Saving the B's at Belle II

WARNING: This is not a lecture more a status report... some material for discussion...

K. Trabelsi

karim.trabelsi@in2p3.fr

Belle II Physics Week October 7, 2025

Belle II, a flavour-factory,

 $(Belle \sim 1 ab^{-1})$

a rich physics program...

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
- a (Super) B-factory ($\sim 1.1 \times 10^9 \text{ B} \overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory $(\sim 1.3 \times 10^9 \text{ c}\overline{\text{c}} \text{ pairs per ab}^{-1})$ (but also charmonium, X, Y, Z, pentaguarks, tetraguarks, bottomonium...)
- a (Super) τ factory (~0.9 × 10⁹ τ ⁺ τ ⁻ pairs per ab⁻¹)
- exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...
 - ⇒ to reach few $\times 10^{35}$ cm⁻² s⁻¹ ⇒ cumulate few 10 ab⁻¹

How do we search for B→Kττ?

The neutrinos escape

Up to 4 neutrinos in $B^+ \rightarrow K^+\tau\tau$ \Rightarrow Cannot reconstruct invariant mass or energy of the B

But, two B-mesons and nothing else in the event!

How do we search for B→Kττ?

Using the other B (tag-side)

After reconstructing the 3 charged tracks on signal-side and the other B in the event, there will be no additional energy in the calorimeter (E_{ECL}).

 \Rightarrow In the rest of the event (ROE), sum of the energies of the clusters should peak at 0.

If the B_{tag} is reconstructed using hadronic decays: Hadronic B-tagging

Hadronic B-tagging

is widely used in Belle II

It allows neutrino reconstruction at Belle II.

(equivalent to reconstructing inclusively)

Hadronic B-tagging is essential for a large part of Belle II's physics program.

5

Missing energy modes and B-tagging

Many interesting B-physics studies involve missing energy: $R(D^{(*)})$, V_{cb} , $K^{(*)}\tau\ell$, $K^{(*)}\tau\tau$, $K^{(*)}\nu\nu$, $\pi l\nu$, $\tau\ell$, $\tau\nu$, $\mu\nu$... which require B-tagging.

INCLUSIVE EXCLUSIVE

Efficiency

Hadronic B-tagging can provide the direction of the B.

Essential in some analysis and unique to B factories!

The 3 important metrics of B-tagging are:

- Efficiency
- Purity
- Data-MC agreement (Calibration factor)

FEI does exclusive B-tagging: Hadronic and Semileptonic

Table 1 Summary of the maximum tag-side efficiency of the Full Event Interpretation and for the previously used exclusive tagging algorithms

Old measurement in MC	B± (%)	$B^{0}\left(\%\right)$
Hadronic		
FEI with FR channels	0.53	0.33
FEI	0.76	0.46
FR	0.28	0.18
SER	0.4	0.2
Semileptonic		
FEI	1.80	2.04
FR	0.31	0.34
SER	0.3	0.6

[T.Keck et. al, Comput Softw Big Sci (2019) 3: 6]

Exclusive B-tagging:

- \circ **Advantages**: purity, direction of B_{tag} , but also...
 - ... official training, validation, skims, calibration, systematic (shared knowledge)
- **Disadvantages**: low efficiency...

When/why do we use exclusive B-tagging?

signal side is reconstructed **exclusively** ... examples of 2025...[see Gaetano's talk]

Search for $B \rightarrow K^{*0} \tau \tau$

[arXiv:2504.10042, submitted to PRL]

FCNC processes suppressed in SM at tree level $BF_{SM} = (1.0 \pm 0.1) \times 10^{-7}$

BF
$$(B \rightarrow K^{*0} \tau \tau) < 1.8 \times 10^{-3} @ 90\% C.L.$$

Twice better with only half sample wrt Belle!
Better tagging + more categories + BDT classifer...

