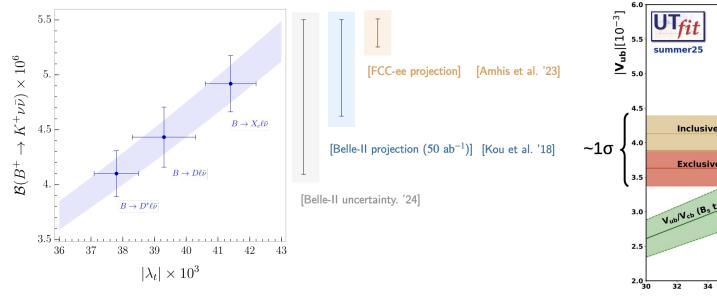
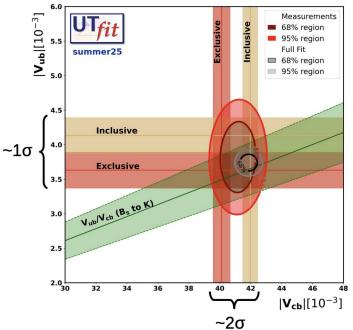
Outlook for theoretical calculations

Chris Bouchard, Jack Jenkins, Olcyr Sumensari

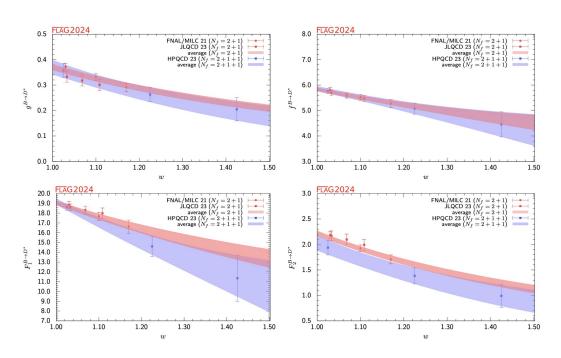

Points for discussion

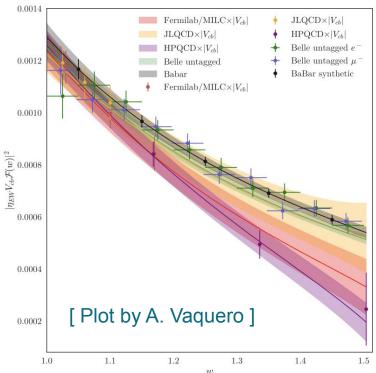

- Improving SM parametric inputs:
 - Exclusive Vcb and B -> D(*) form factors from LQCD
 - Comparing B -> D with Bs -> Ds(*) form-factors
 - Improving kinematic parameterization with unitarity constraints
 - Vcb inclusive: Inclusive decays from the lattice
- Hadronic matrix elements for rare decays:
 - Charm loops: lattice vs dispersive bound vs hadronic models
 - QCD-unstable final states, e.g., B -> K*
- Inputs for NP calculations:
 - Improvements in inclusive calculations
 - Need f_T for B -> D, tensor FFs have been calculated for B -> D*
 - New observables to reduce theoretical uncertainties

Which CKM value to use?

$$\frac{|V_{ts}^* V_{tb}|}{|V_{cb}|} = 0.965(1)$$

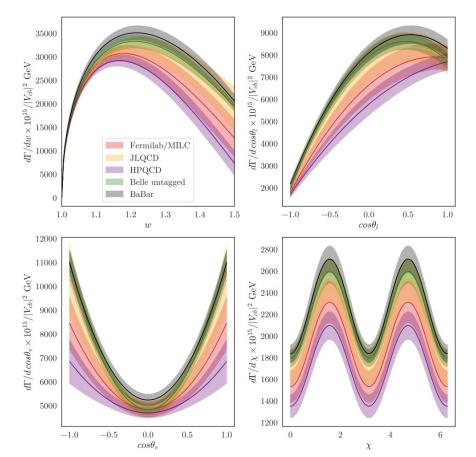
$$|\lambda_t| \times 10^3 = \begin{cases} 41.4 \pm 0.8 \,, & (B \to X_c l \bar{\nu}) \\ 39.3 \pm 1.0 \,, & (B \to D l \bar{\nu}) \\ 37.8 \pm 0.7 \,, & (B \to D^* l \bar{\nu}) \end{cases} \quad \begin{subarray}{l} \mbox{[HFLAV, '22]} \mbox{[HFLAV, '22]} \end{subarray}$$





