Charm tagging

Luka Santelj (Ljubljana)

6th October, 2025 Belle II Physics Week

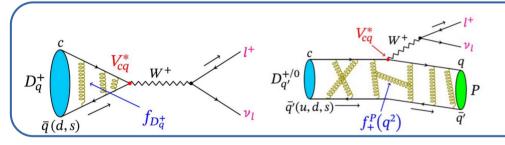
Disclaimers

Some were asking why I'm giving a talk on charm tagging?

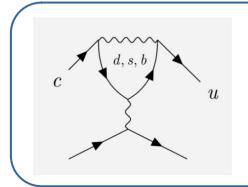
This talk is not on charm **flavor** tagging! (a.k.a. charm tagger)

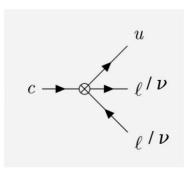
This is what I also wonder...:) (lack of real experts, ccbarFEI dev. in Ljubljana)

→ anyway I hope to bring this topic a bit more into light @ Belle II


Outline

- → intro
- → charm tagging idea
- \rightarrow learn from examples @ Belle: D_s^+ D^0 Λ_c^+
- → ccbarFEI
- → conclusions


Why and who can do charm


→ tomorrow do not miss (11:30): Charm decays with missing energy (NP and SM) by H.Gisbert!

- \rightarrow many unique opportunities for probing strong and weak interactions in the SM and beyond: CP violation, $D^0 \bar{D}^0$ mixing, (semi)leptonic decays, rare and forbidden decays, etc.
- → charm tagging @ B-factories is relevant from the context of measuring decays with missing energy and more generally in measuring absolute branching fractions

- → determine decay constants, form factors
- \rightarrow determine $|V_{cq}|$
- → LFU tests

FCNC process, e.g.

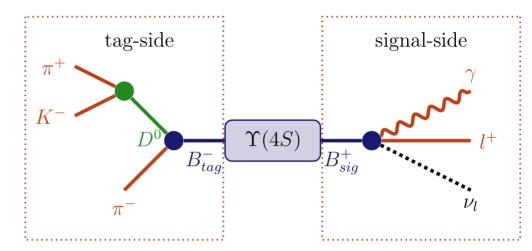
 $D \to \pi \nu \nu$ sensitive probe for NP contributions:

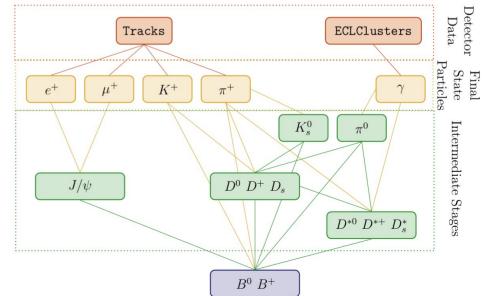
- → basically null test of the SM
- → unique in the up-type sector
- → poorly exp. explored!

Most of charm Br are measured relatively to normalization mode

$$\mathcal{B}(X \to Y) = \frac{N(X \to Y)}{N_X}$$

- \rightarrow in B decays N_B from B counting
- \rightarrow in charm N_X unknown
- → tagging provides a way for inclusive reconstruction

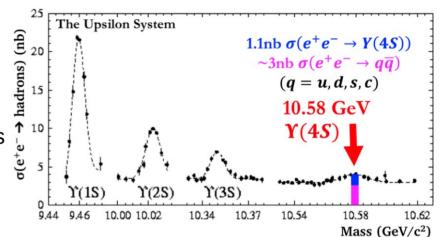

$$N_X \to N_{\rm incl}$$


Experiment	Machine	Operation	C.M.	Luminosity	$N_{\rm prod}$	Efficiency	Characters
B€SⅢ	$\begin{array}{c} BEPC\text{-}II \\ (e^+e^-) \end{array}$	2010-2011 (2021-) 2016-2019 2014+2020	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	2.9 $(8 \rightarrow 20)$ fb ⁻¹ 7.3 fb ⁻¹ 4.5 fb ⁻¹	$D^{0,+}\colon 10^7 (o 10^8) \ D_s^+\colon 5 imes 10^6 \ \Lambda_c^+\colon 0.8 imes 10^6 \ \bigstar^{\!$	~ 10-30% ★★★	 extremely clean environment quantum coherence pure D-beam, almost no background no CM boost, no time-dept analyses
Belle II	SuperKEKB (e^+e^-)	2019-	10.58 GeV	$0.4~(ightarrow50)~ab^{-1}$	$D^0\colon 6 imes 10^8 \ (o 10^{11}) \ D^+_{(s)}\colon 10^8 \ (o 10^{10}) \ \Lambda^+_c\colon 10^7 \ (o 10^9)$	O(1-10%)	clear event environmenthigh trigger efficiencygood-efficiency detection of neutrals
BELLE	KEKB (e ⁺ e ⁻)	1999-2010	10.58 GeV	1 ab $^{-1}$	D: 10 ⁹ Λ _c ⁺ : 10 ⁸ ★★☆	**	time-dependent analysissmaller cross-section than LHCb
rnep	LHC (<i>pp</i>)	2011,2012 2015-2018 (2022-2025,2029-)	7+8 TeV 13 TeV	$1+2 ext{ fb}^{-1} \ 6 ext{ fb}^{-1} \ (o 23 o 50)$	$ 5 \times 10^{12} \\ 10^{13} $ $ \bigstar \bigstar \bigstar $	O(0.1%) ★	 very large production cross-section large boost excellent time resolution dedicated trigger required

- → each of experiments has their advantages for different charm studies
- → at present BESIII may be hard to compete in many missing energy measurements
- → nonetheless, even at present (and especially in near future) Belle II has a great potential to produce competitive and leading results (especially with clever ideas and novel reconstruction techniques)

B tagging (B factories beloved)

- → K. Trabelsi will tell you everything and more about it tomorrow
- → exactly two B mesons produced
- → fully reconstructing one of the B's in an event gives you particles and kinematics of the other B
- → enables to identify final states with one or more neutrinos in the final state
- \rightarrow Full Event Interpretation (FEI) algorithm is nominally used to reconstruct B_{tag} 's with "high" efficiency

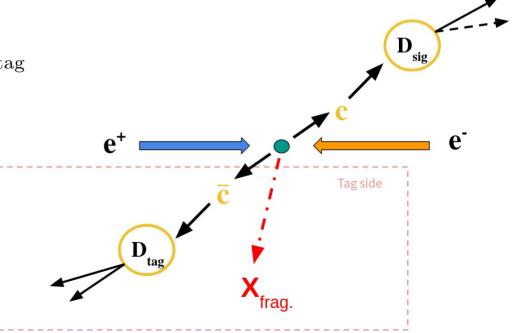


What about charm

- \rightarrow @ Belle II charmed hadrons are produced in B decays and in $e^+e^- \rightarrow c\bar{c}~(\sigma \sim 1.3 \mathrm{nb})$
- \rightarrow while charm from B can also be used for charm studies ccbar events are our interest $e^+e^- \rightarrow c\bar{c}$
- → following the B tagging idea let's consider

$$e^+e^- \rightarrow c\bar{c} \rightarrow X_{\rm tag}D_{\rm sig}$$

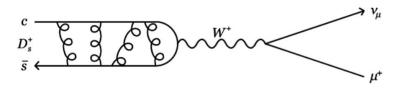
- ightarrow if $X_{
 m tag}$ is correctly reconstructed in its RestOfEvent we will find only decay products of $D_{sig}
 ightarrow f$ along with kinematic constraint $\ ec{p}_{D_{sig}} = ec{p}_{miss} \ (ec{p}_{miss} = ec{p}_{e^+} + ec{p}_{e^-} ec{p}_{X_{tag}})$
- → if we do not put any requirement on RestOfEvent and look at


$$M_{miss} = \sqrt{p_{miss}^2} \quad (p_{miss} = p_{e^+} + p_{e^-} - p_{X_{tag}}) \;\; {
m correctly \; reconstructed \; events \; will \; peak \; at } \;\; M(D_{sig})$$

