Perturbative uncertainty will be be clarified when complete NNLO is available
- The NLO corrections are small, but are likely not accidentally so, since the NNLO QCD corrections are under control for the perturbative series in $\bar{B}_s \to \mu^+ \mu^-$ Hermann, Misiak, Steinhauser [1311.1347]

$$b o s\mu^+\mu^-$$
 (A)

Hermann, Misiak, Steinhauser [1311.1347]





The heavy quark masses are critical parametric inputs

$$\operatorname{Br}(\bar{B} \to X_s \nu \bar{\nu}) \sim (m_t^2)^2 (m_b^5)$$

Top quark mass

Top mass from direct determinations at the LHC

$$\begin{split} m_t^{\rm OS} &= 172.56(31)\,{\rm GeV} \\ &\implies \overline{m}_t(\overline{m}_t) = 162.98(30)_{\rm par}(25)_{\rm had^*}\,{\rm GeV} \end{split}$$

Hadronic uncertainty from analysis of asymptotic series for $m_t^{\rm OS}$ in the $\overline{\rm MS}$ scheme at N4LO

Hoang, Lepenik, Preisser [1706.08526] Beneke, Marquard, Nason, Steinhauser [1605.03609]

*Errors should be combined linearly since the hadronic uncertainty has no statistical interpretation

Bottom quark mass

In principle one can take $\overline{m}_b(\overline{m}_b)$ from lattice QCD / spectroscopy and convert to kinetic scheme at N3LO [56]. Schönwald Steinhauser 1205 064871

$$\overline{m}_b(\overline{m}_b) = 4.200(14) \, \mathrm{GeV}, \, N_f = 2+1+1$$

$$\implies m_b^{\mathrm{kin}}(1 \, \mathrm{GeV}) = 4.562(18) \, \mathrm{GeV}$$

In practice the kinetic mass determined in this way is treated as a prior entering in a fit to $\bar{B} \to X_c \ell \nu$ decay rate and distributions

$$\implies m_b^{\rm kin}(1\,{\rm GeV})=4.573(12)\,{\rm GeV}$$

Finauri, Gambino [2310.20324]

The heavy quark masses are critical parametric inputs

$$\operatorname{Br}(\bar{B} \to X_s \nu \bar{\nu}) \sim (m_t^2)^2 (m_b^5)$$

Top quark mass

Top mass from direct determinations at the LHC

$$\begin{split} m_t^{\rm OS} &= 172.56(31)\,{\rm GeV} \\ &\implies \overline{m}_t(\overline{m}_t) = 162.98(30)_{\rm par}(25)_{\rm had^*}\,{\rm GeV} \end{split}$$

Hadronic uncertainty from analysis of asymptotic series for $m_t^{\rm OS}$ in the $\overline{\rm MS}$ scheme at N4LO

Hoang, Lepenik, Preisser [1706.08526] Beneke, Marquard, Nason, Steinhauser [1605.03609]

*Errors should be combined linearly since the hadronic uncertainty has no statistical interpretation

Bottom quark mass

Fael, Schönwald, Steinhauser [2005.06487]

In principle one can take $\overline{m}_b(\overline{m}_b)$ from lattice QCD / spectroscopy and convert to kinetic scheme at N3LO

$$\overline{m}_b(\overline{m}_b) = 4.200(14) \text{ GeV}, N_f = 2 + 1 + 1$$

 $\implies m_b^{\text{kin}}(1 \text{ GeV}) = 4.562(18) \text{ GeV}$

In practice the kinetic mass determined in this way is treated as a prior entering in a fit to $\bar{B} \to X_c \ell \nu$ decay rate and distributions

$$\implies m_b^{\rm kin}(1\,{\rm GeV})=4.573(12)\,{\rm GeV}$$

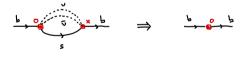
Finauri, Gambino [2310.20324]

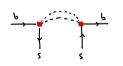
Factorization of leptonic current and optical theorem:

