Electroweak Penguin B Decays with Missing Energy in the Standard Model

Wolfgang Altmannshofer waltmann@ucsc.edu

2025 Belle II Physics Week KEK, October 6 - 10, 2025

 $b \rightarrow s$ penguins

$b \rightarrow s$ penguins

no hadrons in the final state

(see e.g. Badin et al. 1005.1277; Bhattacharya et al. 1809.04606)

• $B_s \to \nu \bar{\nu}$: helicity suppressed by the neutrino masses; negligible SM branching ratio $\sim 10^{-25}$.

$b \rightarrow s$ penguins

no hadrons in the final state

(see e.g. Badin et al. 1005.1277; Bhattacharya et al. 1809.04606)

- $B_s \to \nu \bar{\nu}$: helicity suppressed by the neutrino masses; negligible SM branching ratio $\sim 10^{-25}$.
- $B_s \to \nu \bar{\nu} \nu \bar{\nu}$: not helicity suppressed, but higher order in G_F ; much larger, but still negligible SM branching ratio $\sim 10^{-15}$.

$b \rightarrow s$ penguins

no hadrons in the final state

(see e.g. Badin et al. 1005.1277; Bhattacharya et al. 1809.04606)

- $B_s \to \nu \bar{\nu}$: helicity suppressed by the neutrino masses; negligible SM branching ratio $\sim 10^{-25}$.
- $B_s \to \nu \bar{\nu} \nu \bar{\nu}$: not helicity suppressed, but higher order in G_F ; much larger, but still negligible SM branching ratio $\sim 10^{-15}$.
- $B_s \to \nu \bar{\nu} \gamma$: SM branching ratio is not crazy small $\sim 10^{-8}$

$b \rightarrow s$ penguins

no hadrons in the final state

(see e.g. Badin et al. 1005.1277; Bhattacharya et al. 1809.04606)

- $B_s \to \nu \bar{\nu}$: helicity suppressed by the neutrino masses; negligible SM branching ratio $\sim 10^{-25}$.
- $B_s \to \nu \bar{\nu} \nu \bar{\nu}$: not helicity suppressed, but higher order in G_F ; much larger, but still negligible SM branching ratio $\sim 10^{-15}$.
- $B_s \to \nu \bar{\nu} \gamma$: SM branching ratio is not crazy small $\sim 10^{-8}$

add a spectator quark

• $B \to K \nu \bar{\nu}$, $B \to K^* \nu \bar{\nu}$, $B_s \to \phi \nu \bar{\nu}$, $\Lambda_b \to \Lambda \nu \bar{\nu}$ • $B \to X_s \nu \bar{\nu}$ (see talk by Jack Jenkins on Wednesday) • SM branching ratios at the level of 10^{-6} to 10^{-5} .

$b \rightarrow d$ penguins

pretty much the same story, but branching ratios are smaller by an order of magnitude $\sim |V_{td}|^2/|V_{ts}|^2$

no hadrons in the final state

(see e.g. Badin et al. 1005.1277; Bhattacharya et al. 1809.04606)

- $B^0 \to \nu \bar{\nu}$: helicity suppressed by the neutrino masses; negligible SM branching ratio $\sim 10^{-26}$.
- $B^0 \to \nu \bar{\nu} \nu \bar{\nu}$: not helicity suppressed, but higher order in G_F ; much larger, but still negligible SM branching ratio $\sim 10^{-16}$.
- $B^0 o
 u ar{
 u} \gamma$: SM branching ratio is not crazy small $\sim 10^{-9}$

add a spectator quark

• $B \to \pi \nu \bar{\nu}$, $B \to \rho \nu \bar{\nu}$, $B_s \to K^{(*)} \nu \bar{\nu}$, $\Lambda_b \to n \nu \bar{\nu}$ $B \to X_d \nu \bar{\nu}$ SM branching ratios around 10^{-7} . (see talk by Hector Gisbert on Tuesday) Introduction

"Fishing Expeditions"

Flavor in the Standard Model and Beyond

Flavor in the Standard Model and Beyond

Flavor in the Standard Model and Beyond

Two Basic Flavor Questions

Q1: What is the origin of the hierarchical flavor structure of the SM? (WA, Greljo 2412.04549, Annual Review of Nuclear and Particle Science Volume 75, 2025)

Q2: Are there new sources of flavor violation beyond the SM?

Searching for New Physics with Flavor

Example: heavy new physics in rare $b \rightarrow s\nu\bar{\nu}$ decays

precisely

the SM contribution

NP coupling and scale

Searching for New Physics with Flavor

Example: heavy new physics in rare $b \to s \nu \bar{\nu}$ decays

Mismatch between experiment and SM prediction indicates new physics and provides a scale!

The Need for Precision

To maximize the sensitivity to new physics one needs

- precision measurements of flavor observables
- precision SM prediction of the observables

The Need for Precision

To maximize the sensitivity to new physics one needs

- precision measurements of flavor observables
- precision SM prediction of the observables

precision SM predictions require

- high precision parametric input (in particular CKM)
- higher order perturbative calculations
- control over non-perturbative QCD uncertainties

The Weak Effective Hamiltonian

see e.g. Buras hep-ph/9806471 for a review

Starting point for many theory predictions is the "weak effective Hamiltonian"

$$\langle f | \mathcal{H}_{\text{eff}} | i \rangle = \frac{4G_F}{\sqrt{2}} \sum_k \lambda_{\text{CKM}}^{(k)} C_k(\mu) \langle f | O_k(\mu) | i \rangle$$

- $\lambda_{\text{CKM}}^{(k)}$ = combination of CKM matrix elements relevant for a given flavor changing process
- $C_k(\mu)$ = Wilson coefficients that encode the short distance physics (the weak interactions in the SM)
- $\langle f|O_k(\mu)|i\rangle$ = matrix elements of operators made from light SM fields (light quarks, leptons, gluons, photon)
- ullet Wilson coefficients and operator matrix elements depend on the renormalization scale μ