Search for $B^+ \rightarrow K^+ \tau \tau$

shown at CKM 2025, Sep 15-19 2025

$$B_{SM}(B^+ \to K^+ \tau \tau) = (1.5 \pm 0.1) \times 10^{-7}$$

$$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) = 3.13^{+3.70}_{-3.30} \times 10^{-4}$$

 $\mathcal{B}^{UL}(B^+ \to K^+ \tau^+ \tau^-) < 8.7 \times 10^{-4} \text{ at } 90\% \text{ CL}$

2.6 times better than current world best Most stringent limit in $B^+ \rightarrow K^+ \tau \tau$

Search for $B \rightarrow X_s \nu \overline{\nu}$

[PRELIMINARY]

- $\circ \ B_{SM} = (2.9 \pm 0.3) \times 10^{-5} \left[\text{JHEP 02 } \left(2015 \right) \ 184 \right]$
- \circ B < 6.4 × 10⁻⁴ at 90 % C.L. [ALEPH, EPJC 19 (2001) 213]
- \circ Sum-of-exclusive from 30 decay modes (\sim 90% of inclusive)

		$B^0ar{B}^0$			B^{\pm}	
\overline{K}	K_S^0			K^{\pm}		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K^0_S\pi^0$		$K^{\pm}\pi^0$	$K^0_S\pi^\pm$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^0_S\pi^\pm\pi^\mp$	$K^0_S\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K^0_S\pi^\pm\pi^0$	$K^{\pm}\pi^0\pi^0$
$K3\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K_S^0\pi^\pm\pi^\mp\pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K^0_S\pi^\pm\pi^\mp\pi^\pm$	$K_S^0\pi^\pm\pi^0\pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^{0}K_{S}^{0}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}$	$\mp K_S^0 \pi^{\pm} \pi^{\mp} \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	$\pm K_S^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi$	$^{0}K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3K	$K^{\pm}K^{\mp}K^0_S$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^\pm K^\mp K^0_S \pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K^0_S K^\pm K^\mp \pi^\pm$	

 $B(B \to X_s v \overline{v}) < 3.6 \times 10^{-4} \text{ at } 90\% \text{ C.L.}$

⇒ The most stringent upper limit on $B \rightarrow X_s v \overline{v}$ decay 7

Event reconstruction in $B \rightarrow D^{(*)} \tau \nu$ at B factories

8

Require no particle and no energy left after removing B_{tag} and visible particles of B_{sig} main signal-background discriminator $\mathbf{m}_{miss}^2 = (\mathbf{p}_{ee} - \mathbf{p}_{tag} - \mathbf{p}_{n}^{(e)} - \mathbf{p}_{l})^2$

Event reconstruction in B→Kτμ at B factories

[Belle, PRL 130, 261802 (2023)]

Mode	$N_{ m sig}$	ε (%)	${\cal B}^{ m UL} \ (10^{-5})$	${\cal B}_{ m NP}^{ m UL} \; (10^{-5})$
	-2.1 ± 2.9		0.59	0.65
$B^+ o K^+ au^+ e^-$	1.5 ± 5.5	0.084	1.51	1.71
$B^+ o K^+ au^- \mu^+$	2.3 ± 4.1	0.046	2.45	2.97
$B^+ o K^+ au^- e^+$	-1.1 ± 7.4	0.079	1.53	2.08
			PHSP	

When/why do we use exclusive B-tagging?

not only for search of rare/forbidden decays, or to have high purity...

Measurement of angular coefficients with D*lv [Belle, PRD108(2023)1, 012002/PRL 133 (2024) 131801]

$|V_{ub}|$ from inclusive $B \rightarrow X_{u} | v$ decays (had tag)

- First Belle II measurement
- Hadronic B-tagging
- 3 main kinematical variables
 - $E_l^{(B)}$: lepton energy (in B_{sig} rest-frame)
 - M_x : mass of hadronic system
 - q²: momentum transfer

Extract | V_{ub} | from partial BR using the predicted partial decay rate over a given phase-space region

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}}$$

$$|\mathbf{V}_{ub}|_{GGOU} = (4.01 \pm 0.11(stat) \pm 0.16(syst)^{+0.09}_{-0.07}(theo)) \times 10^{-3}$$

 $|\mathbf{V}_{ub}|_{incl}^{HFLAV} = (4.06 \pm 0.16) \times 10^{-3}$
11

 S_{X_c}

When/why do we use exclusive B-tagging?