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = \frac{1}{2M_B} \text{Im} \left[i \int d^4 x \, \langle \bar{B} | T \{ \mathcal{L}_{\text{eff}}^{\dagger}(x) \mathcal{L}_{\text{eff}}(0) \} | \bar{B} \rangle \right]$$
$$\frac{d\Gamma(\bar{B} \to X_s \nu \bar{\nu})}{dq^2} = \frac{1}{2M_B} \text{Im} \left[i \int d^4 x \, e^{iqx} \, \langle \bar{B} | T J_{\mu}^{\dagger}(x) J_{\nu}(0) | \bar{B} \rangle \right] L^{\mu\nu}$$

Operator product expansion of *QCD currents* $J_{\mu} = \bar{b}_L \gamma_{\mu} s_L$

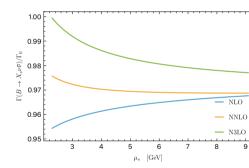
$$TJ^{\dagger}_{\mu}(x)J^{\mu}(0) = \sum_{k} C_{k}(x)Q_{k}(0),$$
$$Q_{k} = \{\bar{b}b, \bar{b}(iD)^{2}b, \bar{b}\sigma^{\mu\nu}[iD_{\mu}, iD_{\nu}]b\dots\}$$





We take $m_s/m_b\sim 0$, then the structure of the QCD corrections is equivalent to $B\to X_u\ell
u$

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = N_{\nu} \frac{G_F^2 m_b^5}{192\pi^3} |V_{ts} V_{tb}|^2 |C_{\nu}|^2 \left\{ 1 + C_F \sum_{i} X_n \left(\frac{\alpha_s}{\pi} \right)^n - \frac{\mu_{\pi}^2}{2m_{\nu}^2} - \frac{3\mu_G^2}{2m_{\nu}^2} + \frac{3\rho_{LS}^3}{2m_{\nu}^3} + \frac{77\rho_D^3}{6m_{\nu}^3} + \frac{\tau_0}{m_{\nu}^3} \right\}$$



pQCD: Kinetic scheme optimized for $b \to c$ decays, some indication of a divergent series for $b \to u(s)$ at the percent level

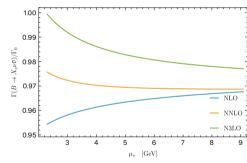
$$\begin{split} \text{Matrix elements: } \langle .. \rangle &= \left\langle \bar{B} | ... | \bar{B} \right\rangle / (2 M_B) \\ \mu_\pi^2 &= -\left\langle \bar{b}_v (iD)^2 b_v \right\rangle \,, \\ \mu_{\rm G}^2 &= \frac{1}{2} \left\langle \bar{b}_v (-i\sigma^{\mu\nu}) [iD_\mu, iD_\nu] b_v \right\rangle \,, \\ \rho_{\rm LS}^3 &= \frac{1}{2} \left\langle \bar{b}_v (-i\sigma^{\mu\nu}) \{ iD_\mu, [iv \cdot D, iD_\nu] \} b_v \right\rangle \,, \\ \rho_{\rm D}^3 &= \frac{1}{2} \left\langle \bar{b}_v [iD_\mu, [iv \cdot D, iD^\mu] \bar{b}_v \right\rangle \end{split}$$

Stability of HQI

$$\frac{\Gamma}{\Gamma_0} \simeq 1 - 0.0360_{\alpha_s} + (0.0216 - 0.00020_{n_c})_c$$
$$+ 0.0237_{\alpha^3} - 0.0097_{\mu_i, \rho_i}$$

We take $m_s/m_b\sim 0$, then the structure of the QCD corrections is equivalent to $B o X_u\ell
u$

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = N_\nu \frac{G_F^2 m_b^5}{192\pi^3} |V_{ts} V_{tb}|^2 |C_\nu|^2 \left\{ 1 + C_F \sum X_n \left(\frac{\alpha_s}{\pi} \right)^n - \frac{\mu_\pi^2}{2m_\nu^2} - \frac{3\mu_G^2}{2m_\nu^2} + \frac{3\rho_{LS}^3}{2m_\nu^3} + \frac{77\rho_D^3}{6m_\nu^3} + \frac{\tau_0}{m_\nu^3} \right\}$$



pQCD: Kinetic scheme optimized for $b \to c$ decays, some indication of a divergent series for $b \to u(s)$ at the percent level