The CKM Matrix

The CKM Matrix

no FCNCs at tree level

transitions among the generations are mediated by the W[±] bosons and their relative strength is parametrized by the CKM matrix

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM matrix is unitary and determined by 4 independent parameters

Standard Parametrization: product of 3 rotation matrices

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{ij} = \sin(\theta_{ij}), c_{ij} = \cos(\theta_{ij})$$

Standard Parametrization: product of 3 rotation matrices

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -s_{23}c_{12} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$s_{ij} = \sin(\theta_{ij}), c_{ij} = \cos(\theta_{ij})$$

Wolfenstein Parametrization: introduce the parameters λ , A, ρ , η

$$s_{12} = \lambda$$
 , $s_{23} = A\lambda^2$, $s_{13}e^{i\delta} = A\lambda^3(\rho + i\eta)$

Wolfenstein Parametrization: introduce the parameters λ , A, ρ , η

$$s_{12}=\lambda$$
 , $s_{23}=A\lambda^2$, $s_{13}e^{i\delta}=A\lambda^3(\rho+i\eta)$

measurements show that $\lambda \simeq 0.2 \ll 1$ is a good expansion parameter

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Experimental Status of the CKM Matrix

global fits of all data give overall consistent picture within few % uncertainties

$$\lambda = 0.22498^{+0.00023}_{-0.00021}$$

$$\textit{A} = 0.8215^{+0.0047}_{-0.0082}$$

$$\bar{\rho} = 0.1562^{+0.0112}_{-0.0040}$$

$$\bar{\eta} = 0.3551^{+0.0051}_{-0.0057}$$

http://ckmfitter.in2p3.fr/ http://www.utfit.org/

Alternative Approach

global CKM fits include many loop observables which might be affected by new physics

to avoid potential new physics contamination as much as possible, use 4 measurements based on tree level decays that are unlikely affected by new physics

$$V_{us} = 0.22431 \pm 0.00085 \; , \quad V_{cb} = (41.1 \pm 1.2) \times 10^{-3} \; , \quad V_{ub} = (3.82 \pm 0.20) \times 10^{-3} \; , \quad \gamma = (65.7 \pm 3.0)^{\circ} \;$$

Alternative Approach

global CKM fits include many loop observables which might be affected by new physics

to avoid potential new physics contamination as much as possible, use 4 measurements based on tree level decays that are unlikely affected by new physics

$$V_{us} = 0.22431 \pm 0.00085 \; , \quad V_{cb} = (41.1 \pm 1.2) \times 10^{-3} \ V_{ub} = (3.82 \pm 0.20) \times 10^{-3} \; , \quad \gamma = (65.7 \pm 3.0)^\circ$$

$$\begin{split} V_{ud} &\simeq 1 - \frac{\lambda^2}{2} \;, & V_{us} \simeq \lambda \;, & V_{ub} \simeq |V_{ub}| e^{-i\gamma} \;, \\ V_{cd} &\simeq -\lambda \;, & V_{cs} \simeq 1 - \frac{\lambda^2}{2} \;, & V_{cb} = |V_{cb}| \;, \\ V_{td} &\simeq |V_{cb}| \lambda - |V_{ub}| e^{i\gamma} \left(1 - \frac{\lambda^2}{2}\right) \;, & V_{ts} \simeq -|V_{cb}| \left(1 - \frac{\lambda^2}{2}\right) - |V_{ub}| \lambda e^{i\gamma} \;, & V_{tb} \simeq 1 \;, \end{split} \tag{9}$$

(see e.g. WA, Lewis 2112.03437; values above from PDG 2024)

[I prefer this approach; I think it is more transparent]

Problem: Which V_{cb} ?

• Longstanding $\sim 3\sigma$ discrepancy between exclusive and inclusive determinations of $|V_{cb}|$

$$|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (39.8 \pm 0.6) \times 10^{-3}$ (exclusive)

Problem: Which V_{cb} ?

• Longstanding \sim 3 σ discrepancy between exclusive and inclusive determinations of $|V_{cb}|$

$$|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (39.8 \pm 0.6) \times 10^{-3}$ (exclusive)

• PDG inflates the uncertainty of the combination by $\sqrt{\chi^2/N_{\rm dof}}=3.0$ and gets:

$$V_{cb} = (41.1 \pm 1.2) \times 10^{-3}$$

Problem: Which V_{cb} ?

Longstanding \sim 3 σ discrepancy between exclusive and inclusive determinations of $|V_{cb}|$

$$|V_{cb}| = (42.2 \pm 0.5) \times 10^{-3}$$
 (inclusive)
 $|V_{cb}| = (39.8 \pm 0.6) \times 10^{-3}$ (exclusive)

• PDG inflates the uncertainty of the combination by $\sqrt{\chi^2/\textit{N}_{dof}}=3.0$ and gets:

$$V_{cb} = (41.1 \pm 1.2) \times 10^{-3}$$

• The uncertainty on $|V_{cb}|$ is a limiting factor in the precision for several SM predictions of rare decays. (e.g. $B_s \to \mu^+\mu^-$, $B \to K\nu\bar{\nu}$, ...)

Effective Field Theories

- Flavor change comes from the weak scale $\mu_{\rm weak} \sim 100$ GeV where we can perform perturbative calculations.
- But we observe flavor changing processes of hadrons at a low scale $\mu_{\rm had} \sim$ 1 GeV where QCD becomes non-perturbative.

