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Disclaimers

Some were asking why I’'m giving a talk on charm tagging?

This talk is not on charm flavor tagging!
(a.k.a. charm tagger)

This is what | also wonder... )
(lack of real experts, ccbarFEI dev. in Ljubljana)

— anyway | hope to bring this topic a bit more into light @ Belle Il



Outline

- Intro
— charm tagging idea
- learn from examples @ Belle: - Dj

- ccbarFEl
— conclusions



- tomorrow do not miss (11:30): ]

Why and WhO can dO Charm [ Charm decays with missing energy (NP and SM) by H.Gisbert!

— many unique opportunities for probing strong and weak interactions in the SM and beyond:
CP violation, DY — D% mixing, (semi)leptonic decays, rare and forbidden decays, etc.

— charm tagging @ B-factories is relevant from the context of measuring decays with missing energy

and more generally in measuring absolute branching fractions

— determine decay

~ determine |V, |

constants, form factors

~

- poorly exp. explored!

- LFU tests
J
( - FCNC process, e.qg. \
DD — T sensitive probe
c w for NP contributions:
U % ¢!V — basically null test of the SM

- unique in the up-type sector

J

Most of charm Br are measured
relatively to normalization mode

N(X =Y
B(X =Y)= ( )
Nx
— in B decays N from B
counting

— in charm N x unknown

- tagging provides a way for
inclusive reconstruction

Nx — Ninc

N Y




Experiment Machine Operation Luminosity Npmd Efficiency Characters
2010-2011 (2021-) 2.9 (8 —20) fb! D%*: 107(— 108) © extremely clean environment
B,ES]I[ BEPC-II 2016-2019 4.18-4.23 GeV 7.3 fb ! D} : 5 x 10° ~10-30%  © quantum coherence
(ete) 201442020 4.6-4.7 GeV 45 fbt Al : 0.8 x10° © pure D-beam, almost no background
y @% Yk % © no CM boost, no time-dept analyses
D SuperKEKB _ 1 [D°: 6 x108 (— 1011) © clear event environment
</ (eTe) 2019- 0.4 (- 50) ab D?;J: 108 (— 10'9) ® high trigger efficiency
= Af: 107 (— 10%) O(1-10%)| © good-efficiency detection of neutrals
KEKB 1999.2010 1 ab-1 L D: 10° © time-dependent analysis
</ (ete) Af: 108 © smaller cross-section than LHCb
BELLE S @k * *
LHC 2011,2012 1+2 fb! 5 x 1012 © very large production cross-section
ﬁﬁcg (pp) 2015-2018 6 fb ! 1013 0(0.1%) © large boost
(2022-2025,2029-) (— 23 — 50) © excellent time resolution
b 6 & & ¢ * © dedicated trigger required

— each of experiments has their advantages for different charm studies

- at present BESIII may be hard to compete in many missing energy measurements

— nonetheless, even at present (and especially in near future) Belle Il has a great potential to produce
competitive and leading results (especially with clever ideas and novel reconstruction techniques)



B tagging (B factories beloved)

— K. Trabelsi will tell you everything and -
more about it tomorrow K™

D— THS) —@f
B_ B+ ...'..
— exactly two B mesons produced 5 tag: sig

- fully reconstructing one of the B’s in an : : : :
event glves you partlcles and klnematlcs T e e e a e a ey -
of the other B : :

- enables to identify final states with one
or more neutrinos in the final state

- Full Event Interpretation (FEI) algorithm is [ [fg ] (j“ } 3
nominally used to reconstruct By,g's with s il :
“high” efficiency I/ DD+ D, | "“-\ =

T, D® D*t D 3




What about charm

. > FThe Upsilon System
B0f 1 1.1nb o(ete™ - Y(45))
- @ Belle Il charmed hadrons are produced in 2 P ~3nb a(e’e” - qq)
B decays andin ete™ — c¢¢ (o ~ 1.3nb) Susf ot (@ SHEE.56)
- 10.58 GeV
~ while charm from B can also be used for charm studies | °f | Iy Y(“)‘
1 — — + | : I | ~
cchar events are our interest ete” — c¢ BosE b 4 e 2 :
=] ¢ vy *’w‘ 4 pamq NSRE—T L ved o s ]
_ o , _ Y(1S)  YQ2S) Y(3S) ] N
- fO”OWIng the B tagglng Idea Iets ConSIder 8.44 946 10.00 10.02 10.34 1037 10.54 10.58 10.62

Mass (GeV/c?)

ete” — cé — Dsig

need to reconstruct

~ if X, Iscorrectly reconstructed in its RestOvaent we WI|| find only decay products of Dg;, — f
along “With kinematic constraint PD.;y = Dmiss (Dmiss = Det + Pe— — DX yay)

- if we do not put any requirement on RestOfEvent and look at
Mniss = \/Priss  (Pmiss = Petr + Pe— — Px,.,) correctly reconstructed events will peak at )/ ( Dsig)

- the number of peaking events give the total number of Dsz-g‘s in the sample (inclusive) which
can is then used for absolute branching fraction calculation



Whatisin X, ?

charge, charmness, strangeness, baryon number
of Xtae + Dsig Must each add up to 0!