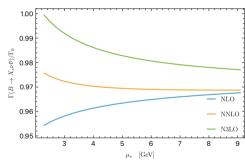
$$\begin{aligned} \text{Matrix elements: } \langle ... \rangle &= \left\langle \bar{B}|...|\bar{B} \right\rangle/(2M_B) \\ \mu_\pi^2 &= -\left\langle \bar{b}_v(iD)^2 b_v \right\rangle \;, \\ \mu_{\rm G}^2 &= \frac{1}{2} \left\langle \bar{b}_v(-i\sigma^{\mu\nu})[iD_\mu,iD_\nu]b_v \right\rangle \;, \\ \rho_{\rm LS}^3 &= \frac{1}{2} \left\langle \bar{b}_v(-i\sigma^{\mu\nu})\{iD_\mu,[iv\cdot D,iD_\nu]\}b_v \right\rangle \;, \\ \rho_{\rm D}^3 &= \frac{1}{2} \left\langle \bar{b}_v[iD_\mu,[iv\cdot D,iD^\mu]\bar{b}_v \right\rangle \end{aligned}$$

Stability of HQI

$$\frac{\Gamma}{\Gamma_0} \simeq 1 - 0.0360_{\alpha_s} + (0.0216 - 0.00020_{n_c})_{\alpha_s}$$
$$+ 0.0237_{-3} - 0.0097_{\mu_s,\alpha_s}$$

We take $m_s/m_b\sim 0$, then the structure of the QCD corrections is equivalent to $B o X_u\ell
u$

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = N_\nu \frac{G_F^2 m_b^5}{192\pi^3} |V_{ts} V_{tb}|^2 |C_\nu|^2 \left\{ 1 + C_F \sum_{n=1} X_n \left(\frac{\alpha_s}{\pi} \right)^n - \frac{\mu_\pi^2}{2m_b^2} - \frac{3\mu_G^2}{2m_b^2} + \frac{3\rho_{LS}^3}{2m_b^3} + \frac{77\rho_D^3}{6m_b^3} + \frac{\tau_0}{m_b^3} \right\}$$



pQCD: Kinetic scheme optimized for $b \to c$ decays, some indication of a divergent series for $b \to u(s)$ at the percent level

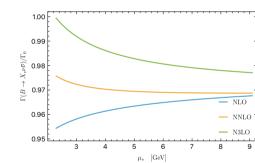
$$\begin{split} \text{Matrix elements: } \langle ... \rangle &= \langle \bar{B}|...|\bar{B}\rangle \,/(2M_B) \\ \mu_\pi^2 &= -\langle \bar{b}_v (iD)^2 b_v \rangle \,\,, \\ \mu_{\rm G}^2 &= \frac{1}{2} \,\langle \bar{b}_v (-i\sigma^{\mu\nu})[iD_\mu,iD_\nu]b_v \rangle \,\,, \\ \rho_{\rm LS}^3 &= \frac{1}{2} \,\langle \bar{b}_v (-i\sigma^{\mu\nu})\{iD_\mu,[iv\cdot D,iD_\nu]\}b_v \rangle \,\,, \\ \rho_{\rm D}^3 &= \frac{1}{2} \,\langle \bar{b}_v [iD_\mu,[iv\cdot D,iD^\mu]\bar{b}_v \rangle \end{split}$$

Stability of HQE

$$\frac{\Gamma}{\Gamma_0} \simeq 1 - 0.0360_{\alpha_s} + (0.0216 - 0.00020_{n_c})_{\alpha} + 0.0237_{\alpha_s^3} - 0.0097_{u \in \alpha_s}$$

We take $m_s/m_b\sim 0$, then the structure of the QCD corrections is equivalent to $B\to X_u\ell
u$

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = N_{\nu} \frac{G_F^2 m_b^5}{192\pi^3} |V_{ts} V_{tb}|^2 |C_{\nu}|^2 \left\{ 1 + C_F \sum_{i} X_n \left(\frac{\alpha_s}{\pi} \right)^n - \frac{\mu_{\pi}^2}{2m_i^2} - \frac{3\mu_G^2}{2m_i^2} + \frac{3\rho_{LS}^3}{2m_i^3} + \frac{77\rho_D^3}{6m_i^3} + \frac{\tau_0}{m_i^3} \right\}$$



pQCD: Kinetic scheme optimized for $b \to c$ decays, some indication of a divergent series for $b \to u(s)$ at the percent level