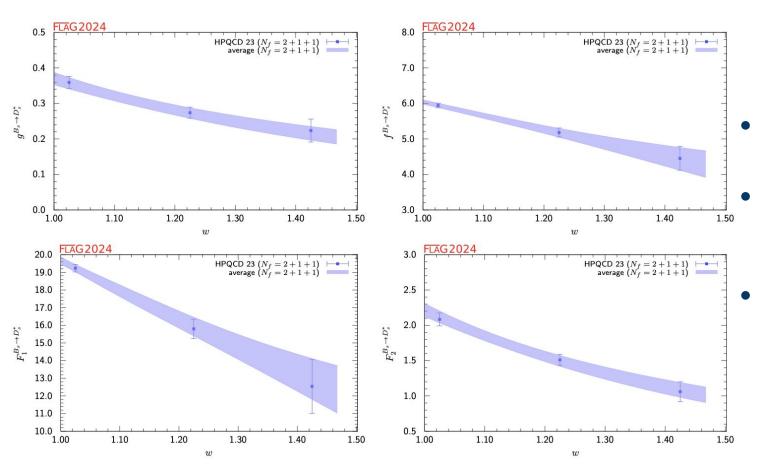
B -> D*: Lattice vs. Exp. data

$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2}(B \to D^* \ell \nu) \propto |V_{cb}|^2 |\mathcal{F}(w)|^2$$


$$\left[w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}} \right]$$

$$|V_{cb}|^{\text{HPQCD}} = 39.31(74) \times 10^{-3}$$

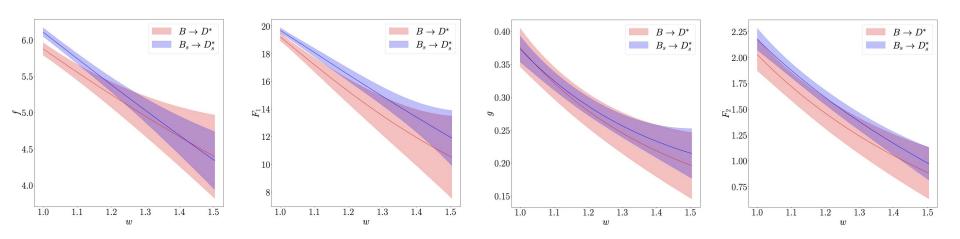
 $|V_{cb}|^{\text{FerMILC}} = 38.17(85) \times 10^{-3}$


B -> D*: Lattice vs. Exp. data

- Belle-II data and more/improved lattice inputs will be fundamental to solve this discrepancy.
- HPQCD has also computed Bs->Ds*.

[Plots by A. Vaquero]

Bs -> Ds*


Bs->Ds* easier on lattice than B->D*

Should be similar to B->D*; offers a sanity check

Experimentally determined shape would be useful

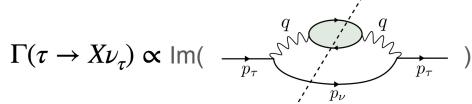
FLAG 2024

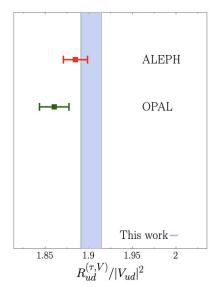
Comparing B -> D* with Bs -> Ds*

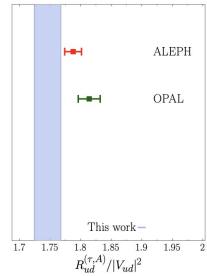
[(HPQCD) Harrison and Davies, 2304.03137]

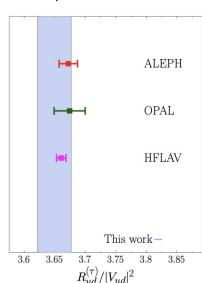
Improving kinematic parameterizations

 Dispersive matrix methods - from continuum results at large q2, provides shape for all q2 without explicit parameterization or associated truncation error


```
[ Martinelli et al. <u>2105.08674</u> , ... ]
```


- Improved parameterization build unitarity constraints into z-parameterization
- Evaluate truncation error


```
[ (RBC/UKQCD) Flynn et al. <u>2303.11280</u> ]
```


[Danny's talk]

Lattice for inclusive decays: Tau

$$R_{ud}^{(\tau)} = \frac{\Gamma(\tau \to X_{ud} \, \nu_{\tau})}{\Gamma(\tau \to e \, \bar{\nu}_e \, \nu_{\tau})}$$

$$\Delta_{V-A}^{(\tau)} \equiv \frac{R_{ud}^{(\tau,V)} - R_{ud}^{(\tau,A)}}{R_{ud}^{(\tau)}}$$

$$\Delta_{V-A}^{(\tau)} = 0.042 (5)$$

vs experiment

$$\Delta_{V-A}^{(\tau)}(ALEPH) = 0.026 (7)$$

$$\Delta_{V-A}^{(\tau)}(\text{OPAL}) = 0.013 (7)$$

[(ETMC) Evangelista et al. <u>2308.03125</u>]