BSM	Λ	Dragons
SMEFT	100 GeV	γ , g , W , Z , ν_i , e , μ , τ + \mathbf{u} , \mathbf{d} , \mathbf{s} , \mathbf{c} , \mathbf{b} , \mathbf{t} + \mathbf{h}
WEFT	5 GeV	γ , g , ν_i , e , μ , τ + $\frac{\text{u}}{\text{d}}$, $\frac{\text{d}}{\text{s}}$, $\frac{\text{c}}{\text{b}}$
WEFT4	2 GeV	$\gamma, g, \nu_i, e, \mu, \tau$ + u, d, s, c
ChRT	500 MeV	γ, u_i,e,μ + hadrons
СҺРТ	100 MeV	$\gamma, \nu_i, e, \mu, \pi$
QED	1 MeV	γ , ν_i , e
ЕН		γ, u_i

Falkowski Eur. Phys. J.C 83 (2023) 7, 656

Effective Field Theories

- Flavor change comes from the weak scale $\mu_{\rm weak} \sim$ 100 GeV where we can perform perturbative calculations.
- ullet But we observe flavor changing processes of hadrons at a low scale $\mu_{
 m had}\sim$ 1 GeV where QCD becomes non-perturbative.
- It is very convenient to cleanly separate the relevant physics at these scales → EFTs

Falkowski Eur.Phys.J.C 83 (2023) 7, 656

Matching at Tree-Level

Buras hep-ph/9806471

Let's consider the effective Hamiltonian relevant for the decay $c o su\bar{d}$ (a simple example to illustrates basic features)

"Integrating out the *W* boson" at tree level gives one dim-6 operator and the corresponding Wilson coefficient

Matching at Tree-Level

Buras hep-ph/9806471

Let's consider the effective Hamiltonian relevant for the decay $c \to su\bar{d}$ (a simple example to illustrates basic features)

"Integrating out the *W* boson" at tree level gives one dim-6 operator and the corresponding Wilson coefficient

$$\mathcal{H}_{\text{eff}} = rac{4G_F}{\sqrt{2}} V_{cs}^* V_{ud} rac{C_2}{(\bar{s}\gamma_\mu P_L c)} (\bar{u}\gamma^\mu P_L d) \;, \; \; ext{with} \; \; rac{C_2}{1} = 1 \;.$$

Including 1-Loop QCD corrections

Buras hep-ph/9806471

What happens if we include 1-loop QCD corrections? (less relevant for $b\to s\nu\bar{\nu}$ because neutrinos don't talk to QCD)

Connecting the High and Low Scales

 Upshot: at higher order, the Wilson coefficients become explicitly renormalization scale dependent

$$\vec{\pmb{C}}(\mu) \cdot \langle f | \vec{\pmb{O}}(\mu) | i \rangle = \vec{\pmb{C}}(\mu_{\mathsf{weak}}) \cdot \textit{U}(\mu_{\mathsf{weak}}, \mu_{\mathsf{had}}) \cdot \langle f | \vec{\pmb{O}}(\mu_{\mathsf{had}}) | i \rangle$$

- Determine Wilson coefficients by matching at the weak scale.
- Run to the low scale using Renormalization Group Equations. This resumms large logarithms $\log(\mu_{\text{weak}}^2/\mu_{\text{had}}^2)$.
- Combine the Wilson coefficients with hadronic matrix elements evaluated at the hadronic scale.

Dealing with Non-Perturbative QCD

 "Cheat": Focus on observables that are vanishingly small in the Standard Model (null tests)

examples: $B_s \to \nu \bar{\nu}$, lepton flavor violation $B \to K \tau \mu$, ...

Dealing with Non-Perturbative QCD

 "Cheat": Focus on observables that are vanishingly small in the Standard Model (null tests)

examples: $B_s \to \nu \bar{\nu}$, lepton flavor violation $B \to K \tau \mu$, ...

"Ratios": Design observables where hadronic physics (approximately) drops out

example: lepton flavor universality ratios

$$\frac{\mathsf{BR}(\mathcal{B}\to\mathcal{K}\mu\mu)}{\mathsf{BR}(\mathcal{B}\to\mathcal{K}\!\mathsf{ee})}\;,\quad \frac{\mathsf{BR}(\mathcal{B}\to\mathcal{D}\!\tau\nu)}{\mathsf{BR}(\mathcal{B}\to\mathcal{D}\ell\nu)}\;,\quad \frac{\mathsf{BR}(\pi\to\mathsf{e}\nu)}{\mathsf{BR}(\pi\to\mu\nu)}$$

Dealing with Non-Perturbative QCD

 "Cheat": Focus on observables that are vanishingly small in the Standard Model (null tests)

examples: $B_s \to \nu \bar{\nu}$, lepton flavor violation $B \to K \tau \mu$, ...

"Ratios": Design observables where hadronic physics (approximately) drops out

example: lepton flavor universality ratios

$$\frac{\mathsf{BR}(\mathcal{B}\to\mathcal{K}\mu\mu)}{\mathsf{BR}(\mathcal{B}\to\mathcal{K}\!e\!e)}\;,\quad \frac{\mathsf{BR}(\mathcal{B}\to\mathcal{D}\!\tau\nu)}{\mathsf{BR}(\mathcal{B}\to\mathcal{D}\!\ell\nu)}\;,\quad \frac{\mathsf{BR}(\pi\to e\nu)}{\mathsf{BR}(\pi\to \mu\nu)}$$

3) Parameterize the hadronic matrix elements and determine them e.g. with lattice QCD or data driven methods

Parameterization of Hadronic Matrix Elements

examples of local matrix elements $\langle f|O(x)|i\rangle$

decay constants

$$\langle 0|ar{u}\gamma^{\mu}\gamma_5 b|B^+
angle=if_Bp_B^{\mu}$$

Parameterization of Hadronic Matrix Elements

examples of local matrix elements $\langle f|O(x)|i\rangle$

decay constants

$$\langle 0|ar{u}\gamma^{\mu}\gamma_5 b|B^+
angle=if_Bp_B^{\mu}$$

transition form factors

$$\langle D | \bar{c} \gamma^{\mu} b | \bar{B} \rangle \equiv f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + [f_{0}(q^{2}) - f_{+}(q^{2})] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