- since there is plenty of energy available, _
Xagcontains additional particles next to Dyag
(fragmentation particles)

- for each Dsis type of interest a collection
of valid X, ‘s can be used

- ideally as many tag modes as possible
are used as it determines size of inclusive

Do sample

K.Spenko



Examples



Branching fractions of leptonic and hadronic D] decays at Belle

- this measurement is prime example of charm tagging technique at B-factories

- references: arxiv:1307.6240, BelleNote (A. Zupanc)

~ main aim was determination of D, decay constant fp_ —= rosia st
BaBar H—e—H 257:8;7:9;7:0
Belle v B——H 242.246.414.7

v BESIIi(a) —_— 238.9+17.315.0

c # BESHIb) . el 203030437
. o w Tiejv —3 34541109152
D; (o CLEO-¢ 1(m)v 270.1+16.8+4.7
s 2 e, T(p)v 249.8+12.3+5.6
5 % e Tie)v 540.1113.3516.1

[—————
=
——1
T(u)v F————ai— 235.7+11.1£13.0
H—==H
e E——_
H—e—
==

T(e)v 246.817.6-,

Belle T{p)v 257.3¢3.1_‘17§i

2 o(x)v 261 .7i9.3f;:‘°

G2 m2 BESIl(a) r({x)v 193454111

B(DS—I- . & g—&— I/g) . = fD2 ’Vcs|2TDs MDS m% = _25 BESII(b) (r)v 243.0+5.8+4.1
MD Hv [ | 244.91+2.4+2.7

2 Average Tv Hed 247.413.1:3.2
L ‘rV+TV L - L0 215'9%1'9%2'1 I

_. in addition to Dj — (v few hadronic decay modes were 200 250 300
considered fp, [Vl (MeV)


https://arxiv.org/abs/1307.6240
http://belle.kek.jp/secured/belle_note/gn1244/

Method overview

— reconstruct events of form e+

— two steps: - inclusive Dj reconstruction (no constraints on D;L) for Br normalization

\x_[)g—

— within the inclusive D;L sample search for D: — [ ofinterest

Inclusive D reconstruction

~ D44y modes considered:

MVAs (NeuroBayes) trained to
improve selection for each mode

- Kaon to conserve strangeness
K =K*, K2

- for D;,, = A, additional
proton required in event

DY modes B [%]
K7t 3.9
K—ntn0 13.9
K ntntn™ 8.1
K ntrtnx0 4.2
Kg?r+ﬂ_ 2.9
Kgﬂ+7r_7r0 5.4
Sum 38.4

D' modes | B [%]
K-ntnt 9.4
K-—ntrtg0 6.1
Kont 1.5
Ko trd 6.9
Kgi'TJr?rJr?r_ 3.1
KtK—nt 1.0
Sum 28.0

~

A} modes | B [%)]
pK T 5.0
pK—ntrad 3.4
pK?, 1.1
Amt 1.1
Anta0 3.6
Antrata~ 2.6
Sum 16.8

+ p*t -5 D%t D% D*0 5 POr—, DO~

11



Method overview

Dy

: : _ : + 0 + + +0 s i + _+._0
- fragmentation system: X, = nothing, 7, 7°, n~n~, 77", 7w, 7o w
. . %k . . 2
— inclusive D : calculate Miss(Diag Ktrag Xtrag) = \/ [Pet + Pe— = PDiag = PKrag — PXtragl
. 0
Xrag = T (Signal MC) Xfrag = T
xdm = 1001 xdm = 1008
_ RMS = 0.08079 c1bkg = 0.918 £ 0.013 _ RMS = 0.09662 c1bkg = 0.922£0.021
2 2000 FMean = 2.147 11&{, c2bkg =-0.1938 £ 0.023 = [Mean = 2.163 c2bkg = -0.0121 0.038
e FEntries = 54951 : c3bkg =-0.1698 = 0.013 S 600 Eniries = 21507 c3bkg =-0.1175 +0.020
8 18005 f= 0.6494 + 0.0054 8 E f= 0.477+0.014
S 1600~ mDSSTO = 2.11973 +0.00031 2 s mDSSTO = 2.12306 = 0.00088
£ 1400 w= 0.04232 + 0.00034 £ wol w = 0,0498 + 0.0011
E 1200~ E E
1000 — 300—
800 — =
600~ 2000~
400 — F
E 100—
200 _ E i ;
0 s 1 il AP Ll [P P PP B | 01: I RPN N ST BN BN R B |
1.9 1.95 2 2.05 21 215 2.2 2.25 2.3 235 19 195 2 2,05 21 2.25 23 235
Ds* recoil mass (GeV) Ds* recoil mass (GeV)

2.15 L

o8

— select one D’ candidate in event; closest to true D; mass and cut

— mass constrained vertex
constrained to ™ D*

fit is performed to DiogK X fraq SYystem with Mmiss(DtagKXfrag)