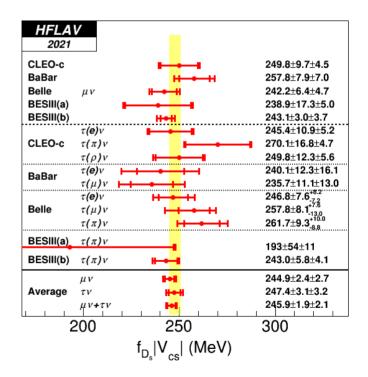
 \rightarrow the number of peaking events give the total number of D_{sig} 's in the sample (inclusive) which can is then used for absolute branching fraction calculation

What is in X_{tag} ?

charge, charmness, strangeness, baryon number of $X_{\mathrm{tag}} + D_{sig}$ must each add up to 0!


- $_{\rm}$ since there is plenty of energy available, $X_{\rm tag}$ contains additional particles next to $\bar{D}_{\rm tag}$ (fragmentation particles)
- $_{\rm}$ for each $D_{\rm sig}$ type of interest a collection of valid $X_{\rm tag}$'s can be used
- $_{\rm}$ ideally as many tag modes as possible are used as it determines size of inclusive $D_{\rm sig}$ sample

Examples


Branching fractions of leptonic and hadronic D_s^+ decays at Belle

- → this measurement is prime example of charm tagging technique at B-factories
- → references: arxiv:1307.6240, BelleNote (A. Zupanc)
- ightarrow main aim was determination of D_s decay constant $\,f_{D_s}$

$$\mathcal{B}(D_s^+ o \ell^+
u_\ell) = rac{G_F^2}{8\pi} f_{D_s}^2 |V_{cs}|^2 au_{D_s} M_{D_s} m_\ell^2 \left(1 - rac{m_\ell^2}{M_{D_s}^2}
ight)^2$$

 $_{\rightarrow}$ in addition to $D_s^+ \to \ell \nu$ few hadronic decay modes were considered

Method overview

ightarrow reconstruct events of form $e^+e^ightarrow c\overline{c}
ightarrow \overline{D}_{
m tag}KX_{
m frag}D_{
m s}^{*+}$

 \rightarrow two steps: \rightarrow inclusive D_s^+ reconstruction (no constraints on D_s^+) for Br normalization

 \rightarrow within the inclusive D_s^+ sample search for $D_s^+ \rightarrow f$ of interest

Inclusive D_s^+ reconstruction

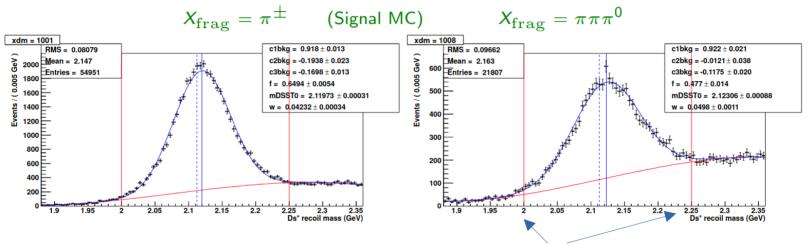
$\rightarrow D_{tag}$	modes considered
-----------------------	------------------

MVAs (NeuroBayes) trained to improve selection for each mode

→ Kaon to conserve strangeness

$$K=K^{\pm},\ K_S^0$$

 $_{\rightarrow}$ for $D_{tag}=\Lambda_{c}$ additional proton required in event

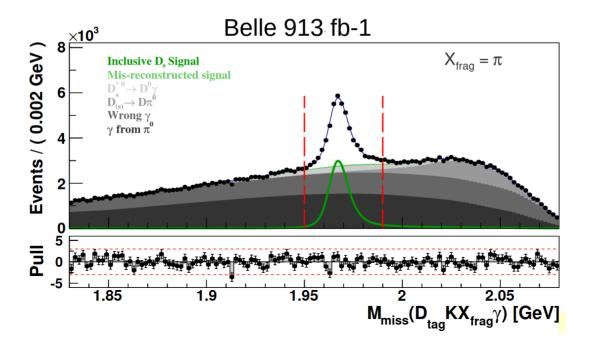

	D^0 modes	$\mid \mathcal{B} \mid \% \mid$	D^+ modes	$\mid \mathcal{B} \mid \% \mid$	Λ_c^+ modes	$\mathcal{B}~[\%]$
	$K^-\pi^+$	3.9	$K^-\pi^+\pi^+$	9.4	$pK^-\pi^+$	5.0
.do	$K^-\pi^+\pi^0$	13.9	$K^-\pi^+\pi^+\pi^0$	6.1	$pK^-\pi^+\pi^0$	3.4
de	$K^-\pi^+\pi^+\pi^-$	8.1	$K_S^0\pi^+$	1.5	pK_S^0	1.1
SS	$K^-\pi^+\pi^+\pi^-\pi^0$	4.2	$K_S^0\pi^+\pi^0$	6.9	$\Lambda\pi^+$	1.1
00	$K_S^0\pi^+\pi^-$	2.9	$K_S^0\pi^+\pi^+\pi^-$	3.1	$\Lambda \pi^+ \pi^0$	3.6
	$K_S^0\pi^+\pi^-\pi^0$	5.4	$\tilde{K^+}K^-\pi^+$	1.0	$\Lambda \pi^+ \pi^+ \pi^-$	2.6
	Sum	38.4	Sum	28.0	Sum	16.8

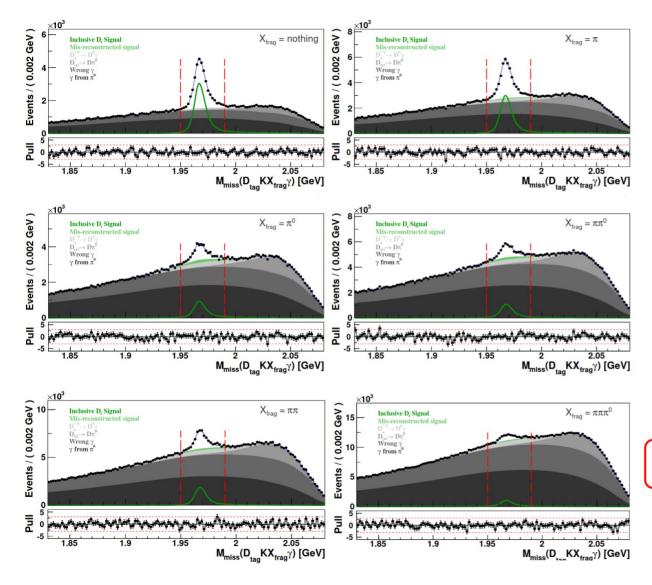
+ $D^{*+} \rightarrow D^0 \pi^+$, $D^+ \pi^0$; $D^{*0} \rightarrow D^0 \pi^-$, $D^0 \gamma$

$e^+e^- o c\overline{c} o \overline{D}_{ m tag}KX_{ m frag}D_s^{*+}$

Method overview

- \rightarrow fragmentation system: $X_{\text{frag}} = \text{nothing}, \ \pi^{\pm}, \ \pi^{0}, \ \pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{0}, \ \pi^{\pm}\pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{\pm}\pi^{0}$
- \rightarrow inclusive D_s^* : calculate $M_{\rm miss}(D_{\rm tag}K_{\rm frag}X_{\rm frag})=\sqrt{|p_{e^+}+p_{e^-}-p_{D_{\rm tag}}-p_{K_{\rm frag}}-p_{X_{\rm frag}}|^2}$




- \rightarrow select one D_s^* candidate in event: closest to true D_s^* mass and cut
- \rightarrow mass constrained vertex fit is performed to $~D_{tag}KX_{frag}~$ system with $~M_{miss}(D_{tag}KX_{frag})$ constrained to $m_{D_s^*}$
 - \rightarrow greatly improves the mass resolution of inclusive D_s peak!