Parameterization of Hadronic Matrix Elements

examples of local matrix elements $\langle f|O(x)|i\rangle$

decay constants

$$\langle 0|ar{u}\gamma^{\mu}\gamma_{5}b|B^{+}
angle = if_{B}p_{B}^{\mu}$$

transition form factors

$$\langle D | \bar{c} \gamma^{\mu} b | \bar{B} \rangle \equiv f_{+}(q^{2})(p_{B} + p_{D})^{\mu} + [f_{0}(q^{2}) - f_{+}(q^{2})] \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}} q^{\mu}$$

"Bag parameters" for meson mixing

$$\langle \bar{B}^0 | (\bar{d}\gamma^\mu P_L b) (\bar{d}\gamma_\mu P_L b) | B^0 \rangle = \frac{4}{3} B_B m_B f_B^2$$

Summary of the Introduction

Generic structure of a flavor changing amplitude:

$$\langle f | \mathcal{H}_{ ext{eff}} | i
angle = rac{4 G_F}{\sqrt{2}} \sum_{k} \lambda_{ ext{CKM}}^{(k)} \; C_k(\mu) \; \langle f | O_k(\mu) | i
angle$$

- CKM matrix elements (can be a limiting factor for precision)
- Wilson coefficients / short distance physics (in almost all cases under good perturbative control)
- hadronic matrix elements (can be a limiting factor for precision)

SM Diagrams for $b \to s \nu \bar{\nu}$

- ► Flavor changing neutral current process
- ▶ induced by Boxes and Z penguins

SM Diagrams for $b o s u ar{\nu}$

- ► Flavor changing neutral current process
- ▶ induced by Boxes and Z penguins

$$A = \frac{\sqrt{16} \sqrt{\frac{4}{15}}}{\sqrt{4}} A_{t} + \frac{\sqrt{16} \sqrt{\frac{4}{15}}}{\sqrt{6}} A_{c} + \frac{\sqrt{16} \sqrt{\frac{4}{15}}}{\sqrt{45}} A_{u}$$

$$= \sqrt{16} \sqrt{\frac{4}{15}} (A_{t} - A_{c}) + \frac{\sqrt{16} \sqrt{\frac{4}{15}}}{\sqrt{45}} (A_{u} - A_{c}) \approx \sqrt{16} \sqrt{\frac{4}{15}} (A_{t} - A_{c})$$

Effective Hamiltonian for $b \to s \nu \bar{\nu}$ in the SM

▶ Integrate out the top, W, Z, ... to arrive at an effective Hamiltonian that describes the $b \to s\nu\bar{\nu}$ decay

$$\mathcal{H}_{\mathsf{eff}} = -rac{4G_F}{\sqrt{2}}rac{lpha}{4\pi}V_{ts}^*V_{tb}\; rac{ extbf{C_L}}{ extbf{C_L}}\,(ar{s}\gamma^\mu P_L b)(ar{
u}\gamma_\mu (extbf{1}-\gamma_5)
u)$$

Effective Hamiltonian for $b \rightarrow s \nu \bar{\nu}$ in the SM

▶ Integrate out the top, W, Z, ... to arrive at an effective Hamiltonian that describes the $b \to s\nu\bar{\nu}$ decay

$$\mathcal{H}_{\mathsf{eff}} = -rac{4G_F}{\sqrt{2}}rac{lpha}{4\pi}V_{ts}^*V_{tb}\; rac{ extbf{C_L}}{ extbf{C_L}}\,(ar{s}\gamma^\mu P_L b)(ar{
u}\gamma_\mu (extbf{1}-\gamma_5)
u)$$

▶ In the SM there is a single Wilson coefficient that is relevant

$$C_L = -\frac{1}{s_W^2} X_t(x_t) = -\frac{1}{s_W^2} \left(X_t^{(0)}(x_t) + \frac{\alpha_s}{4\pi} X_t^{(1)}(x_t) + \dots \right)$$

Effective Hamiltonian for $b \to s \nu \bar{\nu}$ in the SM

▶ Integrate out the top, W, Z, ... to arrive at an effective Hamiltonian that describes the $b \to s\nu\bar{\nu}$ decay

$$\mathcal{H}_{\mathsf{eff}} = -rac{4G_{\!F}}{\sqrt{2}}rac{lpha}{4\pi}V_{ts}^*V_{tb}\; {\color{red}C_{\!L}}\; (ar{s}\gamma^\mu P_{\!L}b)(ar{
u}\gamma_\mu (1-\gamma_5)
u)$$

▶ In the SM there is a single Wilson coefficient that is relevant

$$C_L = -\frac{1}{s_W^2} X_t(x_t) = -\frac{1}{s_W^2} \left(X_t^{(0)}(x_t) + \frac{\alpha_s}{4\pi} X_t^{(1)}(x_t) + \dots \right)$$

- \triangleright s_W is the sine of the weak mixing angle
- $ightharpoonup X_t^{(0)}$ and $X_t^{(1)}$ are loop functions that depend on $x_t = m_t^2/m_W^2$
- ► Wilson coefficient is known at NLO in QCD and NLO electro-weak (Brod, Gorbahn, Stamou, 1009.0947, 2105.02868)

$$C_L^{\text{SM}} = -6.322 \pm 0.031 \Big|_{m_t} \pm 0.074 \Big|_{\text{QCD}} \pm 0.009 \Big|_{\text{EW}}$$

- ▶ $B \rightarrow K \nu \bar{\nu}$ (pseudoscalar to pseudoscalar)
- ▶ $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ (pseudoscalar to vector)
- ▶ $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ (fermion to fermion)

- ▶ $B \rightarrow K \nu \bar{\nu}$ (pseudoscalar to pseudoscalar)
- ▶ $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ (pseudoscalar to vector)
- \blacktriangleright $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ (fermion to fermion)
- ▶ Observables include the branching ratios and the q^2 spectrum.