- signal side is **partially** reconstructed...
 - measurement of inclusive differential BFs:

$$B^0 \rightarrow \Lambda_c^- X$$
, $B^0 \rightarrow \Lambda_c^+ X$, $B^+ \rightarrow \Lambda_c^- X$, $B^+ \rightarrow \Lambda_c^+ X$

Experimental results on inclusive (only BaBar hep-ex/0606026)

- $\circ B^{+/0} \rightarrow X_s \gamma$, $J/\psi X \dots$
- ∘ Measurements of the absolute branching fractions of $B^+ \rightarrow X_{c\bar{c}} K^+$

arXiv:1709.06108, Phys. Rev. D 97, 012005 (2018)

			-		
Mode	Yield	Significance (σ)	$\epsilon(10^{-3})$	\mathcal{B} (10 ⁻⁴)	World average for \mathcal{B} (10 ⁻⁴) [10]
η_c	2590 ± 180	14.2	2.73 ± 0.02	$12.0 \pm 0.8 \pm 0.7$	9.6 ± 1.1
J/ψ	1860 ± 140	13.7	2.65 ± 0.02	$8.9 \pm 0.6 \pm 0.5$	10.26 ± 0.031
χ_{c0}	430 ± 190	2.2	2.67 ± 0.02	$2.0 \pm 0.9 \pm 0.1$ (< 3.3)	$1.50^{+0.15}_{-0.14}$
χ_{c1}	1230 ± 180	6.8	2.68 ± 0.02	$5.8 \pm 0.9 \pm 0.5$	4.79 ± 0.23
$\eta_c(2S)$	1050 ± 240	4.1	2.77 ± 0.02	$4.8 \pm 1.1 \pm 0.3$	3.4 ± 1.8
$\psi(2S)$	1410 ± 210	6.6	2.79 ± 0.02	$6.4 \pm 1.0 \pm 0.4$	6.26 ± 0.24
$\psi(3770)$	-40 ± 310	-	2.76 ± 0.02	$-0.2 \pm 1.4 \pm 0.0 \ (< 2.3)$	4.9 ± 1.3
X(3872)	260 ± 230	1.1	2.79 ± 0.01	$1.2 \pm 1.1 \pm 0.1 \ (< 2.6)$	(< 3.2)
X(3915)	80 ± 350	0.3	2.79 ± 0.01	$0.4 \pm 1.6 \pm 0.0 \ (< 2.8)$	<u> </u>

Trickle down B-tagging

(ambition behind our work on B-tagging)

but focus on exclusive B-tagging in this presentation

References for FEI hadronic tag

- The Full Event Interpretation: An Exclusive Tagging Algorithm for the Belle II Experiment T.Keck et al, Computing and Software for Big Science Volume 3, article number 6, (2019) https://link.springer.com/article/10.1007/s41781-019-0021-8
- Everything you ever wanted to know about FEI
 Peter Lewis, 2022 Belle II Physics Week
 https://indico.belle2.org/event/7825/contributions/49619/
- FEI updates
 - Vidya Vobbilisetti, BELLE2-PTHESIS-2023-016
 https://docs.belle2.org/pub_data/documents/3919/
 - Vidya Vobbilisetti, Performance session @ 47th B2GM
 https://indico.belle2.org/event/10839/contributions/71798/
- Updates on FEI (with release 08, MC16/proc16)
 Mattia Marfoli, Rahul Tiwary, 51st B2GM at KEK
 https://indico.belle2.org/event/14964/contributions/94610/

from release 06 to release 08

Hadronic B-tagging tool at Belle/Belle II

called Full Event Interpretation (FEI)

Designed for Belle II software, now used with Belle data also.

Hierarchical reconstruction...

o(10⁴) B total decay chains

Uses machine learning: over 200 BDTs trained on simulated BB data

Outputs:

- List of tagged B candidates (each in a specific B decay cascade)
- A "signal probability" for each...

Hadronic B-tagging tool at Belle/Belle II

called Full Event Interpretation (FEI)

Designed for Belle II software, now used with Belle data also.

For each decay, BDTs trained on MC.