$e^+e^- o c\overline{c} o \overline{D}_{ m tag}$ K $X_{ m frag} { extstyle D_s^{*+}} \ D_s^+$

Method overview

- \rightarrow inclusive D_s : search for γ $(E_{\gamma}{>}0.12~GeV)~$ outside of $D_{tag}KX_{frag}$
 - require $p_{miss}(D_{tag}KX_{frag}\gamma) > 2.8 \text{ GeV}$
 - evaluate and plot $M_{miss}(D_{tag}KX_{frag}\gamma)$ note the γ

Fit to $M_{
m miss}(D_{
m tag}KX_{
m frag}\gamma)$ for each $X_{
m frag}$:

- Histogram MC templates (6 categories)
- Peak resolution calibrated using real data
- Good description of the observed distributions achieved

Summed all together

$$N_{D_s}^{\rm inc} = 94360 \pm 1310 {\rm (stat.)} \pm 1450 {\rm (syst.)}$$

Reconstruction of exclusive D_s final states and branching fraction determination

- \to within the reconstructed inclusive sample we try to identify and count $D_s \to f$ decays from the tracks and clusters in the RestOfEvent of $D_{tag}KX_{frag}\gamma$
- \rightarrow nominally only events in $M_{miss}(D_{tag}KX_{frag}\gamma)$ signal window (red lines on previous slide) are considered
- \rightarrow after $N(D_s^+
 ightarrow f)$ in inculsive sample is determined Branching fraction is obtained as

$$\mathcal{B}(D_s^+ \to f) = \frac{N(D_s^+ \to f)}{N_{D_s}^{\text{inc}} \cdot f_{\text{bias}} \cdot \varepsilon(D_s^+ \to f|\text{incl. } D_s^+)}$$
rec. eff. for $D_s^+ \to f$
given correct inclusive D_s^+

From MC one can see that inclusive D_s^+ rec. eff. (i.e. correct $D_{tag}KX_{frag}\gamma$ reconstruction) depends on f

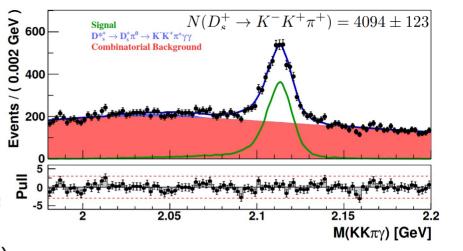
→ inclusive sample is therefore not truly inclusive!

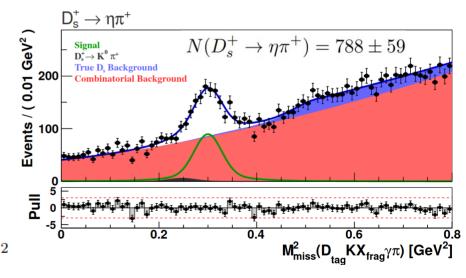
Correction factor "tag" efficiency in $D_s o f$ events $\varepsilon_{D_s o f}^{incl} = \frac{\varepsilon_{D_s o f}^{incl}}{\sum_i \mathcal{B}(D_s o i)\varepsilon_{D_s o f}^{incl}}$

average inclusive efficiency

$$D_s^+ \to K^+ K^- \pi^+$$

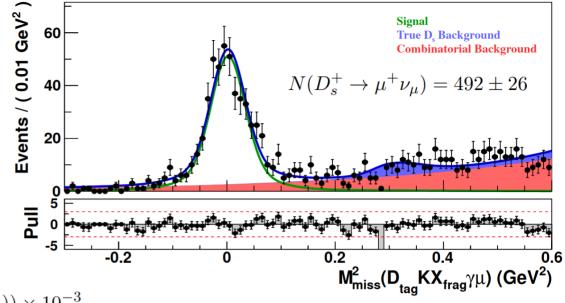
- → require exactly 3 tracks in tag ROE + PID
- $_{\dashv}$ fit to exclusive D_{s}^{*} invariant mass $M(KK\pi\gamma)$


$$\mathcal{B}(D_s^+ \to K^- K^+ \pi^+) = (5.06 \pm 0.15(\text{stat.}) \pm 0.21(\text{syst.})) \times 10^{-2}$$

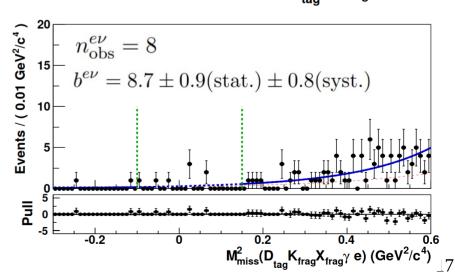

→ now superseded by BESIII measurement (2403.19256)

$$D_s^+ \to \eta \pi^+$$

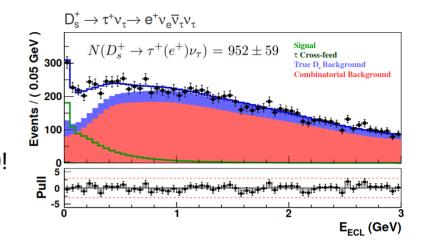
- → singe pion required in tag ROE
- \rightarrow fit $M_{miss}^2(D_{tag}KX_{frag}\gamma\pi)$
- \rightarrow do not reconstruct η explicitly \rightarrow increase efficiency

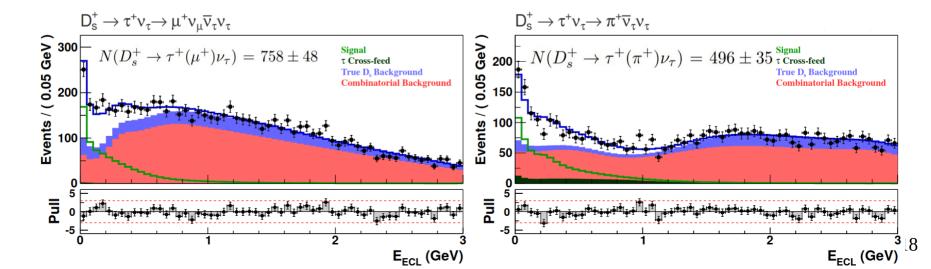

$$\mathcal{B}(D_s^+ \to \eta \pi^+) = (1.82 \pm 0.14(\text{stat.}) \pm 0.07(\text{syst.})) \times 10^{-2}$$

$$D_s^+ \to \ell^+ \nu_\ell$$


- → require 1 charged track in tag ROE with muon/electron PID selection
- \rightarrow fit $M_{miss}^2(D_{tag}KX_{frag}\gamma\ell^{\pm})$
- \rightarrow since single missing ν signal should peak at $M_{miss}^2{=}0$

$$\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (5.31 \pm 0.28 ({
m stat.}) \pm 0.20 ({
m syst.})) imes 10^{-3}$$
 Superseded by BESIII (2307.14585) $\mathcal{B}_{D_s^+ \to \mu^+ \nu_\mu} = (0.5294 \pm 0.0108)\% \, (N_{sig} \sim 2500)$