- ▶ $B \rightarrow K \nu \bar{\nu}$ (pseudoscalar to pseudoscalar)
- ▶ $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ (pseudoscalar to vector)
- $ightharpoonup \Lambda_b
 ightharpoonup \Lambda_b
 ightharpoo$
- \triangleright Observables include the branching ratios and the q^2 spectrum.
- ► For $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ one can also measure the polarization of the vector meson (through the angular distribution of their decay products $K^* \to K \pi$ and $\phi \to K K$)

- ▶ $B \rightarrow K \nu \bar{\nu}$ (pseudoscalar to pseudoscalar)
- ▶ $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ (pseudoscalar to vector)
- \blacktriangleright $\Lambda_b \to \Lambda \nu \bar{\nu}$ (fermion to fermion)
- ▶ Observables include the branching ratios and the q^2 spectrum.
- ▶ For $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ one can also measure the polarization of the vector meson (through the angular distribution of their decay products $K^* \to K \pi$ and $\phi \to K K$)
- ▶ A time dependent analysis can give access to CP asymmetries in $b \to s \nu \bar{\nu}$ (~ "measuring $\sin 2\beta$ with $B^0 \to K_S \nu \bar{\nu}$ ") (see talk by Martin Novoa-Brunet on Wednesday)

- ▶ $B \rightarrow K \nu \bar{\nu}$ (pseudoscalar to pseudoscalar)
- ▶ $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ (pseudoscalar to vector)
- $ightharpoonup \Lambda_b
 ightharpoonup \Lambda_b
 ightharpoo$
- ▶ Observables include the branching ratios and the q^2 spectrum.
- ▶ For $B \to K^* \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ one can also measure the polarization of the vector meson (through the angular distribution of their decay products $K^* \to K \pi$ and $\phi \to K K$)
- ▶ A time dependent analysis can give access to CP asymmetries in $b \to s \nu \bar{\nu}$ (~ "measuring $\sin 2\beta$ with $B^0 \to K_S \nu \bar{\nu}$ ") (see talk by Martin Novoa-Brunet on Wednesday)
- ► For $\Lambda_b \to \Lambda \nu \bar{\nu}$ also the initial state Λ_b can in principle be polarized; even more angular information is available.

Definition of $B \rightarrow K$ Form Factors

- Parameterize the $B \to K$ hadronic matrix elements in the most generic way.
- In the Standard Model we need the matrix element of vector current (Gubernari, Reboud, van Dyk, Virto 2305.06301)

$$\langle \bar{P}(k)|J_V^{\mu}|\bar{B}(p)\rangle = \left[(p+k)^{\mu} - \frac{M_B^2 - M_P^2}{q^2}q^{\mu}\right]f_+^{B\to P} + \frac{M_B^2 - M_P^2}{q^2}q^{\mu}f_0^{B\to P},$$

Definition of $B \rightarrow K$ Form Factors

- Parameterize the $B \to K$ hadronic matrix elements in the most generic way.
- In the Standard Model we need the matrix element of vector current (Gubernari, Reboud, van Dyk, Virto 2305.06301)

$$\langle \bar{P}(k)|J_V^{\mu}|\bar{B}(p)\rangle = \left[(p+k)^{\mu} - \frac{M_B^2 - M_P^2}{q^2}q^{\mu}\right]f_+^{B\to P} + \frac{M_B^2 - M_P^2}{q^2}q^{\mu}f_0^{B\to P},$$

- The matrix element of the axial-vector current vanishes (parity!)
- Beyond the SM one might also encounter scalar and tensor currents
- In total one finds 3 independent form factors f_+ , f_0 , f_T . (In the SM only f_+ is needed.)

$B \rightarrow K$ Form Factor Parameterization

Boyd, Grinstein, Lebed hep-ph/9412324; Caprini, Lellouch, Neubert hep-ph/9712417; Flynn, Juttner, Tsang 2303.11285; Gubernari, Reboud, van Dyk, Virto 2305.06301

- One would like to work with a robust parameterization of the q^2 dependence of the form factors.
- Use a conformal mapping to the variable z, and use analytic properties of the form factors to express them in a power series in z with coefficients bounded by unitarity

$$z = rac{\sqrt{s_\Gamma - q^2} - \sqrt{s_\Gamma - s_0}}{\sqrt{s_\Gamma - q^2} + \sqrt{s_\Gamma} - s_0} \; ,$$

- s_{Γ} = start of the branch cut in q^2 .
- s₀ = free parameter < s_Γ;
 can be chosen to minimize the relevant range of z.

(see talk by Danny van Dyk in the afternoon)

$B \rightarrow K$ Form Factor Parameterization

$B \rightarrow K$ Form Factor Parameterization

$$\mathcal{F}(q^2) = \frac{1}{\mathcal{B}_{\mathcal{F}}(z)\phi_{\mathcal{F}}(z)} \sum_{k} \alpha_k^{\mathcal{F}} p_k^{\mathcal{F}}(z) , \quad \sum_{\mathcal{F},k} |\alpha_k^{\mathcal{F}}|^2 < 1$$

- $\mathcal{B}_{\mathcal{F}}(z)$ = Blaschke factor that takes into account poles.
- $\phi_{\mathcal{F}}(z)$ = outer function ensures unitarity bounds take a simple form.
- $p_k^{\mathcal{F}}$ = orthonormal polynomials of order k.