B+-tagging uses 36 decays. But only 12 of them, essentially B \rightarrow D^(*) $m\pi^{\pm}$ $n\pi^{0}$, gives \sim 90% of the efficiency.

$$\overline{D}^{0}\pi^{+}
\overline{D}^{*0}\pi^{+}
\overline{D}^{0}\pi^{+}\pi^{0}
\overline{D}^{*0}\pi^{+}\pi^{0}
\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-}
\overline{D}^{*0}\pi^{+}\pi^{+}\pi^{-}
\overline{D}^{0}\pi^{+}\pi^{0}\pi^{0}
\overline{D}^{*0}\pi^{+}\pi^{0}\pi^{0}
\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}
\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}
\overline{D}^{*0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}
D^{-}\pi^{+}\pi^{+}
D^{-}\pi^{+}\pi^{+}$$

More $\pi \Rightarrow$ More complex, but "high" Branching Fraction

FEI is a hierarchical combination of modes

 $B^+ \rightarrow$

-3.0

-2.5

-2.0

-1.5

 $\log_{10}(\mathcal{P}_{\mathsf{FFI}})$

-1.0

-0.5

0.0

Hadronic B-tagging tool at Belle/Belle II

''Full Event Interpretation'' package:

[T.Keck et. al, Comput Softw Big Sci (2019) 3: 6]

In FEI, Belle II's B-tagging algorithm: BDTs are trained on MC for some final states in a hierarchical structure starting from tracks and clusters.

⇒ any ML strategy will train on MC... assuming it is reproducing properly data

The hadronic FEI algorithm reconstructs B in 36 different B decays.

But 12 B decays among them account for \sim 90% of the efficiency, so we focused on them

Tagging efficiency in data $(eff_{tag} = BF \times eff_{reco})$ is one of the limiting factors

Why is B-decay modeling so hard?

Inclusive decays for b→c transition

A.Lenz et al, arXiv:1305.5390, 1404.6197

 $B(b
ightharpoonup c \bar{u}d) = 0.446 \pm 0.014$ $B(b
ightharpoonup c \bar{c}s) = 0.232 \pm 0.007$ $B(b
ightharpoonup c e v_e) = 0.116 \pm 0.008$ $B(b
ightharpoonup c e v_\tau) = 0.116 \pm 0.008$ $B(b
ightharpoonup c e v_\tau) = 0.027 \pm 0.001$ $B(b
ightharpoonup c \bar{c}d) = 0.0126 \pm 0.0005$

We will see that we (and PDG) use a 30-year-old measurement with \sim 75% uncertainty for one of the largest hadronic B-decays...

But on top of that, we don't know how B decays ~40% of the time! We ask **PYTHIA** to (poorly) generate them.

B-tagging is key tool for missing energy analyses

- low efficiency (efficiency for hadronic B-tagging < 1%)
- and ML can't (always) save you...
 B-tagging algorithms are trained using MC samples
- 40% of hadronic B decays generated by PYTHIA...
- and even among the EvtGen part...

most BFs measured are old measurements from ARGUS, CLEO...

lot of hadronic B decays to understand/measure ⇒ new contributions to B-tagging??

HAD (FEI)

19

How are B decays generated?

EvtGen

Hadronic B-decays: ~ 75% of the total branching fraction

Decay B+

```
0.054900000 anti-D*0 e+ nu e
                                  BGL 0.02596 -0.06049 0.01311 0.01713 0.00753 -0.09346.
0.023100000 anti-D0 e+ nu e
                                  BGL 0.0126 -0.094 0.34 -0.1 0.0115 -0.057 0.12 0.4;
0.007570000 anti-D 10 e+ nu e
                                 LLSW 0.71 -1.6 -0.5 2.9;
0.003890000 anti-D 0*0 e+ nu e LLSW 0.68 -0.2 0.3;
0.004310000 anti-D' 10 e+ nu e LLSW 0.68 -0.2 0.3;
0.003730000 anti-D 2*0 e+ nu e
                                 LLSW 0.71 -1.6 -0.5 2.9:
                                                       The largest decays are at 10^{-2}, 10^{-3}
                                                       so talking about o(10<sup>4</sup>) decay channels
0.000383590 D+ anti-D0
                                PHSP:
                                                       we only list o(10^3) explicitly
0.000392390 D*+ anti-D0
                                SVS:
0.000630000 anti-D*0 D+
                                SVS:
0.000810000 anti-D*0 D*+
                                 SVV HELAMP 0.56 0.0 0.96 0.0 0.47 0.0;
```

This is from PDG and some guestimates... but what about the rest?