 $\mathcal{B}(D_s^+ \to e^+ \nu_e) < 1.0 \ (0.83) \times 10^{-4} \ \text{at } 95 \ (90)\% \ \text{C.L.}$


(still best UL; ~3x better than BaBar)

$$D_s^+ \to \tau^+ \nu_{\tau}$$

- au reconstructed in 3 decay modes: $au au \mu \nu \nu, \ au au e \nu \nu, \ au au \pi \nu \ (46\% \ of \ total)$
- → one track in tag ROE with corresponding PID
- \rightarrow due to multiple ν 's these events do not peak at 0!
- ightarrow fit on $E_{\it ECL}$ is performed instead using templates from MC

$$D_s^+ \to \tau^+ \nu_{\tau}$$

→ obtained branching fractions:

au decay mode	$\mathcal{B}(D_s^+ o au^+ u_ au) \ [imes 10^{-2}]$
eνν	$5.37 \pm 0.33^{+0.35}_{-0.30}$
$\mu u u$	$5.88 \pm 0.37^{+0.34}_{-0.58} \ 5.96 \pm 0.42^{+0.45}_{-0.39}$
πu	$5.96 \pm 0.42^{+0.45}_{-0.39}$
Combination	$5.70 \pm 0.21^{+0.31}_{-0.30}$

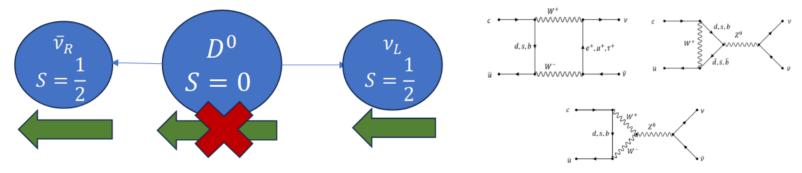
- ightharpoonup largest systematics originates from the E_{ECL} templates, e.g. peaking backgrounds $D_s^+
 ightharpoonup \overline{K}^0 \ell^+ \nu_\ell$ with K_L that deposits little or no energy in ECL etc.
- \rightarrow extraction of D_s decay constant

$$f_{D_s} = \frac{1}{G_F m_\ell \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right) |V_{cs}|} \sqrt{\frac{8\pi \mathcal{B}(D_s^+ \to \ell^+ \nu_\ell)}{m_{D_s} \tau_{D_s}}} \qquad f_{D_s} = (255.5 \pm 4.2 (\mathrm{stat.}) \pm 4.8 (\mathrm{syst.}) \pm 1.8 (\tau_{D_s})) \text{ MeV}$$

- \rightarrow LFU test $R_{\tau/\mu}^{D_s} = 10.73 \pm 0.69 (\mathrm{stat.})_{-0.53}^{+0.56} (\mathrm{syst.})$ ($R^{SM} \sim 9.75$)
- \rightarrow these are also superseded by BESIII measurements (2303.12600) $\mathcal{B}_{D_s^+ \rightarrow \tau^+ \nu_{\tau}} = (5.32 \pm 0.07 \pm 0.07)\%$
- → many syst. uncert. will improve with larger stat. @ Belle II

$D^0 \rightarrow \text{invisible}$ at Belle (II)

• In SM, heavy (B or D) decays to $\nu\bar{\nu}$ is helicity suppressed with an expected branching fraction of $Br(D^0 \to \nu\bar{\nu}) = 1.1 \cdot 10^{-30}$, which is beyond the reach of current collider experiments.



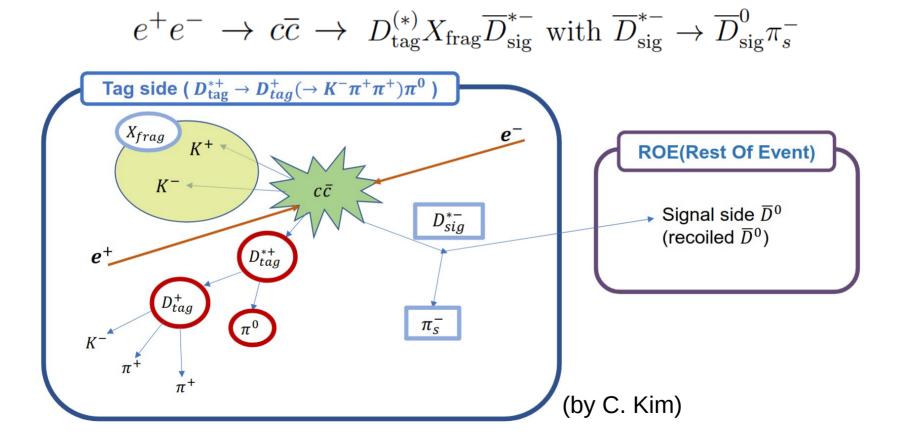

Figure 1: Scheme of helicity suppressing

Figure2: Feynman diagram for $D^0 \rightarrow \nu \bar{\nu}$

- Therefore, search for $D^0 \rightarrow$ invisible final states is sensitive to new physics
- (by C. Kim)

- → published Belle result from 2017 (Y.-T. Lai): 1611.09455, BN
- → ongoing Belle II effort by C. Kim (Yonsei): BELLE2-NOTE-PH-2025-003

Measurement strategy

 $D_{tag}^{(*)}$ modes

D^0 decay	$p^* (\text{GeV}/c)$	D^+ decay	$p^* (\mathrm{GeV}/c)$
$K^-\pi^+$	> 2.3	$K^-\pi^+\pi^+$	> 2.3
$K^-\pi^+\pi^0$	> 2.5	$K^-\pi^+\pi^+\pi^0$	> 2.5
$K^-\pi^-\pi^+\pi^+$	> 2.3	$K_S^0\pi^+$	> 2.3
$K^-\pi^-\pi^+\pi^+\pi^0$	> 2.5	$K_S^0\pi^+\pi^0$	> 2.4
$K^0_S\pi^+\pi^-$	> 2.3	$K_S^0\pi^+\pi^+\pi^-$	> 2.4
$K_S^0\pi^+\pi^-\pi^0$	> 2.5	$K^+K^-\pi^+$	> 2.3

Λ_c^+ decay	$p^* (\text{GeV}/c)$	D_s^+ decay	$p^* (\text{GeV}/c)$
$pK^-\pi^+$	> 2.3	$K^+K^-\pi^+$	> 2.3
$pK^-\pi^+\pi^0$	> 2.5	$K_S^0K^+$	> 2.3
pK_S^0	> 2.3	$K_S^0 K_S^0 \pi^+$	> 2.3
$\Lambda\pi^+$	> 2.3	$K^+K^-\pi^+\pi^0$	> 2.5
$\Lambda \pi^+ \pi^0$	> 2.5	$K_S^0K^-\pi^+\pi^+$	> 2.4
$\Lambda \pi^+ \pi^+ \pi^-$	> 2.3		