$B \rightarrow K$ Form Factors: Numerics

- Astonishing precision is achieved on the lattice (see talk by Chris Bouchard in the afternoon)
- Plots show 2σ error bands!

[plots based on HPQCD 2207.12468, Fermilab/MILC 1509.06235, Gubernari, Reboud, van Dyk, Virto 2305.06301]

Standard Model Prediction for $B \to K \nu \bar{\nu}$

 \bullet SM branching ratio predicted with $\sim 8\%$ precision

BR(
$$B^+ \to K^+ \nu \bar{\nu}$$
) =
= $(4.46 \pm 0.36) \times 10^{-6}$
BR($B^0 \to K_S \nu \bar{\nu}$) =
= $(2.06 \pm 0.17) \times 10^{-6}$

• For the charged B decays need also to take into account a "long-distance" contribution from $B^+ \to \tau^+ \nu \to K^+ \nu \bar{\nu}$

(my evaluation based on $|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$)

Error Budget

$$\mathsf{BR}(B^+ o \mathcal{K}^+ \nu \bar{\nu}) = \ = (4.46 \pm 0.36) \times 10^{-6} \ \mathsf{BR}(B^0 o \mathcal{K}_S \nu \bar{\nu}) = \ = (2.06 \pm 0.17) \times 10^{-6}$$

 Uncertainty is dominated by CKM input

(my evaluation based on $|V_{ch}| = (41.1 \pm 1.2) \times 10^{-3}$)

(the pie chart shows $B^+ \to K^+ \nu \bar{\nu}$, the one for $B^0 \to K_S \nu \bar{\nu}$ looks pretty much identical)

Definition of $B \rightarrow K^*$ Form Factors

• $B \to K^*$ matrix elements are more involved. In addition to the momenta, also the K^* polarization vector is available to for the parameterization.

(Gubernari, Reboud, van Dyk, Virto 2305.06301)

$$\begin{split} \langle \bar{V}(k,\eta) | J_V^{\mu} | \bar{B}(p) \rangle &= \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^* p_{\rho} k_{\sigma} \frac{2V^{B \to V}}{M_B + M_V}, \\ \langle \bar{V}(k,\eta) | J_A^{\mu} | \bar{B}(p) \rangle &= i \eta_{\nu}^* \bigg[g^{\mu\nu} (M_B + M_V) A_1^{B \to V} - (p+k)^{\mu} q^{\nu} \frac{A_2^{B \to V}}{M_B + M_V} \\ &- 2M_V \frac{q^{\mu} q^{\nu}}{q^2} (A_3^{B \to V} - A_0^{B \to V}) \bigg], \end{split}$$

Definition of $B \to K^*$ Form Factors

• $B \to K^*$ matrix elements are more involved. In addition to the momenta, also the K^* polarization vector is available to for the parameterization.

(Gubernari, Reboud, van Dyk, Virto 2305.06301)

$$\begin{split} \langle \bar{V}(k,\eta) | J_V^{\mu} | \bar{B}(p) \rangle &= \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^* p_{\rho} k_{\sigma} \frac{2V^{B \to V}}{M_B + M_V}, \\ \langle \bar{V}(k,\eta) | J_A^{\mu} | \bar{B}(p) \rangle &= i \eta_{\nu}^* \bigg[g^{\mu\nu} (M_B + M_V) A_1^{B \to V} - (p+k)^{\mu} q^{\nu} \frac{A_2^{B \to V}}{M_B + M_V} \\ &- 2 M_V \frac{q^{\mu} q^{\nu}}{q^2} (A_3^{B \to V} - A_0^{B \to V}) \bigg], \end{split}$$

- Beyond the SM one might also encounter scalar, pseudo-scalar, and tensor currents
- In total one finds 7 independent form factors V, A_0 , A_1 , A_2 , T_1 , T_2 , T_3 . (In the SM only V, A_1 , A_2 are needed.)

$B \rightarrow K^*$ Form Factors: Numerics

- Form factor uncertainties are around 5% 10%.
- Results from lattice and light cone sum rules.
- Complications due to the sizeable width of the K^* .

[plots based on Horgan et al. 1310.3722, 1501.00367; Gubernari, Kokulu, van Dyk 1811.00983, Gubernari, Reboud, van Dyk, Virto 2305.06301]

Standard Model Prediction for $B \to K^* \nu \bar{\nu}$

• SM branching ratio predicted with \sim 12% precision

BR(
$$B^+ \to K^{*+} \nu \bar{\nu}$$
) =
= $(8.8 \pm 1.1) \times 10^{-6}$
BR($B^0 \to K^{*0} \nu \bar{\nu}$) =
= $(8.1 \pm 1.0) \times 10^{-6}$

• For the charged B decays need also to take into account a "long-distance" contribution from $B^+ \rightarrow \tau^+ \nu \rightarrow K^{*+} \nu \bar{\nu}$

(my evaluation based on $|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$)

Error Budget

BR(
$$B^+ \to K^{*+} \nu \bar{\nu}$$
) = = $(8.8 \pm 1.1) \times 10^{-6}$

BR(
$$B^0 \to K^{*0} \nu \bar{\nu}$$
) = = $(8.1 \pm 1.0) \times 10^{-6}$

 Main uncertainties shared by form factors and CKM input

(my evaluation based on $|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$)

(the pie chart shows $B^0 \to K^{*\,0} \nu \bar{\nu}$, the one for $B^+ \to K^{*\,+} \nu \bar{\nu}$ looks pretty much identical)