_. greatly improves the mass resolution of inclusive DD peak!
12



Method overview

- inclusive [ : - search for 7y (E,>0.12 GeV') outside of Dy, KX frq4

- require Pmiss(DiagK X fragy) > 2.8 GeV

- evaluate and plot MmiSS(DmgKXfm note the 7y

Events / ( 0.002 GeV )

Pull

Inclusive D, Signal Xfrag =T

[ ot | |

E R T X
Moies(D,, KXy og7) [GEV]

\

DYy

13



Events / ( 0.002 GeV )

Pull

Events / ( 0.002 GeV )

Pull

Events / ( 0.002 GeV )

Pull

x10° X0
8 nclusive D, Signal Xiag=nothing | = | Inclusive D, Signal
2 ructed 10} )
D, — Dr' | | g [ DD |
4~  Wrongy | | S Wrong 1 '
y from n° o a v from n°
2 | 2
52
>
w
0 0
5F = 5F
S
0 f pigh & 0 ;
-3 S I [, PR T 5
1.85 1.9 1.95 2 .05
Mmlss(DtagKXfragy) [GeV]
10° - 8><1oG
Inclusive D, Signal Xf,ag =m0 3 Inclusive D, Signal X,rag =TI
Mis nstrt s 1) Tis- 2
4 b, -pr P 6 D, Dn
Wrong y e Wrong y
y from o o a v from o
2 2
Si2
>
w
0 0
5 _5
A ]
0} g on
-5 -5

x10°
—
10— mnclusive D, Signal Kirag =110 > 15 Inclusive D, Signal Xirag = nnn®
» 8 1 s
r D, D’ N
; o D~ Dr
‘\\rmnj: Y, 2 i Wrong |
yfromn o v from T
5 )
—
2]
=
c
[
>
w
0 0
5F _5
0 = A ¥
7 a oF A p :
-5 Sk 1 peli el i BT rilr

1.85 1.9

2 2.05
Mmlss(Dtangfragv) [GeV]

2 2,05
M iss(D, KX o07) [GeV]

Fit to Mpiss(Drag KXfragy) for each
Xfrag:

@ Histogram MC templates
(6 categories)

@ Peak resolution calibrated using
real data

@ Good description of the observed
distributions achieved

Summed all together

NP = 94360 + 1310(stat.) = 1450(syst.)

14



Reconstruction of exclusive D; final states and branching fraction determination

— within the reconstructed inclusive sample we try to identify and count Dy — f decays from the
tracks and clusters in the RestOfEvent of D,,, K X #4457

~ nominally only events in M,,;ss(Diaq K X frqg7) signal window (red lines on previous slide)
are considered

— after N(Dj — f) ininculsive sample is determined Branching fraction is obtained as

N(D7 — f)
N}S: ' fbias : E(Dj_ — f‘lIlCl Dj)

rec. eff. for D} — f
given correct inclusive D

B(D} — f) =

From MC one can see that inclusive D;Lrec_ .
(i.e. correct Dy, K X fy447y reconstruction) Correction factor  ‘“tag” efficiency in D, — fevents

depends on [ incl ]
P f EDS—)-f

_— | N foias = .
- inclusive sample is therefore not truly inclusive! = [Zi B(Ds—%l)s’ggl_ﬁ]

average inclusive efficiency

— determined from MC 15



Signal N(Dj — K7K+7r+) == 4094:|: 123
D* — D{n" —» KK'n*yy
Combinatorial Background

@

o

)
|

Df - KTK—n™

=
o
o

— require exactly 3 tracks in tag ROE + PID

N
o
o

Events / ( 0.002 GeV )

- fit to exclusive D7 invariant mass M (K K7y)

Pull
o © v

B(Df - K~ K*n%) = (5.06 £ 0.15(stat.) £ 0.21(syst.)) x 1072 ST e o o
M(KKny) [GeV]

— now superseded by BESIII measurement (2403.19256)

+ + _ D —» nr*
D s N S| sl N(D — nnt) = 788 & 59
(O] Tls'ue D, Background
. . . . S 200 [ Combinatorial Background
- singe pion required in tag ROE s |
) 5 % 100[—
- fit Mmiss (DtagKXf""agfyﬂ-) E
- do not reconstruct n explicitly — increase efficiency -k
g O [HER e H  wh HA t e e
'50"'0.2"'0.4'"o.'e"'zo.s
B(DF — nr™) = (1.82 + 0.14(stat.) & 0.07(syst.)) x 1072 Mriss(D o KXyragt) [GEV7]

16


https://arxiv.org/pdf/2403.19256

Signal
True D, Background
Combinatorial Background

o
=
|

D;_ — €+Vg

N(Df — pv,) =492 £ 26

— require 1 charged track in tag ROE with
muon/electron PID selection

N
o

Events / ( 0.01 GeV?)
=
o
[

: 2
— fit Mmiss (DtagKXfTagfygi)
0
- since single missing v signal should peak 5 i-
at mi3320 Q. -5 i | | | A | | ! ! | ! ) . .
-0.2 0 0.2 0.4 0.6
Miies(D,, KXagtht) (GEV?)