X_{frag} modes

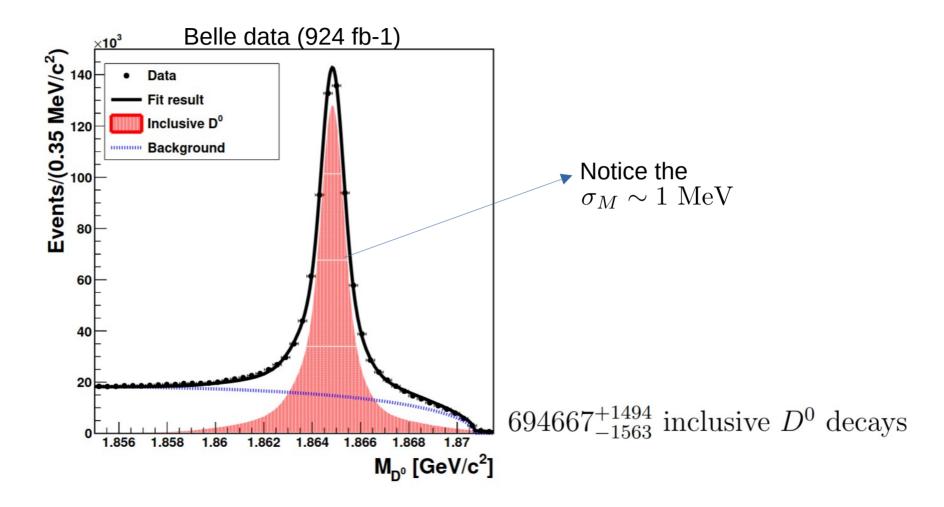
	<u>~</u>
$D^{(*)+}$	$D^{(*)0}$
$nothing(K^+K^-)$	$\pi^+(K^+K^-)$
$\pi^0(K^+K^-)$	$\pi^+\pi^0(K^+K^-)$
$\pi^+\pi^-(K^+K^-)$	$\pi^+\pi^-\pi^+(K^+K^-)$
$\pi^+\pi^-\pi^0(K^+K^-)$	

Λ_c^+	$D_s^{(*)+}$			
$\pi^+\overline{p}$	$K_S^0,$	$\pi^0 K_S^0$		
$\pi^+\pi^0\overline{p}$	$\pi^+K^-,$	$\pi^+\pi^0K^-$		
$\pi^+\pi^-\pi^+\overline{p}$	$\pi^+\pi^-K_S^0,$	$\pi^+\pi^-\pi^0K_S^0$		
	$\pi^+\pi^-\pi^+K^-$			

- \rightarrow standard selections are applied (PID, $\pi^{\scriptscriptstyle 0}$, $D_{(s)}$ inv. masses) + for $D^*_{(s)}$ tags mass difference $|M(D^*_{(s)})-M(D_{(s)})|<3\sigma_{res}$
- \rightarrow for each $D_{tag}X_{frag}$ combination the missing mass

$$M_{miss}(D_{tag}X_{frag}) = \sqrt{|p_{e^{+}} + p_{e^{-}} - p_{D_{tag}} - p_{X_{frag}}|^{2}}$$

is required to be within the selected window of D^{*-} mass

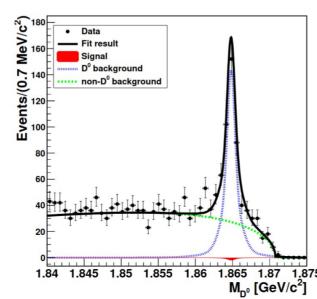

- \rightarrow this is a sample of recoiling D^{*-}
- \rightarrow finally π_s^- is searched for outside of the $D_{tag}X_{frag}$ system and

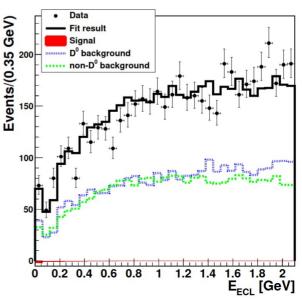
$$M_{miss}(D_{tag}X_{frag}\pi_s^-) = \sqrt{|p_{e^+} + p_{e^-} - p_{D_{tag}} - p_{X_{frag}} - p_{\pi_s^-}|^2}$$

is obtained from kinematic fit where $M_{miss}(D_{tag}X_{frag})$ is constrained to $m_{D^{*-}}$

 $_ op$ events with D^0 recoiling from $D_{tag}X_{frag}\pi_s^-$ will form a sharp peak around m_{D^0}

Inclusive D^0 sample

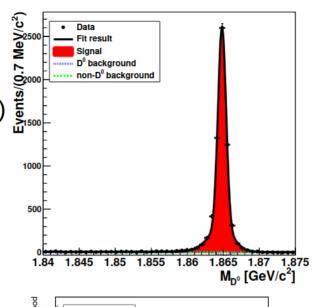


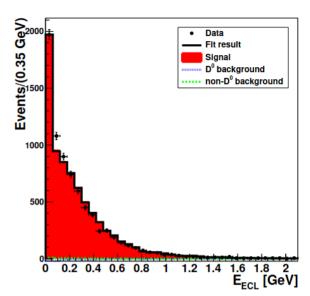

Search for $D^0 \rightarrow invisible$ signal

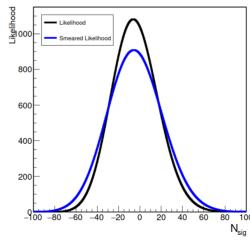
- $_{\rm o}$ in events from inclusive $D^{_0}$ sample, no remaining final state particles (out of $D_{tag}X_{frag}\pi_s^-$) are required (events with charged tracks, π^0, K_L are vetoed)
- $_{
 m \rightarrow}$ for the remaining 2D ML fit is performed in $\,M_{D^0}, E_{ECL}\,$ to determine signal yield
- \rightarrow in addition to signal, background with true D^0 and non- D^0 background are considered
- \rightarrow E_{ECL} templates are obtained from MC, while M_{D^0} peak shape is fixed form inclusive fit

$$N_{sig} = -6.3^{+22.5}_{-21.0}$$

$$\mathcal{B} = rac{N_{ ext{sig}}}{\epsilon imes N_{D^0}^{ ext{incl.}}}$$




- \rightarrow rec. efficiency is $(62.4^{+3.2}_{-3.1})\%$ (this is effectively eff. of the vetoes)
- \rightarrow calibrated on the sample with $D^0 \rightarrow K^-\pi^+$
- → upper limit is determined by


$$\int_0^{\mathcal{B}_{UL}} \mathcal{L}(\mathcal{B}) d\mathcal{B} = 0.9 \int_0^1 \mathcal{L}(\mathcal{B}) d\mathcal{B}$$

$$\mathcal{L}_{\text{smear}}(\mathcal{B}) = \int_{0}^{1} \mathcal{L}(\mathcal{B}') \frac{e^{-\frac{(\mathcal{B}-\mathcal{B}')^{2}}{2\Delta\mathcal{B}^{2}}}}{\sqrt{2\pi}\Delta\mathcal{B}} d\mathcal{B}'$$

 $\Delta \mathcal{B}$ - total systematics on \mathcal{B}

The dominant systematics comes from $E_{\it ECL}$ modeling of backgrounds

$$\mathcal{B}(D^0 \to invisible) < 9.4 \times 10^{-5} @ 90\% \text{C.L.}$$

Belle note (A.Zupanc et al.)