The Longitudinal Polarization Fraction

The angular distribution of the $K^* \to K\pi$ decay product gives access to an additional observable. The K^* logitudinal polarization fraction F_L (θ is the angle between the K and B in the K^* restframe)

$$\frac{d \text{BR}}{d q^2 \ d \cos \theta} = \frac{3}{4} \frac{d \text{BR}_T}{d q^2} \sin^2 \theta + \frac{3}{2} \frac{d \text{BR}_L}{d q^2} \cos^2 \theta$$

$$F_L = rac{d ext{BR}_L/dq^2}{d ext{BR}/dq^2}$$
 $\langle F_L
angle = rac{ ext{BR}_L}{ ext{BR}}$ $\langle F_L
angle_{ ext{SM}} = 0.47 \pm 0.03$

(uncertainty entirely due to form factors)

Standard Model Predictions for $B_s \to \phi \nu \bar{\nu}$

 Same story as for B → K*ν̄ν; simply switch out form factors and masses

BR(
$$B_s \to \phi \nu \bar{\nu}$$
) = = (10.0 ± 1.3) × 10⁻⁶

$$\langle F_L \rangle_{\rm SM} = 0.52 \pm 0.03$$

(values based on
$$|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$$
)

Definition of $\Lambda_b \to \Lambda$ Form Factors

 Shown here is the parameterization of the vector and axial-vector matrix elements

$$\langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_{b} \rangle = \bar{u}_{\Lambda} \left[f_{t}^{V}(q^{2}) (m_{\Lambda_{b}} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} + f_{\perp}^{V}(q^{2}) \left(\gamma^{\mu} - \frac{2(m_{\Lambda} P^{\mu} + m_{\Lambda_{b}} p^{\mu})}{(m_{\Lambda_{b}} + m_{\Lambda})^{2} - q^{2}} \right) + f_{0}^{V}(q^{2}) \frac{m_{\Lambda_{b}} + m_{\Lambda}}{(m_{\Lambda_{b}} + m_{\Lambda})^{2} - q^{2}} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \right] u_{\Lambda_{b}}$$

$$\begin{split} \langle \Lambda | \bar{s} \gamma^{\mu} \gamma_5 b | \Lambda_b \rangle &= -\bar{u}_{\Lambda} \gamma_5 \left[f_t^A (q^2) (m_{\Lambda_b} + m_{\Lambda}) \frac{q^{\mu}}{q^2} + f_{\perp}^A (q^2) \left(\gamma^{\mu} + \frac{2 (m_{\Lambda} P^{\mu} - m_{\Lambda_b} p^{\mu})}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \right) \right. \\ &+ \left. f_0^A (q^2) \frac{m_{\Lambda_b} - m_{\Lambda}}{(m_{\Lambda_b} - m_{\Lambda})^2 - q^2} \left(P^{\mu} + p^{\mu} - (m_{\Lambda_b}^2 - m_{\Lambda}^2) \frac{q^{\mu}}{q^2} \right) \right] u_{\Lambda_b} \end{split}$$

- In total there are 10 $\Lambda_b \to \Lambda$ form factors

 Detmold, Meinel 1602.01399; Blake, Meinel, Rahimi, van Dyk 2205.06041
- In the SM, 4 of them are needed.

$\Lambda_b \to \Lambda$ Form Factors: Numerics

• Form factor uncertainties are around 10%.

[plots from WA, Gadam, Toner 2501.10652, based on Detmold, Meinel 1602.01399]

SM Prediction for the $\Lambda_b \to \Lambda \nu \bar{\nu}$ Rate

• SM branching ratio predicted with \sim 14% precision

$${\sf BR}(\Lambda_b \to \Lambda \nu \bar{\nu}) = \ = (7.71 \pm 1.06) \times 10^{-6}$$

WA, Gadam, Toner 2501.10652 (based on $|V_{cb}| = (41.1 \pm 1.2) \times 10^{-3}$)

Error Budget

BR(
$$\Lambda_b \to \Lambda \nu \bar{\nu}$$
) = = (7.71 ± 1.06) × 10⁻⁶

- main theory uncertainty from form factors
- also uncertainty from V_{cb} is still relevant

WA, Gadam, Toner 2501.10652
$$({\rm based\ on\ }|V_{cb}|=({\rm 41.1\pm1.2})\times{\rm 10^{-3}})$$

Λ_b Polarization

One can get longitudinally polarized Λ_b baryons from Z decays $(\rightarrow FCC\text{-ee})$

$$\mathcal{P}_{\Lambda_b} = \frac{\textit{N}_{\Lambda_b}^{\uparrow} - \textit{N}_{\Lambda_b}^{\downarrow}}{\textit{N}_{\Lambda_b}^{\uparrow} + \textit{N}_{\Lambda_b}^{\downarrow}} = \left\{ \begin{array}{cc} -0.23^{+0.24}_{-0.20}{}^{+0.08}_{-0.07} \,, & \text{ALEPH} \,, \\ -0.49^{+0.32}_{-0.30} \pm 0.17 \,, & \text{DELPHI} \,, \\ -0.56^{+0.20}_{-0.13} \pm 0.09 \,, & \text{OPAL} \,, \end{array} \right.$$

Λ_b Polarization

One can get longitudinally polarized Λ_b baryons from Z decays $(\rightarrow FCC\text{-ee})$

$$\mathcal{P}_{\Lambda_b} = \frac{\textit{N}_{\Lambda_b}^{\uparrow} - \textit{N}_{\Lambda_b}^{\downarrow}}{\textit{N}_{\Lambda_b}^{\uparrow} + \textit{N}_{\Lambda_b}^{\downarrow}} = \left\{ \begin{array}{cc} -0.23^{+0.24}_{-0.20}^{+0.08} \, , & \text{ALEPH} \, , \\ -0.49^{+0.32}_{-0.30} \pm 0.17 \, , & \text{DELPHI} \, , \\ -0.56^{+0.20}_{-0.13} \pm 0.09 \, , & \text{OPAL} \, , \end{array} \right.$$

Can define a angular distribution in the angle between the Λ_b spin and the Λ momentum