B(D} — [,L+V#) = (5.31 & 0.28(stat.) £ 0.20(syst.)) x 1073

{; 207 v _g
Superseded by BESIII (2307.14585) T obs —
Bpt iy, = (0.5294+0.0108)% (Nsig ~ 2500) S
2 w0
B(DF = etr.) < 1.0 (0.83) x 107 at 95 (90)% C.L. ‘§ 5
(still best UL; ~3x better than BaBar) B 0
= 5F
g °F
S E | L 1 L | L L . 1 . . L | L L .
-0.2 0 0.2 0.4 ) ‘?.6
Mlzniss(DtagKfragxfragy e) (Gev lc ) i7


https://arxiv.org/pdf/2307.14585

- -
D — 17v;

+ + P
D; = t'v,— eV Vv,

N(DF - 7t (et)y,) = 952 £59 &=

T Cross-feed
True D, Background
Combinatorial Background

- Treconstructed in 3 decay modes:
T — pvv, T — evy, T — v (46% of total)
- one track in tag ROE with corresponding PID

Events / ( 0.05 GeV )

- due to multiple v's these events do not peak at O!

Pull

- fit on Exc; is performed instead using templates
from MC

Ds — TV, — WV Vv, D = t'v, = T'V,v,

(%]
(=]
o

— + + + _ Signal

N(Ds =T (,LL )VT) - 758 :}: 48 T Cross-feed
True D, Background
Combinatorial Background

B Signal

N(D;_ — T+ (7T+)l/1-) = 496 +£ 35 1 Cross-teed
True D, Background
Combinatorial Background

n
o
o

ary
o
o

Events / ( 0.05 GeV)
S
o

Events / ( 0.05 GeV )
&
o

o




- -
D — 17v;

— obtained branching fractions: 7 decay mode B(DF — 77v;) [x1077]
oo 5.37 +0.3370 %
Y 5.88 4 0.37+0 2%
. 5.96 4+ 0.4275:33
Combination 5.70 + 0.21f8:§é

- largest systematics originates from the Erc., templates, e.g. peaking backgrounds D — K%ty
with K, that deposits little or no energy in ECL etc.

- extraction of D, decay constant
o, = 1 ) \/SWB(D? — ) g = (255.5 £ 4.2(stat.) £ 4.8(syst.) £ 1.8(p.)) MeV
|Ves|

2 mp.T
Grpmy (1 - Ds7Ds

- LFU test rP: =10.73 + 0.69(stat.) " 25 (syst.) (RM ~ 9.75)

- these are also superseded by BESIII measurements (2303.12600) Bp+_,+,, = (5.32 £ 0.07 £ 0.07)%

— many syst. uncert. will improve with larger stat. @ Belle I 19


https://arxiv.org/abs/2303.12600

D" — invisible at Belle (1)

* In SM, heavy (B or D) decays to vv is helicity suppressed with an expected branching
fraction of Br(D? — vv) = 1.1 - 1073°, which is beyond the reach of current collider
experiments.

Figure1: Scheme of helicity suppressing Figure2: Feynman diagram for D° - vv

* Therefore, search for D° — invisible final states is sensitive to new physics
(by C. Kim)
— published Belle result from 2017 (Y.-T. Lai): 1611.09455, BN

- ongoing Belle Il effort by C. Kim (Yonsei): BELLE2-NOTE-PH-2025-003

20


https://arxiv.org/abs/1611.09455
https://belle.kek.jp/secured/belle_note/gn1410/BN1410_v1.92.pdf
https://docs.belle2.org/files/4304/BELLE2-NOTE-PH-2025-003/3/BELLE2-NOTE-PH-2025-003.pdf

Measurement strategy

—/k

ete™ — ¢ — D XgogD

Tag side ( Dif, > Diyy(—» K ntn*)n®)

/

- . —*— —0
i with DSig — D_.

S1

sig''s

(

\.

ROE(Rest Of Event) '\

|, Signal side D°

(recoiled D°)

(by C. Kim)
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X frag modes

D)+ D(*)0
nothing( KK ™) T (KTK™)
(KT K™) rtad(KTK™)
7t (KTK™) Tt T (KTK™)

(KT K™)

tag Modes

DO decay p* (GeV/e)|| DT decay |p* (GeV/c)
K nt > 2.3 K ntnt > 2.3

K ntq’ >25 |[Katata | >25
K-nntgt > 2.3 Kort > 2.3
K-rntrta®| >25 KQntn? > 2.4
Kntn™ > 2.3 Klrtata™ > 24
Kintr a° >25 |[K'K «t > 2.3
A7 decay p* (GeV/e)||DF decay |p* (GeV/c)
pK—nt >23 ||[KTK 7t > 2.3
pK a0 > 2.5 K{K™* > 2.3
pK2 >23 ||K§K%rt > 2.3
Art >23 |[KTK ntax’| >25
Artr? >25 ||KSK ntnt| >24
Antata— > 2.3

A D+
TP Kg? WOng
7t 70p Tt K, 0K~
mtonTp 7T+7r_Kg, 71'+7T_7T0ng

rtr at K~

+D* fromD + (77, 7%, ~)