Measurement of absolute branching fraction of $\ \Lambda_c^+ \to p K^- \pi^+$

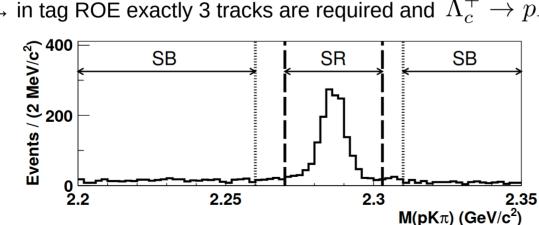
- \rightarrow this channel is often reference mode for measurements of Λ_c^+ branching fractions (to any mode)
- → in addition it is most often used mode in measurements of b-flavored mesons in baryons to final states containing Λ_c^+
- ightarrow similarly as before absolute Br is determined from $\mathcal{B}(\Lambda_c^+ o pK^-\pi^+) = \frac{N(\Lambda_c^+ o pK^-\pi^+)}{N_{\mathrm{inc}}^{\Lambda_c}f_{\mathrm{bias}}\varepsilon(\Lambda_c^+ o pK^-\pi^+)}$

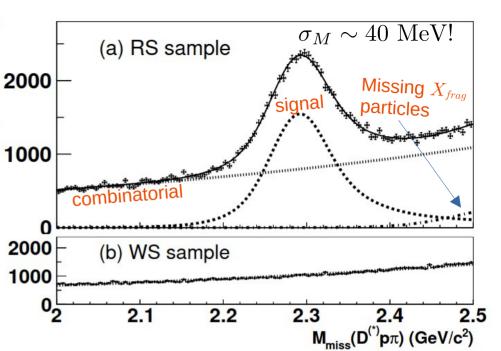
number of $\pi's \rightarrow$ only one π^+ actually used

 \rightarrow kinematic fit is performed to each $D^{(*)}\pi p$ which constrains particle to originate from common point in IP region and D mass is constrained to its nominal value

→ events are split into right sign (RS) $D^{(*)} = \overline{p}\pi^+$

wrong sign (WS) $D^{(*)}-p\pi^-$ and $D^{(*)}+\overline{p}\pi^-$ Cannot contain correct Λ_c ! (zero charge sum + baryon + charm consv.)

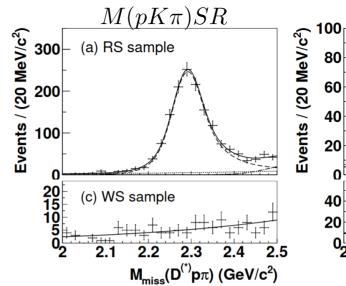

→ tail in signal distribution (hi end) from $e^+e^- \to c\bar{c}\gamma_{ISR} \to D_{\rm tag}X_{\rm frag}p\Lambda_c^-\gamma_{ISR}$

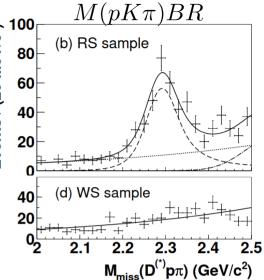

$$e^+e^- \to cc\gamma_{ISR} \to D_{\rm tag}\Lambda_{\rm frag}p\Lambda_c\gamma_{ISR}$$

 $N_{\rm incl}^{\Lambda_c} = 36447 \pm 432$

 \rightarrow in tag ROE exactly 3 tracks are required and $\Lambda_c^+ o pK^-\pi^+$ is reconstructed

Events / (5 MeV/c²





 \rightarrow rather than fitting $M(pK\pi)$, $M_{miss}(D^{(*)}p\pi)$ is fitted for events in $M(pK\pi)$ signal and sideband regions

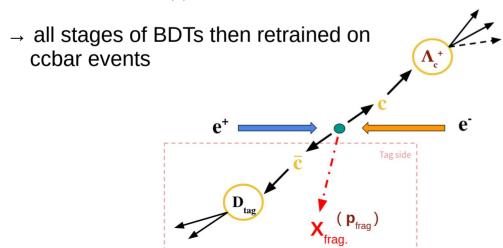
- → these fits are performed in the same way and with same parametrisations as for inclusive sample, which largely cancels related fit systematics
- \rightarrow finally number of events peaking in both $M(pK\pi)$ and $M_{miss}(D^{(*)}p\pi)$ is obtained by sideband subtraction

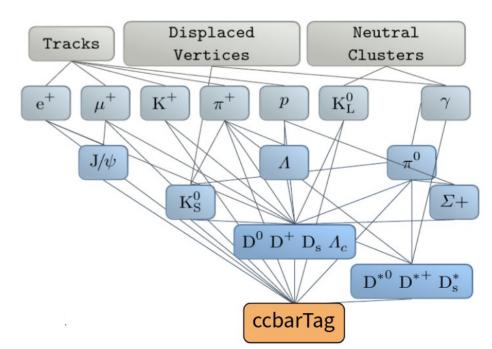
$$N(\Lambda_c^+ \to p K^- \pi^+) = 1359 \pm 45$$

$$\rightarrow$$
 taking into account $\Lambda_c^+ \to p K^- \pi^+$ rec. eff. and $N_{incl}^{\Lambda_c}$

$$\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.84 \pm 0.24(\text{stat.})^{+0.21}_{-0.27}(\text{syst.}))\%$$

→ still on par and in slight tension with BESIII

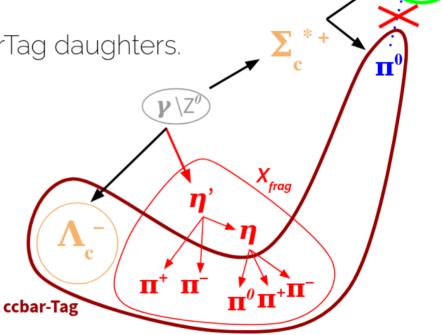

oun on pour ouron	59				
$5.84 \pm\! 0.27 \pm\! 0.23$	6.3k	ABLIKIM	2016	BES3	$e^+\;e^- o arLambda_c \overline{arLambda}_c$, 4.599 GeV
$6.84 \pm 0.24 ^{~+0.21}_{~-0.27}$	1.4k	¹ ZUPANC	2014	BELL	$e^+\;e^- o D^{(*)-}\overline{p}\pi^+$ recoil


Source	Uncertainty [%]		
Tracking	1.1		
Proton ID	0.4		
Efficiency	1.1		
Dalitz model	1.1		
$f_{ m bias}$	1.5		
Bkg. subtraction	$^{+0.5}_{-0.9}$		
Fit Model	$^{+1.7}_{-2.9}$		
Total	$^{+3.0}_{-3.9}$		

ccbarFEI

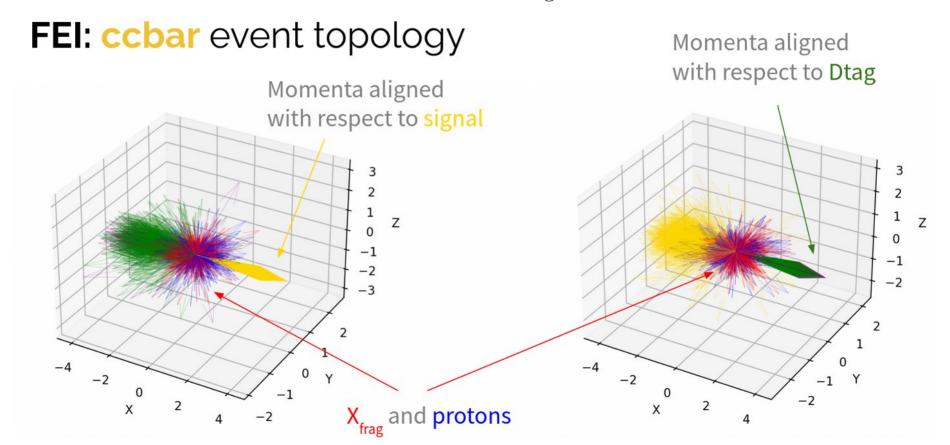
ccbarFEI

- → FEI is existing tool that is trained to efficiently reconstruct hadronic B decays.
- → in the chain it is already reconstructing various charm states
- \rightarrow idea of ccbarFEI is to adjust FEI to reconstruct charm tags (the recoil of which is a single $D_{(s)}, \Lambda_c, \,\, {
 m etc.}$)
- \rightarrow target B modes in the last step of FEI are replaced with a list of target ccbar tags (specific for $D_{(s)}, \Lambda_c$, etc. inclusive samples)

