
Panel discussion

$b \rightarrow d$ and $c \rightarrow u$

- What do we learn from c → u compared to much better constrained s → d?
- Tau background in D+ →pi+ nunubar?
- Can Belle II compete with BESIII in c →u nunubar?
- Neutral modes, $B^0 op pi^0$ nunubar and $B^0 op rho^0$ nunubar are the most promising for b op d (to avoid tau background). Rho0 op pi+ pi- is the cleanest experimentally. When do we expect form factors for B op rho? Can we for now use $B op K^*$ for now?

Tau background has similar q2 distribution to the signal

B →rho/K(*) nunu background from B →Xs/d nunubar

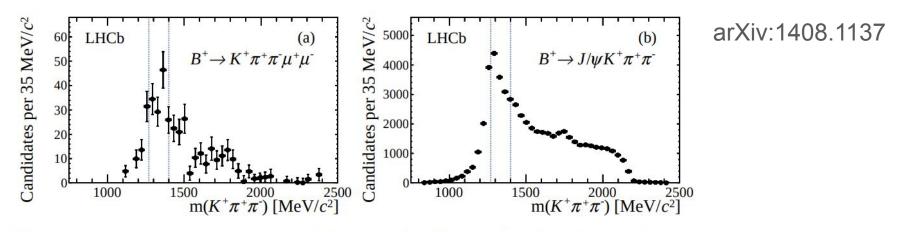
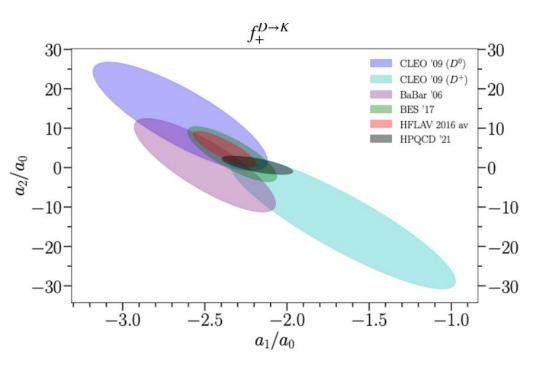
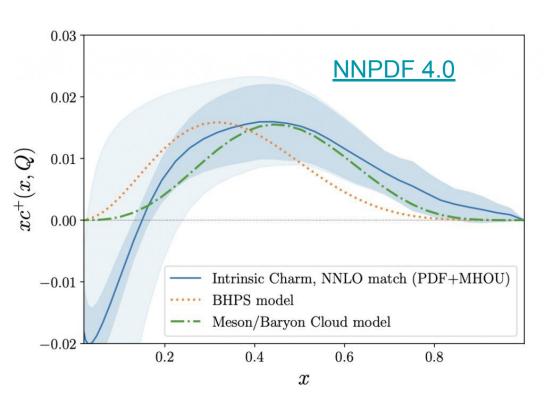



Figure 4: Background-subtracted $m(K^+\pi^+\pi^-)$ distributions for (a) the signal decay $B^+ \to K^+\pi^+\pi^-\mu^+\mu^-$ and (b) the control channel $B^+ \to J/\psi K^+\pi^+\pi^-$. The vertical lines indicate the masses of the $K_1(1270)^+$ and $K_1(1400)^+$ resonances.

- B →X(d,s) nunubar with M(Xs) > 1 GeV/c² with missing particles is a background for B → rho0 (B →K*). Main potential problems are from K1 resonances. Can we estimate it as:
 - \circ Br = Br(Xs) Br(K) Br(K*) (with large uncertainty >> theory error)
 - Saturate the rate with incoherent (1-a) K1(1270) + a K1(1400) (with large uncertainty on a) + phase space for nunubar pair.


Improving B \rightarrow K form factors with D \rightarrow K data (?)

- Lattice determination of D →K form factor shape agrees with experimental data and has comparable accuracy.
- The lattice determination is statistically correlated with B →K
- Can we use D → K experimental data to reduce uncertainties?
- Can we expect more accurate data from BES / Belle II ?

From the talk of <u>Chris</u>

Estimation of sensitivity at the LHC

- Some recent parton distribution function sets include sizeable (few percent) intrinsic charm contribution →included in the sensitivity estimates
- None of the PDF sets include intrinsic b (can be 10% of intrinsic c). What would this mean for the sensitivity at the LHC?