How are B decays generated?

EvtGen + PYTHIA

Hadronic B-decays: $\sim 75\,\%$ of the total branching fraction but only about half of it is measured

PYTHIA is used to generate the other half in MC

Quark transition	modeID in PYTHIA v8	$\mathcal{B}^{\mathrm{Belle}}(\%)$	$\mathcal{B}^{\mathrm{Belle\ II}}(\%)$
u anti-d anti-c u	23	31.23	20.26
u anti-d anti-c u	43	-	3.87
u anti-s anti-c u	43	2.23	2.02
c anti-s anti-c u	43	-	6.66
c anti-d anti-c u	43	-	0.36
u anti-d anti-u u	23	-	0.27
c anti-s anti-u u	23	-	0.36
u anti-u anti-d u	23	-	0.18
d anti-d anti-d u	23	-	< 0.01
s anti-s anti-d u	23	-	0.01
u anti-u anti-s u	23	-	0.20
d anti-d anti-s u	23	-	0.16
s anti-s anti-s u	23	-	0.13
anti-s u	91	-	0.45
anti-cd_1 uu_1	63	3.40	2.97
anti-cd_1 uu_1	64	1.27	-
anti-cs $_0$ cu $_0$	63	0.85	-
anti-cs $_1$ uu $_1$	63	0.18	0.81
anti-cs_1 uu_1	64	0.04	-
anti-cd_0 cu_0	63	0.04	-
Total PYT	HIA contribution	39.24	38.71

- PYTHIA is called for quark fragmentation according to relative rates determined by the parameters of the StringFlav class
- \circ We use the default values for most parameters, with the production of some excited mesons turned off, like a_1^{\pm} , a_1^{0} , D^{**} ...

The StringFlav parameters as well as relative fractions assigned to different quark transitions need to be tuned

- Fragmentation compares the final state with the explicitly listed decays, and if found, performed again to produce an alternative final state
- Therefore, to exclude that a particular decay is generated by PYTHIA, it can be explicitly listed in DECAY.DEC with a branching fraction of 0%

Need to know what not to generate as well

How to calibrate FEI? or FEI performance in MC and data

B⁺-tagging: standard calibration sample

BDTs are trained on MC

⇒ The performance has to be calibrated with data.

Traditionally, this calibration is done with semileptonic B on the signal side because it has large branching fraction.

Fit the lepton momentum in B rest frame. No clear peak

- ⇒ Complex template fitting strategy
- ⇒ Low signal-side purity

Systematically limited

- Highly dependent on the SL decay model including D** and SL gap components
- Significant cross-feed from B^o

But, if MC is not optimal, the BDT selection will not be optimal.

This cannot be easily studied with semi-leptonic B because there are no peaking structures.

An orthogonal sample is needed not only to provide calibration factors but to study the sources of discrepancy.

True lies and hard truths

(summarized by Peter Lewis)

We now know that it is not possible to disentangle sig/tag efficiency, so a calibration may only be valid for the mode it is calibrated on (!)

- having several calibration procedure (learn a lot about signal-side dependencies)
- $_{\circ}$ the closer the calibration factors are from 1, the better is our MC (so is the cross-feed simulation, the signal-side dependencies...) \$24\$

Ideal control sample to study B-tagging

First idea, use $B \rightarrow J/\psi K$:

clean, allow first estimation (large MC/data differences) \Rightarrow but too limited stat (~ 400 evts after B-tagging)

We can look for D^0 , D^{*0} and even D^{**0} in the recoil mass of a fully reconstructed B and a $\pi\pm$

Within a narrow region around the peak, we know that one B decays to $D^0\pi^+$ and we can study the other B (decaying hadronically)

~16k events in a 3σ window around each peak in data.