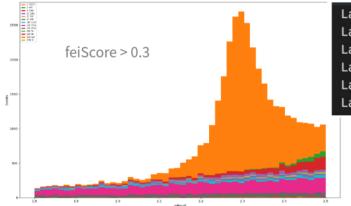


FEI adjustments: ccbarTagSignal

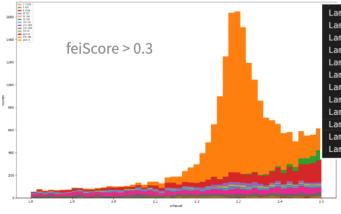
- Check isSignal and mcErrors for ccbar-Tag daughters.
- 2. Check that Λ_c is not ancestor of ccbarTag daughters.
- 3. Check that all ccbarTag daughters have the same "All Mother" $\mathbf{v} \setminus \mathbf{Z}^{0}$.
- Count \(\mathbf{Y} \)\ \(\mathbf{Z}^{\theta} \) descendants which are explicitly rec. by FEI (ignore rad. photons)


$$nDaug_{\gamma/Z} = 1 + nDaug_{ccbarTag}$$

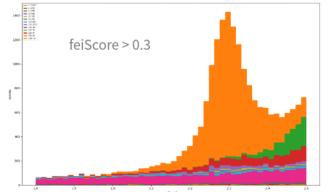
$$N(\Lambda_c)_{\gamma/Z} = 1 + N(\Lambda_c)_{ccbarTag}$$


Signal

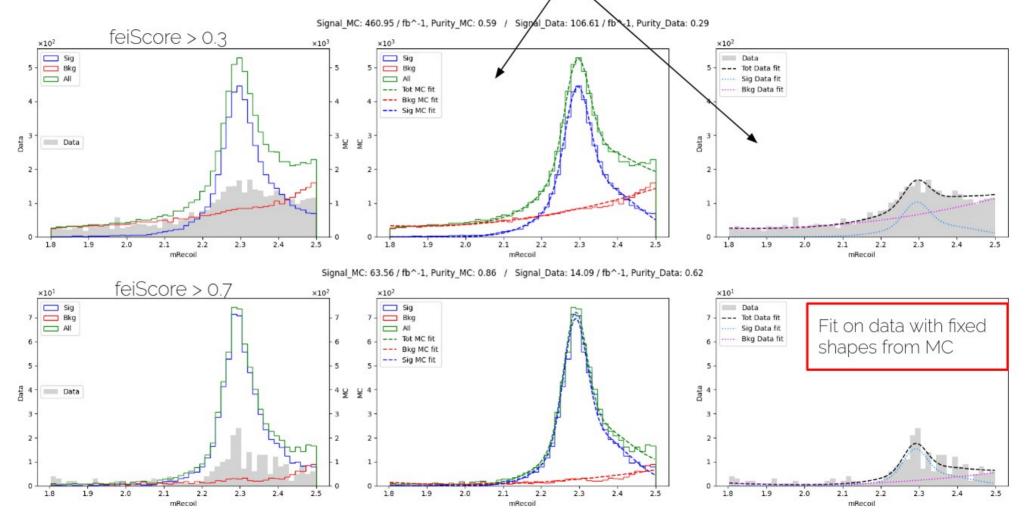
- → BDT performance for signal/background separation mostly relies on product of signal probabilities of reconstructed particles in ccbar tag
- ightarrow some additional observables, e.g. angle between $D_{
 m tag}$ momentum and $ec{p}_{
 m miss}$ are included


$M_{miss}({ m tag}_{\Lambda_c})$ for various types of ${ m tag}_{\Lambda_c}$

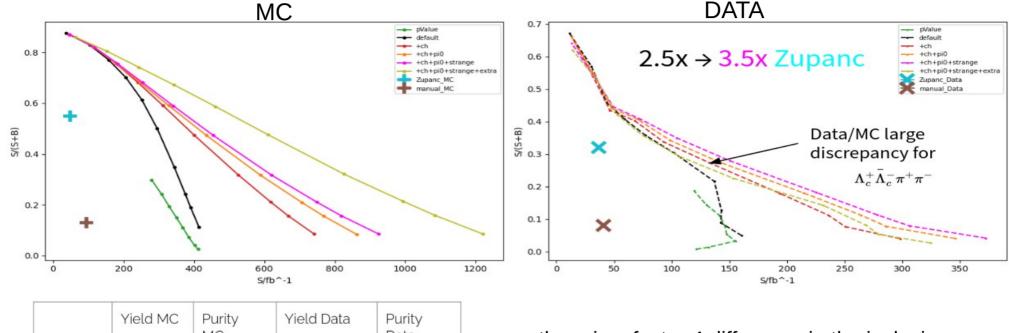

```
LambdaCTag.addChannel(['D0', 'p+'])
LambdaCTag.addChannel(['D*0', 'p+'])
LambdaCTag.addChannel(['D+', 'p+', 'pi-'])
LambdaCTag.addChannel(['D*+', 'p+', 'pi-'])
LambdaCTag.addChannel(['D_s+', 'p+', 'K-'])
LambdaCTag.addChannel(['D_s*+', 'p+', 'K-'])
```


added charged


```
LambdaCTagCharged.addChannel(['D0', 'p+', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D*0', 'p+', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D+', 'p+', 'pi-', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D*+', 'p+', 'pi-', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D_s+', 'p+', 'K-', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D0', 'p+', 'K-', 'pi+', 'pi-'])
LambdaCTagCharged.addChannel(['D0', 'p+', 'K+', 'K-'])
LambdaCTagCharged.addChannel(['D*+', 'p+', 'pi-', 'K+', 'K-'])
LambdaCTagCharged.addChannel(['D**0', 'p+', 'p+', 'anti-p-'])
LambdaCTagCharged.addChannel(['D**0', 'p+', 'p+', 'anti-p-'])
```


additional Λ_c

```
LambdaCTagExtra.addChannel(['Lambda_c+', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'gamma', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi0', 'gamma', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi0', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-', 'pi0'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-', 'pi0', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'pi-', 'pi0', 'gamma'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'pi+', 'anti-p-'])
LambdaCTagExtra.addChannel(['Lambda_c+', 'p+', 'anti-p-', 'pi0'])
```

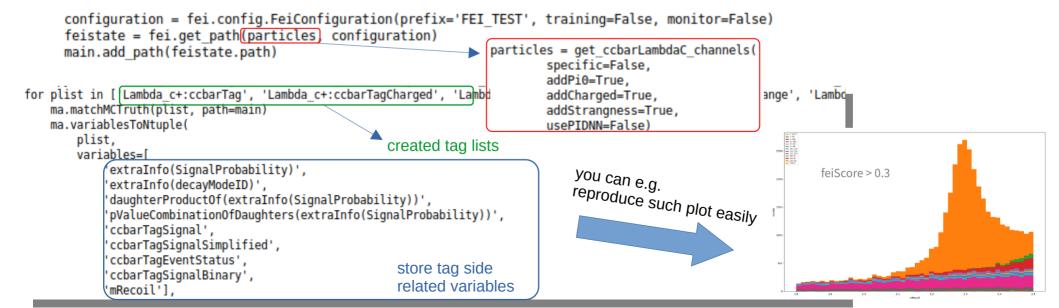


ccbarFEI: Data VS MC all modes /.