22



— standard selections are applied (PID, ©°, D inv. masses)
+for D) tags mass difference |M(Dy,)) — M(D(y))| < 307cs

— foreach Dyqq X rrqq cOmbination the missing mass

Mmiss(DiagX frag) = \/Ipe+ + Pe— — DDy, — PX1ra,|?> s required to be within the selected
window of D*~ mass

— this is a sample of recoiling D*~

~finally 7 is searched for outside of the Dyq4.X fr-qq System and

2

Mmiss(Dtangragﬂ-s_> — \/’peﬂ' + Pe- “ PDiog T PXfrag _pws_

is obtained from kinematic fit where M,,;ss(DiagX frag) iS cOnstrained to 170 p«—

_ events with DY recoiling from Dyiog X fragm, Will form a sharp peak around 1M po

23



Inclusive D’ sample

10° Belle data (924 fb-1)

&> [
O 140H o Data n
> r . Y
Q — | m— Fit result
E 120 Inclusive D°
™ | | e Background
S 100 v Notice the
2 | oy ~1MeV
o Boi_
w
su:—
40:—
201,
i i 1494 - :
AT 694667 525 inclusive D° decays
1.856 1.858 1.86 1.862 1.864 1.866 1.868 1.87

M, [GeV/c?]



Search for D' — invisible signal

—in events from inclusive D’ sample, no remaining final state particles (out of D, , X ¢,.q,7 )
. . 0 S
are required (events with charged tracks, w~, K, are vetoed)

- for the remaining 2D ML fit is performed in M po, E'pc, to determine signal yield
- in addition to signal, background with true D° and non-D° background are considered

- Ercr templates are obtained from MC, while M po peak shape is fixed form inclusive fit

P S e Data
z\ig 180:— v Daa % | | == Fit result |
/\/ 6 3+225 %150‘_—Fitresult G | -Slgnal +
. - — N Si I 0y 200 " D background
S ,Lg S 2 1 . 0 = E - D;g::ckground «© non-D° background + + H
F 1400 non-D° background ‘:?-_’ + +
(2]
N 1 g 150 : '
B— i :
incl.
E X NDO 100 ——_— :
sof =
U \\\\\ ]IIIII\IIII\III"N.I\N IIIII 'I"”\”'”!"Iil\ DW'—Tt.III'II\i\ll‘[\l\il\li\lli\llil\\il
1.84 1845 1.85 1.855 1.86 1.865 1.87 1.875 0 020406 08 1 12 14 16 1.8 2

M, [GeV/c?] Egc, [GeV]



~ rec. efficiency is (62.475%)%

(this is effectively eff. of the vetoes)

— calibrated on the sample with
D 5 K nt

— upper limit is determined by

/0 M (BB - 0.9 /0 L(B)dB

ADB - total systematics on B

s!(,g.? Megfcz)

1000

1

Likelihood

(=]
(=]
T T

=]
[=]
1

S00—

e Data 002 e Data
— Fit result — Fit result
| | @ sional B signal
- | v D® background . D° background
non-D° background non-D° background

(=1
(=)

Events/(0.35 G%V)

-
o
o
(=)

34 1.845 1.85 1.855 1.86 1.865 1.87 1875 0 02 04 06 08 1 12 14 1618
M, [GeV/c?] E.., [GeV]

The dominant systematics
comes from Exc, modeling of
backgrounds

L AR R AT AR B
900 80 60 40 20 0 20 40 60 80 100
N

'sig

B(D" — invisible) < 9.4 x 107> @ 90%C.L. 26



PRL 113, 042002 (2014)

N B Belle note (A.Zupanc et al.)
Measurement of absolute branching fraction of A7 — pK ™

- this channel is often reference mode for measurements of A branching fractions (to any mode)

— in addition it is most often used mode in measurements of b-flavored mesons in baryons to
final states containing A#

_ _ N(AF — pK—nT)
~ simi BA] — pK~ ) = 5
similarly as before absolute Br is determined from B(A] — pK™7™) N fone(AF o pK7)
+

inc

~ where e e~ — cc — Q(*)Xfmgﬁj\;r is used to obtain the inclusive A, sample
»

D ;D*— In principle any even
number of K + any
number of 7's — only

one 7T " actually used

— kinematic fit is performed to each D(*)Wp which constrains particle to originate from common
point in IP region and D mass is constrained to its nominal value

27


http://belle.kek.jp/secured/belle_note/gn1313/
https://link.aps.org/abstract/PRL/v113/e042002
http://belle.kek.jp/secured/belle_note/gn1313/

~ !
(a) RS sample oM 40 MeV!

— events are split into
right sign (RS) D*)~prt
wrong sign (WS) D®~pr~ and D™ +pr—

Cannot contain correct A,!
(zero charge sum + baryon + charm consv.)

N

(=

=

(=]
!

M'SS,ng X/‘/‘(/(/
particles

\\

Events / (5 MeV/c?)
)
o
o
J

*Combinatorial

*u
"~
.
.......