Need to calibrate the algorithm, but more importantly, need to improve MC for training.

Fitting D peak for yields

FEI metrics in data

Calculated directly on data:

- Calibration factor
 - = Signal yield in data
 Signal yield in MC
- Purity

= Signal yield

Signal yield + Background yield in signal region

Efficiency

$$\begin{array}{ll} n_{BB} & = 392.5 \times 10^6 \\ BF_{B+\to\,D\pi} & = 0.467 \times 10^{-2} \\ \varepsilon_\pi & = 90\% \end{array}$$

But why calibration factors are still far from 1?

The fit allows to obtain calibration factors but also thanks to splot, obtain the distributions for B_{tag} decays: invariant mass of intermediate states, sigprob...

⇒ Need to understand and improve the MC modeling of B decays

⇒ bias introduced by training on MC!!

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

The π^+ π^- could be directly generated, could come through $\rho^0\pi^+$ or through an intermediate a_1^+ resonance.

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

In 1992, CLEO experiment measured these 3 values but with ~75% uncertainty!

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Phys.Rev.D 84 (2011) 092001

In 2011 (~20 years later), LHCb looked at this final state, but did not provide individual measurements.

So we are still suck with a 30 year old CLEO measurement in PDG.

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ \to \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Phys.Rev.D 84 (2011) 092001

But looking at this plot, it looks like most contribution comes through a_1 + resonance (mass 1400 MeV/c²).

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ o \overline{D}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Can be compared with data at Belle, if we reconstruct one B as $B^+ \to \bar{D}^0 \pi^+$ and other B as $B^- \to D^0 \pi^+ \pi^+ \pi^-$

Let's take one final state for example: $B^+ \to \bar{D}^0 \pi^+ \pi^+ \pi^-$. It can be produced through many intermediate states:

Decay	Belle	Belle II
$B^+ o \overline{D}{}^0 \pi^- \pi^+ \pi^+$	0.46	0.51
$B^+ \to \overline{D}^0 \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.39	0.42
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+ \pi^-$	0.13	0.14
$\overline{B^+} \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.05	-
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.04	0.02
$B^+ \to \overline{D}_1(2430)^0 \pi^+; \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.03	0.02
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+; \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	0.01
$B^+ \to D^*(2010)^- \pi^+ \pi^+; D^*(2010)^- \to \overline{D}{}^0 \pi^-$	-	0.09
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.07
$B^+ \to \overline{D}^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.05
$B^+ \to \overline{D}_1(2420)^0 \pi^+; \overline{D}_1(2420)^0 \to \overline{D}^0 \pi^- \pi^+$	-	0.02
$B^+ \to \overline{D}^0 K^*(892)^+; K^*(892)^+ \to K^0 \pi^+; K^0 \to K^0_S; K^0_S \to \pi^+ \pi^-$	-	0.01
Rest of Exclusive	0.03	0.03
Sum of Exclusive	1.12	1.38
Sum of Pythia	0	0
Total Sum	1.12	1.38

Comparing with data clearly shows that a_1^+ component is underestimated, and the $\rho^0\pi^+$ and direct π^+ π^+ π^- components are overestimated.

Similarly, for other final states

$B^+ \rightarrow \bar{D}^0 \pi^+ \pi^+ \pi^- \pi^0$

Decay	Belle	Belle II
$\overline{B^+ \to \overline{D}^{*0}} \pi^- \pi^+ \pi^+ \pi^0$	1.80	1.80
$B^+ \to \overline{D}^{*0} \omega(782) \pi^+; \ \omega(782) \to \pi^- \pi^+ \pi^0$	0.40	0.41
Rest of Exclusive	0.02	0.05
Sum of Exclusive	2.22	2.25
$\overline{B^+} \to \overline{D}^{*0} \rho(770)^0 \rho(770)^+; \ \rho(770)^0 \to \pi^+\pi^-; \ \rho(770)^+ \to \pi^+\pi^0$	0.49	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^+ \pi^+ \pi^-; \rho(770)^+ \to \pi^+ \pi^0$	0.40	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^0 \pi^+ \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.40	0.20
$B^+ \to \overline{D}^{*0} \rho(770)^- \pi^+ \pi^+; \ \rho(770)^- \to \pi^- \pi^0$	0.20	0.10
$B^+ o \overline{D}^{*0} \eta \pi^+; \eta o \pi^- \pi^+ \pi^0$	0.14	0.07
$B^+ \to \overline{D}_1(2430)^0 \rho(770)^0 \pi^+; \ \overline{D}_1(2430)^0 \to \overline{D}^{*0} \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.03	-
Rest of PYTHIA	0.02	0.01
Sum of PYTHIA	1.68	0.77
Total Sum	3.90	3.03