$\mu_{\rm G}^2 = \frac{1}{2} \langle \bar{b}_v(-i\sigma^{\mu\nu})[iD_{\mu}, iD_{\nu}]b_v \rangle ,$ $\rho_{\rm LS}^3 = \frac{1}{2} \langle \bar{b}_v(-i\sigma^{\mu\nu})\{iD_{\mu}, [iv \cdot D, iD_{\nu}]\}b_v \rangle ,$

 $\mu_{\pi}^2 = -\langle \bar{b}_v (iD)^2 b_v \rangle ,$

$$ho_{
m D}^3 = rac{1}{2} \langle ar{b}_v[iD_\mu,[iv\cdot D,iD^\mu]ar{b}_v
angle$$

Matrix elements: $\langle ... \rangle = \langle \bar{B} | ... | \bar{B} \rangle / (2M_B)$

Stability of HQE

$$\frac{\Gamma}{\Gamma_0} \simeq 1 - 0.0360_{\alpha_s} + (0.0216 - 0.00020_{n_c})_{\alpha_s^2} + 0.0237_{\alpha^3} - 0.0097_{\mu_i, \rho_i}$$

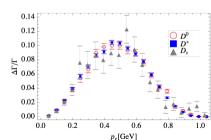
Weak annihilation is suppressed since the valence quark (q=u,d) is not involved in the weak transition

$$O_{1} = 4(\bar{b}_{v}\gamma_{\mu}s_{L})(\bar{s}_{L}\gamma^{\mu}b_{v}), \quad O_{2} = 4(\bar{b}_{v}s_{L})(\bar{s}_{L}b_{v})$$
$$\langle \bar{B}_{q}|O_{2} - O_{1}|\bar{B}_{q}\rangle = F_{B}^{2}M_{B}(\tilde{\delta}_{2} - \tilde{\delta}_{1})$$

Four-quark operators mix with ρ_D at $O(\alpha_s^0)$. We identify the scale independent quantity at this order with input from HQET sum rules King, Lenz, Rauh [2112.03691]

$$\begin{split} \tau_0 &= 8\rho_D \ln \frac{\mu^2}{m_b^2} + 16\pi^2 F_B^2 (\tilde{\delta_2} - \tilde{\delta_1}) \\ &= -3^{+1.4}_{-0.6} \, \text{GeV}^3 \,, \quad (\mu = 1.5 \, \text{GeV}) \end{split}$$

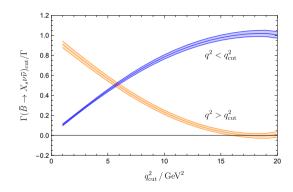
WA can be constrained by $\Delta {\rm Br}(D_{(s)} \to X_d \ell \nu)$ (exploiting HQ and SU(3) flavor-symmetry)



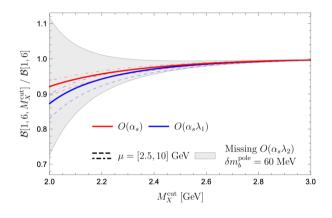
Using
$$|V_{cb}|_{\rm inc} = 41.97(48) \times 10^{-3}$$
 and including correlation with m_b (-0.428)
$${\rm Br}(B^+ \to X_s \nu \bar{\nu}) = 3.342(40)_{\mu_0}(40)_{\mu_b}(35)_{\mu_k}(27)_{\rm par}(68)_{\rm HQE}(58)_{\rm CKM} \times 10^{-5} \\ \hspace{0.5cm} \to (76)_{\rm CKM} \text{ without accounting for correlations with HQE} \\ {\rm Br}(\bar{B}^0 \to X_s \nu \bar{\nu}) = 3.609(121) \times 10^{-5} \\ \hspace{0.5cm} {\rm Br}(\bar{B} \to X_s \nu \bar{\nu})_{\rm inc} {\rm V}_{\rm cb} = (3.48 \pm 0.12) \times 10^{-5} \\ \hspace{0.5cm} {\rm Br}(\bar{B} \to X_s \nu \bar{\nu})_{\rm excl} {\rm V}_{\rm cb} = (3.48 \pm 0.12) \times 10^{-5} \\ \hspace{0.5cm} {\rm Br}(\bar{B} \to X_s \nu \bar{\nu})_{\rm excl} {\rm V}_{\rm cb} = (3.07 \pm 0.12) \times 10^{-5} \\ \hspace{0.5cm} {\rm (4.0\%)} \\ \hspace{0.5cm} {\rm Br}(\bar{B} \to X_s \nu \bar{\nu})_{\rm excl} {\rm V}_{\rm cb} = (3.07 \pm 0.12) \times 10^{-5} \\ \hspace{0.5cm} {\rm (4.0\%)} \\ \hspace{0.5cm$$