— tail in signal distribution (hi end) from st aet————
€+€_ — Céﬁ/ISH — DtaLngranpAg_n/ISH 2000 ~_ (b) WS Sample N
1000 | s S
AC — 1 1 ] 1
Nina = 36447 + 432 % 21 22 23 24 25
M, (D"pr) (GeV/c?)

- in tag ROE exactly 3 tracks are required and A;“ — pK ~ 7" is reconstructed

& ~400 — E :
© SB : | SR | : SB "
> F T 15 - rather than fitting M (pK ),
= : : . .
200 - = | : MmiSS(D(*)pw) is fitted for events in
P | | M (pK ) signal and sideband regions
5 | I I
1] 0= . ¥ . . i W

2.2 2.25 2.3 2,35

M(pKr) (GeV/c?) 28



M(pKm)SR

. these fits are performed in the same % 300~ (a) RS sample
way and with same parametrisations = |
as for inclusive sample, which largely & 2007
cancels related fit systematics 2 100-
c
(] L
~ finally number of events peaking in i 0-
both M (pK ) and M,,;ss(Dpr) 200
is obtained by sideband subtraction 10¢ e
0 ML = S L I S R
N(A} = pK—7t) = 1359 4 45 2 21 22 23 24 25
’ M,_._.(D"pn) (GeV/c?)
_ taking into account A+ — pK ~ 7 rec. eff. and N\,

B(A} — pK—nt) = (6.84 & 0.24(stat.) 02 (syst.)) %

- still on par and in slight tension with BESIII

5.84 £0.27 +0.23 6.3k ABLIKIM 2016 BES3 et e — A,A,, 4.599 GeV

6.84 +0.24 '3 1.4k ! ZUPANC 2014  BELL et e” — D prt recoil

M(pK7)BR

«— 100
(3]
S gol (b) RS sampleJr
m -
=
o
&
2
c
o
>
w
40 (d) WS sample
[ o T
20¢ +
2 21 22 23 24 25
() 2
M, ..(D"pr) (GeV/c?)
Source Uncertainty [%]
Tracking 1.1
Proton ID 0.4
Efficiency 1.1
Dalitz model 1.1
.f].)iaa 1.5
Bkg. subtraction J_“Rf)
Fit Model Y
+3.0

Total

—3.9
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ccbharFEl
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ccbarFEIl

- FEI is existing tool that is trained to efficiently reconstruct hadronic B decays.

—in the chain it is already reconstructing various charm states

—idea of ccbarFEl is to adjust FEI to reconstruct charm tags (the recoil of which is a single D(S), A, etc)

— target B modes in the last step of FEI are Y

" — Displaced ‘ Neutral ]
replaced with a list of target ccbar tags | Vertices Clusters
(specific for D), Ac, etc. inclusive samples) gt R "

— all stages of BDTs then retrained on %_.’ -
ccbar events y Al

: ot
€ ) /:. = €




FEI adjustments:

1. Check isSignal and mcErrors for cchar-Tag daughters.

2. Checkthat A_is not ancestor of ccbarfag daughters
o /

3. Check that all ccbarTag daughters

have the same "All Mother” p\ Z°

4, Count p\Z’ descendants which are
explicitly rec. by FEI
(ignore rad. photons)

ccbhar-Tag

nDaquZ= I + nDaug
N(Ac)pr =1+NA)

¢ ccbarTag

ccbarTag

Signal
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— BDT performance for signal/background separation mostly relies on product of signal
probabilities of reconstructed particles in ccbar tag

—some additional observables, e.g. angle between Dy,, momentum and Pmiss are included

FEI: event topology Momenta aligned

with respect to Dta
Momenta aligned P 5

with respect to

It
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100

wan

w0}

Mpiss (tagAc) for various types of tagAc

feiScore>0.3

feiScore>0.3

default modes

LambdaCTag.addChannel(
LambdaCTag.addChannel(
LambdaCTag.addChannel(
LambdaCTag.addChannel( [
LambdaCTag.addChannel(
LambdaCTag.addChannel(

LambdaCTagCharged.addChannel(['D@",
LambdaCTagCharged.addChannel(['Dx0",
LambdaCTagCharged.addChannel(['D+"',
LambdaCTagCharged.addChannel( [ 'Dx+",

LambdaCTagCharged.addChannel(['D_s
LambdaCTagCharged.addChannel(['D

LambdaCTagCharged.addChannel(['D@",
LambdaCTagCharged.addChannel(['Dx@",
LambdaCTagCharged.addChannel(['D+",
LambdaCTagCharged.addChannel( [ 'Dx+",
LambdaCTagCharged.addChannel(['D@",
LambdaCTagCharged.addChannel(['Dx0",

DEJ' 'p+'1])

'p+1)
'‘D+', 'p+' 'pi-'1)
D 'p+', pL—'l
'D_s 'p+', 'K-']
D

)
)
=

)

‘p+', 'pitt, ‘'pi-'l)

p+', 'pi+', 'pi-'l)
‘p+', 'pi-', 'pi+', 'pi-'l)
'‘pi-', 'pit+', 'pi-'l)
'K-', 'pit+', 'p )
K= pls, Epi=CT)
St R KECREKEE] )
'p+', 'K+', 'K-'1)
pi-', 'K+, 'K
p+', "pi-', 'K+',
‘p+', 'p+', ‘anti-p-'])

p+', ‘'anti-p-'l)

LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.
LambdaCTagExtra.

addltlonal A,

addChannel(["
addChannel(['La bdu7(~
addChanneL(L'Lam
addChannel(
addChannel(
addChannel(
addChannel(
(
(
(
(
(

[of

[

[ a_c+

['Lambda_c+
addChannel( ['Lambd
addChannel(['L
addChannel( [
addChannel( [
[

addChannel

feiScore>0.3

‘gamma‘]l)
[ELERS]
‘gamma’])

mma', 'gamma'l)
ie'])

'pi+', 'pi-', 'pi@', 'gamma'])

‘anti-p-'1)
‘anti-p-', 'pi@'l)




Data

Data

ccharFEl: Data VS MC all modes

Signal_MC: 460.95 / fb"-1, Purity_MC: 0.59 / Sig

feiScore > 03

2 sig
54 =1 Bkg
—/ Al

mRecaoil

< felScore > 0.7

Signal MC: 63.56 / fb~-1, Purity MC: 0.86 / Signal Data: 14.09 / fb~-1, Purity Data: 0.62

%107

3 sig
74 3 Bkg
— Al

mRecail

|_Data: 106.61 / fb™]1, Purity_Data: 0.29

MC15ri generic (validation 100 fb™)
10 fb™ Bucket37, 4S, rel-08-01-08, DB3224,

%107 x10?
| = sig Data
54 = Bkg 5 === Tot Data fit
- 5ig Data fit
—-=—- Tot MC fit - Bkg Data fit
4] ==- Bkg MCfit
| === Sig MC fit
4
3 a 3
a
21 2
1- 1
ol !:...___I_,..-=-ll==m-=‘E .

%107

mRecoil

| — Sig
74 =3 Bkg
— Al
g === TLMCHit
——- Bkg MC fit

| ==- Sig MC fit
il g
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mRecoil

10!
DaLa
7 4 === Tot Data fit & v
. SigDatafit Fit on data with fixed
- Bkg Data hit
= i shapes from MC
3
N
1
Qb FmEEmmen : 1
1.8 19 20

mRecoil




5/(S+B)

Comparison with ccbar tag reconstruction from previous measurements

MC . DATA
e 1 %  2.5X > 3.3X — o
0.s ."1 erlf:;:l_[ﬁ_fl
0.6 1 A\
0.4 M
1-;:‘ g e Data/MC large
0.4 @ 03 X " AL :/ discrepancy for
g “ A A atr
0.2 4 \“;r xh‘;_‘:h“nh
0.0 0.0 sl )
o 200 200 600 800 1000 1200 0 50 100 150 200 250 300 350
Sfb™-1 Sfb™-1
Yield MC | Purity Yield Data Purity
MC Data - there is ~ factor 4 difference in the inclusive
A .
e —_ - - ¢ yield between data and MC
Kristof | 94 13% 4 8% — still yield is improved compared to Zupanc
ccbarFEl analysis for_2.5x using “simple” modes on_Iy,
>02 205 (456) | 50 (47)% | 102 (150) 30 (28) % and 3.5x using more modes (at same purity)
>05 159 (183) 77 (75) % 44 (50) 46 (45) %
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Data / MC discrepancy

— total number of A./ fb-1 in ccbar MC agrees well with data

— contributions from individual fragmentation modes can be vastly different
- training on more data like sample (calibrate MC to represent data better)

— BDT input distributions for signal and backgrounds might differ greatly
- careful selection of BDTs input features (study data/mc discrepancies)

- a lot of technical work has been done to have ccbarFEI in basf2, now it is time to focus on
physics, data/mc understanding, optimizations etc.

- GREAT potential for further significant improvements of performance in data
(in MC ccbarFEl inclusive yield is 10x larger than in Belle analyses!)
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ccbarFEIl present overall picture

- Goal: have a tool that produces inclusive samples of charmed mesons and baryons and is
available to anyone in a similar way as B meson FEI is!

— ccbarFEl is already fully part of basf2 since light-2507-europa
— preliminary payloads with training weights are available for A_. and DTV tags

— usage is same as for FEI (find example steerings at /nome/belle2/kspenko/projects/ccharFEl LambdacC)
ccbarFEI_Dmesons

configuration = fei.config.FeiConfiguration(prefix='FEI_TEST', training=False, monitor=False)
feistate = fei.get pathcunflguratlun}

main.add path(feistate.path) ———p |particles = get_ccharLambdaC channels|(
specific=False,
. _ addPif=True, _
for plist in [|Lambda c+:ccharTag', 'Lambda c+:ccbarTagCharged', 'La]nb addCharged=True, ange', 'Lamb
ma.matchMCTruthTplist, path=main] addStrangness=True, 1
ma.variablesToNtuple( usePIDNN=False}
plist, ;
vari 'EI(ME%[ created tag lists N
extraInfo(SignalProbability)"', © feiScore>0.3
'extraInfo(decayModelID) ', '}/OU Can e,
'daughterProduct0f{extralnfo(SignalProbability))’, prOdUCe such pl

'pValueCombination0fDaughters{extraInfo(SignalProbability)) ", plot easily
'ccbarTagSignal',

'ccbarTagSignalSimplified',

'ccbarTagEventStatus', .