MC15ri generic (validation 100 fb⁻¹) 10 fb⁻¹ Bucket37, 4S, rel-08-01-08, DB3224,

Comparison with ccbar tag reconstruction from previous measurements

	Yield MC	Purity MC	Yield Data	Purity Data
Zupanc	48	55 %	36	33 %
Kristof	94	13 %	41	8%
ccbarFEI > 0.2 > 0.5	295 (455) 159 (183)	50 (47) % 77 (75) %	102 (150) 44 (50)	30 (28) % 46 (45) %


- \rightarrow there is ~ factor 4 difference in the inclusive Λ_c yield between data and MC
- → still yield is improved compared to Zupanc analysis for 2.5x using "simple" modes only, and 3.5x using more modes (at same purity)

Data / MC discrepancy

- \rightarrow total number of Λ_c / fb-1 in ccbar MC agrees well with data
- → contributions from individual fragmentation modes can be vastly different
 - training on more data like sample (calibrate MC to represent data better)
- → BDT input distributions for signal and backgrounds might differ greatly
 - careful selection of BDTs input features (study data/mc discrepancies)
- → a lot of technical work has been done to have ccbarFEI in basf2, now it is time to focus on physics, data/mc understanding, optimizations etc.
- → **GREAT potential** for further significant improvements of performance in data (in MC ccbarFEI inclusive yield is 10x larger than in Belle analyses!)

ccbarFEI present overall picture

- → Goal: have a tool that produces inclusive samples of charmed mesons and baryons and is available to anyone in a similar way as B meson FEI is!
- → ccbarFEI is already fully part of basf2 since light-2507-europa
- $_ op$ preliminary payloads with training weights are available for Λ_c and $D^{+,0}$ tags
- → usage is same as for FEI (find example steerings at /group/belle2/group/physics/FEI/kspenko/sandbox)

ccbarFEI present overall picture

- → Goal: have a tool that produces inclusive samples of charmed mesons and baryons and is available to anyone in a similar way as B meson FEI is!

related variables

rings at /group/belle2/group/physics/FEI/kspenko/sandbox)

addStrangness=True,

→ ccbarFEI is and

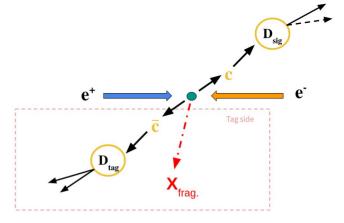
→ preliminary payloa

Get in touch with userings at /group/well

in contributing to these efforte

interested → USage is Same (kristof spenko@ijs.si, luka.santelj@ijs.si)

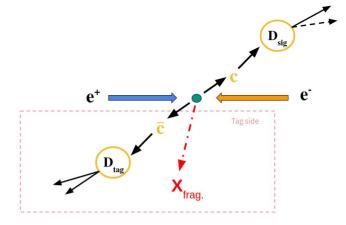
Lackbarded=True, which is the same and the same interval and the same and the s


for plist in [Lambda_c+:ccbarTag', 'Lambda_c+:ccbarTagCharged', 'Lambda ma.matchMCTruth(plist, path=main) ma.variablesToNtuple(plist, created tag lists variables=[extraInfo(SignalProbability)', extraInfo(decayModeID)', 'daughterProductOf(extraInfo(SignalProbability))', pValueCombinationOfDaughters(extraInfo(SignalProbability))'. 'ccbarTagSignal', 'ccbarTagSignalSimplified', 'ccbarTagEventStatus', store tag side 'ccbarTagSignalBinary',

'mRecoil'],

usePIDNN=False) you can e.g. feiScore > 0.3 reproduce such plot easily

Conclusions


→ charm tagging is wonderful technique that enables charm measurements to final states with missing energy and to measure absolute branching fractions

- → successfully exploited @ Belle (but somehow under the radar @ Belle II so far)
- → with more and more data in hand it will become increasingly important to have a general charm tagger tool that is maintained and improved in collaboration wide effort (as FEI)
- → ccbarFEI is a step in this direction, and it shows potential for big improvements in performance w.r.t. methods used at Belle
- → if interested in charm tagging please get in touch with ccbarFEI developers (kristof.spenko@ijs.si)

Conclusions

→ charm tagging is wonderful technique that enables charm measurements to final states with missing energy and to measure absolute branching fractions

- → successfully exploited @ Belle (but somehow under the radar @ Belle II so far)
- → with more and more data in hand it will become increasingly important to have a general charm tagger tool that is maintained and improved in collaboration wide effort (as FEI)
- → ccbarFEI is a step in this direction, and it shows potential for big improvements in performance w.r.t. methods used at Belle
- → if interested in charm tagging please get in touch with ccbarFEI developers

May I also give you one last bit of advice: Never say that you'll give a talk unless you know clearly what you're going to talk about and more or less what you're going to say.

Source	$K^-K^+\pi^+$ [%]	$\overline{K}{}^0K^+$ [%]	$\eta\pi^+$ [%]	$e^{+}\nu_{e} \ [\%]$	$\mu^+ \nu_{\mu} \ [\%]$	$\tau^+ \nu_{\tau} \ [\%]$
Normalization	±2.1	± 2.1	± 2.1	± 2.1	±2.1	±2.1
Tag bias	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4
Tracking	± 1.1	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4
Particle ID	± 2.6	± 0.8	± 1.1	± 1.9	± 2.0	± 1.7
Efficiency	± 0.7	± 0.7	± 1.4	± 4.3	± 1.8	± 0.8
Dalitz model	± 1.1	_	_	_	_	_
Fit model	± 0.8	± 0.8	± 2.2	_	± 0.2	$^{+3.3}_{-2.9}$
D_s^+ background	_	± 0.6	± 0.7	_	± 0.8	± 2.8
τ cross-feed	_	_	_	_	_	± 0.9
$\mathcal{B}(au o X)$	_	_	_	_	_	±0.2
Total syst.	±4.1	±2.9	± 3.9	± 5.4	±3.8	$+5.4 \\ -5.2$

Table 5. Summary of systematic uncertainties for the branching fraction measurements of D_s^+ decays. The total systematic error is calculated by summing the individual uncertainties in quadrature.

	Estimated background yields		
Background Source	$\tau^+(e^+)\nu_{\tau}$	$ au^+(\mu^+) u_ au$	
$\overline{D_s^+ \to \eta \ell^+ \nu_\ell}$	911.0 ± 102.3	768.7 ± 86.4	_
$D_s^+ \to \eta' \ell^+ \nu_\ell$	49.5 ± 12.0	35.1 ± 8.6	_
$D_s^+ \to \phi \ell^+ \nu_\ell$	307.8 ± 20.7	188.0 ± 13.3	_
$D_s^+ o \overline{K}{}^0 \ell^+ \nu_\ell$	242.6 ± 66.3	175.7 ± 48.1	_
$D_s^+ \to \overline{K}^{*0} \ell^+ \nu_\ell$	26.0 ± 10.5	13.9 ± 5.8	_
$D_s^+ o K \overline{K} \ell^+ \nu_\ell$	59.2 ± 14.5	33.1 ± 8.0	_
$D_s^+ \to \mu^+ \nu_\mu$	_	10.0 ± 1.4	26.2 ± 3.7
$D_s^+ o \overline{K}{}^0 K^+$	18.5 ± 2.5	40.5 ± 4.9	132.3 ± 9.2
$D_s^+ \to \phi \pi^+$	11.2 ± 2.1	14.8 ± 2.5	_
$D_s^+ o K^{*+} K^0$	32.4 ± 8.3	41.7 ± 10.6	_
$D_s^+ o \eta \pi^+$	_	_	398.2 ± 24.2
$D_s^+ \to \rho^0 K^+$	_	_	185.1 ± 34.9