Lattice for inclusive decays: Charm

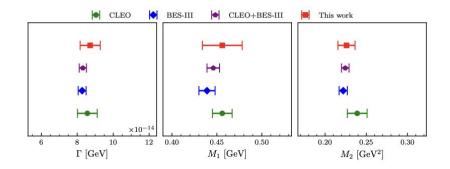
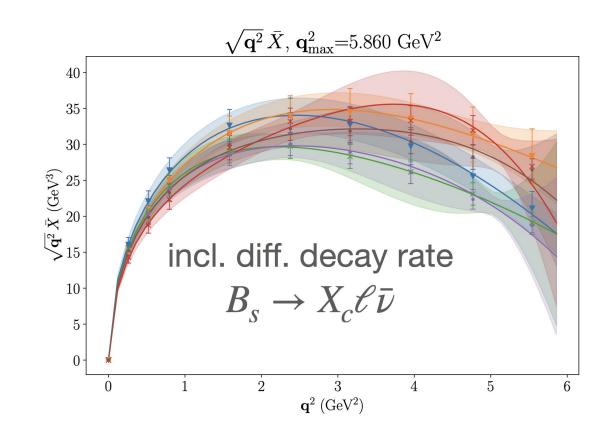
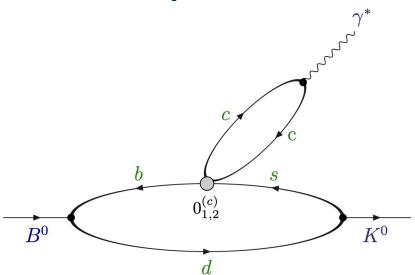
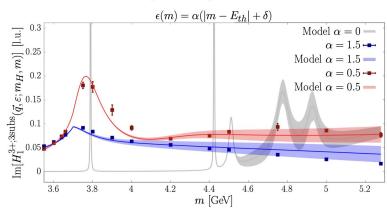



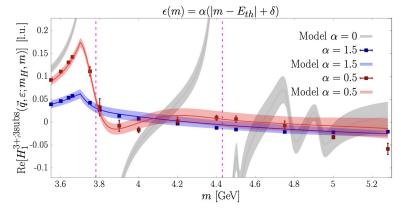
FIG. 4. Comparison between the experimental results from Refs. [44–46, 56] and our theoretical prediction (red points), for the decay rate (left-panel) and for the first (middle-panel) and second (right-panel) lepton moment.


[(ETMC) De Santis et al. <u>2504.06064</u>]

Lattice for inclusive decays: Bs

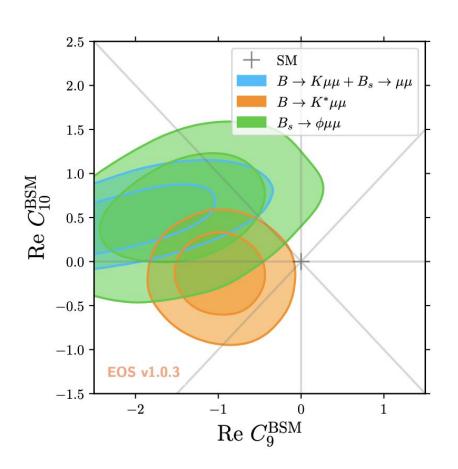
- Lattice inclusive calculations are making rapid progress, working toward the B
- Barone et al. calculated inclusive differential decay rate for Bs -> Xc I nu
 [Barone et al. 2305.14092]
- Important to understand systematic effects involved
 [Kellermann et al. <u>2504.03358</u>]




Charm loops

- As with inclusive decays, 4 pt correlators give access to the relevant physics, ie. non-local form factors
- Free from assumptions about factorization

$B_s \to \eta_s \ell^+ \ell^-$



[Frezotti et al. <u>2508.03655</u>]

Charm loops

[Gubernari et al. 2206.03797]

- Instead of calculating directly, Gubernari et al. use dispersive bounds to constrain the contribution from non-local form factors
- Find local form factors responsible for majority of theory uncertainty
- Tension between SM and experiment remains

New Physics in B -> Xc I nu

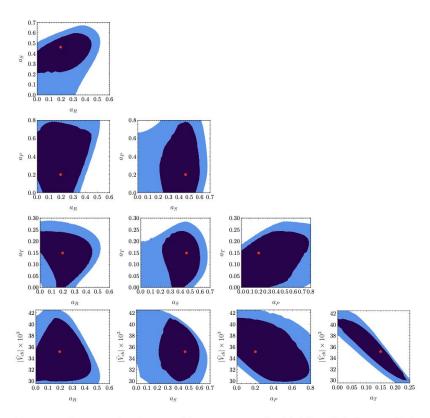
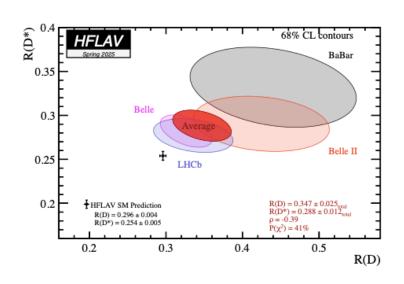