'ccbarTagSignalBinary', store tag side
'mRecoil'], related variables
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- Goal: have a tool that produces inclusive samples of charmed mesons and baryons and is
available to anyone in a similar way as B meson FEI is!

— ccbarFEl is already fully part of basf2 since light-2507-europa

- preliminary payloa “*raining weights are available for A, and DTV tags

— usage is same a u 17 ings at /home/belle2/kspenko/projects/ccbarFEI_LambdaC)

configuration = fei.config.FeiConfigurat

feistate = fei.get_path((particles] config
main.add_path(feistate.path) o

for plist in [[Lambda c+:ccbarTag', 'Lambda c+:ccharTagCharged', 'La]nE
ma.matchMCTruthTplist, path=main]
ma.variablesToNtuple(

addStrangness=True,
usePIDNN=False]

plist, ;

vari 'EI(ME%[ created tag lists N
extraInfo(SignalProbability)"', feiScore > 0.3
'extraInfo(decayModelID) ', '}éou Cane.g.
'daughterProduct0f{extralnfo(SignalProbability))’, Produce such

'pValueCombination0fDaughters{extraInfo(SignalProbability)) ", plot easily
'ccbarTagSignal',

'ccbarTagSignalSimplified',

'ccbarTagEventStatus',

'ccbarTagSignalBinary', store tag side
'mRecoil'], related variables




: /!
Conclusions /
e — @ e €
<!
— charm tagging is wonderful technique that enables charm P
measurements to final states with missing energy and to D, y
measure absolute branching fractions ‘7 Xiag.

- successfully exploited @ Belle (but somehow under the radar @ Belle Il so far)

— with more and more data in hand it will become increasingly important to have a
general charm tagger tool that is maintained and improved in collaboration wide effort (as FEI)

— ccbarFEl is a step in this direction, and it shows potential for big improvements in performance
w.r.t. methods used at Belle

- iIf interested in charm tagging please get in touch with ccbarFEI developers
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D,
: /!
Conclusions /
e — @ e €

<!
1
— charm tagging is wonderful technique that enables charm s
measurements to final states with missing energy and to D, y

measure absolute branching fractions ‘7 Xiag.

- successfully exploited @ Belle (but somehow under the radar @ Belle Il so far)

— with more and more data in hand it will become increasingly important to have a
general charm tagger tool that is maintained and improved in collaboration wide effort (as FEI)

— ccbarFEl is a step in this direction, and it shows potential for big improvements in performance
w.r.t. methods used at Belle

- iIf interested in charm tagging please get in touch with ccbarFEI developers

May I also give you one last bit of advice: Never say that you’ll give

a talk unless you know clearly what you’re going to talk about and

more or less what you’re going to say.

(Feynman’s commencement speech at Caltech (1974); it's a wonderful text, find it here)
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https://whatrocks.github.io/commencement-db/1974-richard-feynman-caltech/
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Source K Kt (%] K°K* (%] nnt %] efve %] phu, %] 71 (%)
Normalization +2.1 +2.1 +2.1 +2.1 +2.1 +2.1
Tag bias +1.4 +1.4 +1.4 +1.4 +1.4 +1.4
Tracking +1.1 +0.4 +0.4 +0.4 +0.4 +0.4
Particle 1D +2.6 +0.8 +1.1 +1.9 +2.0 +1.7
Efficiency +0.7 +0.7 +1.4 +4.3 +1.8 +0.8
Dalitz model +1.1

Fit model +0.8 +0.8 +2.2 +0.2 3
D7 background +0.6 +0.7 +0.8 +2.8
7 cross-feed +0.9
B(r — X) +0.2
Total syst. +4.1 +2.9 +3.9 +5.4 +3.8 o

Table 5. Summary of systematic uncertainties for the branching fraction measurements of D

decays. The total systematic error is calculated by summing the individual uncertainties in quadra-

ture,
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Estimated background yields

Background Source (e, (M), (M),
D} — nlty, 911.0+102.3 768.7 4 86.4 —~

DI — 'ty 49.5 +12.0 35.1+8.6 —

D} — ¢tty, 307.8+20.7 188.0+13.3 —

Df = K% "y, 242.6 £66.3  175.7+48.1 =

Df — K*% "y, 26.0+10.5  13.9+5.8 —

Df — KK/lTy, 59.24+14.5  33.1+8.0 -

D} — ptu, - 10.0£1.4 26.2+£3.7
DY - KK+ 18.5+2.5 40.54+4.9 132.34+9.2
DI — ¢n™ 11.2+2.1 14.8+2.5 —

D} — K*tKO 32.44+8.3 41.74+10.6 —

DI —»nn™ = - 398.24+24.2
DF — p'K* = - 185.1 4+ 34.9
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