blue means generated by PYTHIA

 $\bar{\mathsf{D}}^{*0} \; \pi^+ \; \pi^+ \; \pi^-$

TABLE VI: Contents of the DECAY file concerning the $B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^-$ final state and corresponding measurements in PDG [in %]. The rows in blue correspond to decays produced by Pythia.

Decay	Belle	Belle II	Marker	Ref
$B^+ \to \overline{D}^* (2007)^0 \pi^- \pi^+ \pi^+$	1.03	-		[2], [7]
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to \rho(770)^0 \pi^+; \rho(770)^0 \to \pi^+\pi^-$	0.66	0.58	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to f_0(600)\pi^+; f_0(600) \to \pi^+\pi^-$	0.25	-	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to \pi^+\pi^+\pi^-$	-	0.28	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; a_1(1260)^+ \to f_0(500)\pi^+; f_0(500) \to \pi^+\pi^-$	-	0.20	*	
$B^+ \to \overline{D}^*(2007)^0 \rho(770)^0 \pi^+; \ \rho(770)^0 \to \pi^+ \pi^-$	-	0.04	*	
Rest of Exclusive	0.02	0.05		
Sum of Exclusive	1.96	1.15		
$B^+ \to \overline{D}^*(2007)^0 f_0(980) \pi^+; f_0(980) \to \pi^+ \pi^-$	0.05	-	*	
$B^+ o \overline{D}^* (2007)^0 \pi^+ \pi^+ \pi^-$	-	0.20		
Rest of Pythia	0.00	0.00		
Sum of Pythia	0.05	0.20		
Total Sum	2.01	1.35		

BELLE2-NOTE-PH-2022-002

Marker convention:

★ : Old/No measurement

■ : Double counting

 $\mathsf{B}^+ \to \bar{\mathsf{D}}^{\scriptscriptstyle 0} \; \pi^+ \; \pi^+ \; \pi^- \; \pi^0$

TABLE IX: Contents of the DECAY file concerning the $B^+ \to \overline{D}{}^0\pi^+\pi^+\pi^-\pi^0$ final state and corresponding measurements in PDG [in %]. The rows in blue correspond to decays produced by Pythia.