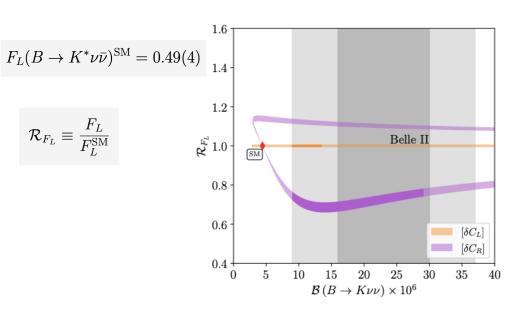
Figure 3. 2D contour plots for pairs of fit parameters in the global fit with $\Delta \chi^2 \leq 2.30$ (dark blue) and $\Delta \chi^2 \leq 5.99$ (light blue) (plots for the phases are not shown for simplicity). The red dot indicates the best fit point.

[Carvunis et al. <u>2507.22123</u>]

$m_b[\mathrm{GeV}]$	$m_c[\mathrm{GeV}]$	$\mu_\pi^2[{\rm GeV^2}]$	$\mu_G^2[{\rm GeV^2}]$	$\rho_D^3[{\rm GeV^3}]$	$\rho_{LS}^3[{\rm GeV^3}]$	$\mathrm{BR}_{\mathrm{c}\ell\bar{\nu}}\left[\%\right]$	$10^3 V_{cb} $
4.574	1.090	0.435	0.278	0.164	-0.090	10.62	41.64
0.012	0.010	0.040	0.048	0.018	0.089	0.15	0.47
1	0.390	-0.229	0.560	-0.022	-0.181	-0.064	-0.421
	1	0.015	-0.238	-0.028	0.084	0.034	0.071
		1	-0.097	0.535	0.266	0.144	0.346
			1	-0.261	0.004	0.001	-0.271
				1	-0.014	0.025	0.172
					1	-0.010	0.056
						1	0.694
							1

Table 3. Results for the global fit with SM only. Central values on the first line, uncertainties on the second line and correlation matrix below.


$m_b [{ m GeV}]$	$m_c[{ m GeV}]$	$\mu_\pi^2[{\rm GeV^2}]$	$\mu_G^2[{\rm GeV^2}]$	$\rho_D^3[{\rm GeV^3}]$	$\rho_{LS}^3[{\rm GeV^3}]$	$\mathrm{BR}_{\mathrm{c}\ell\bar{\nu}}\left[\%\right]$
4.569	1.092	0.454	0.342	0.195	-0.126	10.72
$^{+0.017}_{-0.016}$	$^{+0.011}_{-0.011}$	$^{+0.049}_{-0.050}$	$^{+0.065}_{-0.067}$	$^{+0.027}_{-0.029}$	$^{+0.096}_{-0.104}$	$^{+0.16}_{-0.16}$
a_R	a_S	a_P	a_T	$\cos(\delta_R)$	$\cos(\delta_{ST})$	$\cos(\delta_{PT})$
0.19	0.46	0.20	0.15	0.99	-0.94	0.91
$^{+0.21}_{-0.16}$	$^{+0.10}_{-0.14}$	$^{+0.43}_{-0.20}$	$^{+0.07}_{-0.11}$	$^{+0.01}_{-0.81}$	$^{+0.92}_{-0.06}$	$^{+0.09}_{-1.91}$


Table 4. Results for the global fit with full set of NP operators. Central values on the first line, 68.3% confidence level intervals on the second line. The value of $|\tilde{V}_{cb}|$ extracted from the fit parameters is shown in (3.12).

Optimized observables

$$R_{H_c} = rac{\mathcal{B}(B o H_c au
u)}{\mathcal{B}(B o H_c \ell
u)}$$

$$F_L(B \to K^* \nu \nu) = \frac{\mathrm{d}\Gamma_L}{\mathrm{d}q^2} / \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$$

• Can we devise other observables less sensitive to hadronic uncertainties (while remaining sensitive to New Physics effects)?

Final comments/questions

- Opportunity for progress for parametric (Vcb) and form-factor uncertainties.
- Many exploratory directions on the lattice (e.g., B->K* form factors, inclusive decays, charm loops, ...).
- The public B -> Kvv likelihood is very useful for theory interpretations (both in the SM and beyond). Can this be extended to other channels (e.g., b->c tau nu modes)?
- Interplay between theory and experiment is fundamental to verify precision theory calculations.
- Anything else?