8

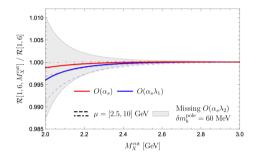
- Similar precision is achieved for the decay rate with a cut $q^2 < q^2_{\rm max}$
- The complementary cut $q^2>q^2_{\min}$ is divergent as q^2_{\min} approaches the kinematical endpoint $\sim M_B^2$



- There is no photon pole at $q^2=0$, but the rate is still large at low q^2 due to phase space
- Point of discussion: what is the q^2 -dependent sensitivity for $B \to X_s \nu \bar{\nu}$?

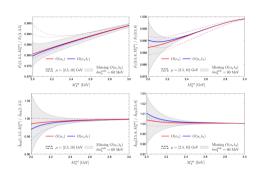


- Hadronic mass distribution can be studied in the OPE for $M_X \gtrsim \sqrt{\Lambda m_b}$
- The spectrum is known at partial $lpha_s/m_b^2$ including all penguin interference effects in $ar{B} o X_s \ell^+ \ell^-$
- $\bar{B} o X_s \nu \bar{\nu}$ a small subset of the more general result
- Also possible to leverage measured $\bar{B} o X_s \gamma$ spectrum and QCD factorization to study the shape function region $M_X \simeq \sqrt{\Lambda m_b}$



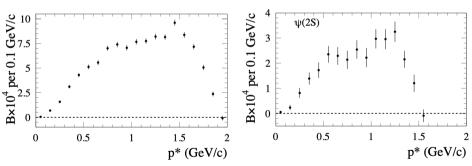
Hadronic mass cut effects at low- q^2 should be suppressed by forming the ratio (also for the neutrino mode)

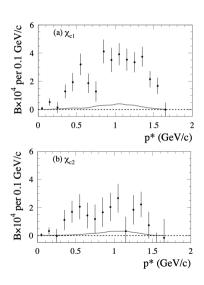
$$R = \operatorname{Br}(\bar{B} \to X_s \ell^+ \ell^-) / \operatorname{Br}(\bar{B} \to X_u \ell \nu)$$

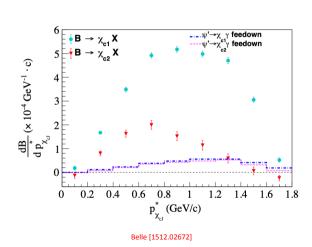


Similar suppression of ${\cal M}_X$ cut dependence for normalized angular observables ${\cal A}_{FB}$, ${\cal F}_T$

- BaBar measured the differential branching fractions of $B \to \{J/\psi, \psi', \chi_{c1}, \chi_{c2}\}X_s$ with feed-down to $\psi \to \ell^+\ell^-$ and hadronic tagging of the X_s system BaBar [0207097]
- The charmonium energy in the B frame is directly related to M_X since q^2 is fixed to a resonance, but results were presented in the laboratory frame (Could Belle/II improve on this?)







- An update of ${\rm Br}(B \to X_s \nu \bar{\nu})$ in the Standard Model is timely on the theory side:
 - Leading power upgraded from NLO→N3LO QCD (→NNLO for spectrum)
 - Power corrections are much better known including now $1/m_b^3$
- Result for the total rate is larger and more precise than previous estimates
 Several sources of scale and parametric uncertainty at the 2-3% level remain
- $\sim 30\%$ of the spectrum survives a cut $q^2 < 4\,{\rm GeV^2}$, so it may be useful (with enough statistics) to measure the cut rate
- Predictions with cuts on M_X in principle do-able with larger uncertainties
- Measurements of inclusive charmonium production $B \to (c\bar c) X_s$ may be useful to test/train hadronization models (important also for $\bar B \to X_s \ell^+ \ell^-$)