WA, Gadam, Toner 2501.10652

$$\frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d E_{\Lambda} d \cos \theta_{\Lambda}} = \frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d E_{\Lambda}} \left(\frac{1}{2} + A_{\text{FB}}^{\uparrow} \cos \theta_{\Lambda} \right)$$

The Forward Backward Asymmetry

- $A_{\rm FB}^{\uparrow}$ has a zero crossing in q^2
- Large cancellation in the integrated asymmetry

$$\langle A_{FB}^{\uparrow}\rangle_{SM} = -\mathcal{P}_{\Lambda_b}\times (2.7\pm3.4)\times 10^{-2}$$

WA, Gadam, Toner 2501.10652

The Forward Backward Asymmetry

- $A_{\rm FB}^{\uparrow}$ has a zero crossing in q^2
- Large cancellation in the integrated asymmetry

$$\langle A_{FB}^{\uparrow}\rangle_{SM} = -\mathcal{P}_{\Lambda_b}\times (2.7\pm3.4)\times 10^{-2}$$

 Zero crossing point is given by (independent of new physics!)

$$q^2 = rac{m_{\Lambda_b}^2}{2} \left(1 - rac{m_{\Lambda}^2}{m_{\Lambda_b}^2}
ight) rac{f_0^V(q^2) f_0^A(q^2)}{f_\perp^V(q^2) f_\perp^A(q^2)}$$
 $(q^2)_0^{
m SM} = (12.6 \pm 1.2) {
m GeV}^2$

WA, Gadam, Toner 2501.10652

Summary

► The SM predicts branching ratios around 10^{-6} to 10^{-5} for several rare $b \rightarrow s\nu\bar{\nu}$ decays

$$B \to K \nu \bar{\nu}, B \to K^* \nu \bar{\nu}, B_s \to \phi \nu \bar{\nu}, \Lambda_b \to \Lambda \nu \bar{\nu}$$

- ► Available observables: total branching ratios, *q*² spectra, and agular observables.
- Theory precision of the branching ratios is around $\sim 10\%$. It is limited by hadronic form factors and CKM input (V_{cb})
 - Angular observables avoid the uncertainty from CKM.

大漁を祈ります

Back Up

Promising Indirect Probes of New Physics

▶ Test bedrock assumptions of particle physics

```
Lorentz invariance; CPT invariance; ... (\Lambda \gtrsim M_{Planck} \sim 10^{19} \text{ GeV})
```

Promising Indirect Probes of New Physics

► Test bedrock assumptions of particle physics

Lorentz invariance; CPT invariance; ... $(\Lambda \gtrsim M_{Planck} \sim 10^{19} \text{ GeV})$

► Test (approximate) accidental symmetries of the SM

Baryon Number: e.g. proton decay ($\Lambda \sim \Lambda_{\rm GUT} \sim 10^{16} \ {\rm GeV}$)

Lepton Number: e.g. neutrinoless double beta decay ($\Lambda \sim \Lambda_{see-saw} \sim 10^{12}$ GeV)

Flavor: e.g. flavor changing neutral currents $(\Lambda \sim 10^3 - 10^8 \text{ GeV})$

CP: e.g. electric dipole moments

53/51

Promising Indirect Probes of New Physics

► Test bedrock assumptions of particle physics

```
Lorentz invariance; CPT invariance; ... (\Lambda \gtrsim M_{Planck} \sim 10^{19} \text{ GeV})
```

► Test (approximate) accidental symmetries of the SM

Baryon Number: e.g. proton decay
$$(\Lambda \sim \Lambda_{GUT} \sim 10^{16} \text{ GeV})$$

Lepton Number: e.g. neutrinoless double beta decay ($\Lambda \sim \Lambda_{\text{see-saw}} \sim 10^{12} \text{ GeV}$)

Flavor: e.g. flavor changing neutral currents $(\Lambda \sim 10^3 - 10^8 \text{ GeV})$

CP: e.g. electric dipole moments ($\Lambda \sim 10^3 - 10^8$ GeV)

► Test "ordinary" Standard Model processes

Higgs precision program; Electroweak precision observables; muon anomalous magnetic moment; ... ($\Lambda \sim 10^3$ GeV)

Probe more generic new physics

Penguin Diagrams

https://www.symmetrymagazine.org/article/june-2013/the-march-of-the-penguin-diagrams

Far Future: Flavor at FCC-ee

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all b hadrons, c hadrons, τ 's with large boost in a clean environment.

Running at higher \sqrt{s} can probe e.g. FCNC single top production or lepton flavor violating 4-fermion contact interactions

Can measure V_{cb} from W decays

...

Far Future: Flavor at FCC-ee

Running on the Z pole allows one to probe the flavor structure of Z couplings with extreme precision.

In addition one gets very large samples of all b hadrons, c hadrons, τ 's with large boost in a clean environment.

Running at higher \sqrt{s} can probe e.g. FCNC single top production or lepton flavor violating 4-fermion contact interactions

Can measure V_{cb} from W decays

...

⇒ sensitivity to various flavor processes that are not accessible at LHC(b) or Belle II

Far Future: $b \rightarrow s \nu \bar{\nu}$ on the Z pole

Tera-Z machines get access to the entire family of decays:

$$B \rightarrow K \nu \bar{\nu}$$

 $B \rightarrow K^* \nu \bar{\nu}$
 $B_s \rightarrow \phi \nu \bar{\nu}$
 $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$

- ▶ Tera-Z machines can measure $B \to K^{(*)} \nu \bar{\nu}$ and $B_s \to \phi \nu \bar{\nu}$ with precent level precision
- ► $\Lambda_b \rightarrow \Lambda \nu \bar{\nu}$ can be measured with precision of $\sim 10\%$

Amhis, Kenzie, Reboud, Wiederhold 2309.11353