Decay	Belle	Belle II	Marker	s Ref
$B^+ \to D^*(2010)^- \pi^0 \pi^+ \pi^+; \ D^*(2010)^- \to \overline{D}{}^0 \pi^-$	1.02	1.03	*	[8]
$B^+ \to \overline{D}^*(2007)^0 \pi^- \pi^+ \pi^+; \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0$	0.64	-		
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ a_1(1260)^+ \to \rho(770)^0 \pi^+; \ \rho(770)^0 \to \pi^+ \pi^-$	0.41	0.38	*	
$B^+ \to \overline{D}{}^0 \omega(782) \pi^+; \omega(782) \to \pi^- \pi^+ \pi^0$	0.37	0.37	*	[9]
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ a_1(1260)^+ \to f_0(600) \pi^+; \ f_0(600) \to \pi^+ \pi^-$	0.16	-	*	
$B^+ \to D^*(2010)^- \rho(770)^+ \pi^+; \ D^*(2010)^- \to \overline{D}^0 \pi^-; \ \rho(770)^+ \to \pi^+ \pi^0$	0.14	0.14	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; a_1(1260)^+ \to \pi^+ \pi^+ \pi^-$	-	0.18	*	
$B^+ \to \overline{D}^*(2007)^0 a_1(1260)^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ a_1(1260)^+ \to f_0(500) \pi^+; \ f_0(500) \to \pi^+ \pi^-$	-	0.13	*	
Rest of Exclusive	0.03	0.10		
Sum of Exclusive	2.75	2.32		
$B^+ \to \overline{D}^0 \rho (770)^+ \pi^+ \pi^-; \rho (770)^+ \to \pi^+ \pi^0$	0.20	0.30		
$B^+ \to \overline{D}^0 \rho (770)^0 \rho (770)^+; \rho (770)^0 \to \pi^+ \pi^-; \rho (770)^+ \to \pi^+ \pi^0$	0.20	0.20		
$B^+ \to \overline{D}^0 \rho (770)^- \pi^+ \pi^+; \rho (770)^- \to \pi^- \pi^0$	0.10	0.10		
$B^+ \to \overline{D}^0 \rho (770)^0 \pi^+ \pi^0; \rho (770)^0 \to \pi^+ \pi^-$	0.10	0.20		
$B^+ o \overline{D}{}^0 \eta \pi^+; \eta o \pi^- \pi^+ \pi^0$	0.05	0.07	*	
$B^+ \to \overline{D}_1(2430)^0 \pi^+ \pi^0; \ \overline{D}_1(2430)^0 \to D^*(2010)^- \pi^+; \ D^*(2010)^- \to \overline{D}^0 \pi^-$	0.05	-		
$B^+ \to \overline{D}_0^*(2300)^0 \rho(770)^0 \pi^+; \ \overline{D}_0^*(2300)^0 \to \overline{D}^0 \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.03	-		
$B^+ \to \overline{D}^*(2007)^0 f_0(980) \pi^+; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0; \ f_0(980) \to \pi^+ \pi^-$	0.03	-		
$B^+ \to \overline{D}_2^*(2460)^0 \rho(770)^0 \pi^+; \ \overline{D}_2^*(2460)^0 \to \overline{D}^0 \pi^0; \ \rho(770)^0 \to \pi^+ \pi^-$	0.02	-		
$B^+ \to \overline{D}_2^*(2460)^0 \pi^+ \pi^0; \ \overline{D}_2^*(2460)^0 \to D^*(2010)^- \pi^+; \ D^*(2010)^- \to \overline{D}^0 \pi^-$	0.01	-		
$B^+ \to \overline{D}^*(2007)^0 \pi^+ \pi^+ \pi^-; \ \overline{D}^*(2007)^0 \to \overline{D}^0 \pi^0$	-	0.13		
$B^+ o \overline{D}{}^0 \pi^+ \pi^+ \pi^- \pi^0$	-	0.10		
Rest of Pythia	0.01	0.01		
Sum of Pythia	0.79	1.10		
Total Sum	3.54	3.42	*	

Model for $B \rightarrow D^{(*, **)} n \pi m \pi^0$ decays

Happens through 2 channels, one with spectator quarks (call Y) and one from the W (call X).

We modify the DECAY table to latest PDG/paper interpretations and this model to see the impact.

Essentially validation, we do not want to fine-tune (except set 0 there is no signal).

2 primary rules:

- D⁰ X: D*⁰ X : D***⁰ X \sim = 1 : 1 : 1 (based on observation from D π^- : D* π^- : D** π^- and D ρ^- : D* ρ^-)
- $Y \pi^-: Y \rho^-: Y a_1^- \sim = 1: 2.5: 2.5$ (based on predictions and confirmed with $\tau \to h \nu$ decays)

Additional information:

- $3\pi \pi^0$ is hard to model without some sort of ρ' resonance
 - For $\omega \pi$ we fix from measurements.
 - For $\rho\pi\pi$ and $\eta\pi$, we let PYTHIA generate it.
- Decays of D** particles is synchronized with Belle II
- The fraction of 4 different D** is fixed based on observations.

Pulls of calibration factors

Another way to visualize the improvement in the calibration factors:

improving description of hadronic B decays ⇒ improve B-tagging efficiency

Decay description is improved!

The improvement is not limited to calibration factors, but more importantly in the invariant masses (of intermediate particles), which are used as training variables in FEI

improving description of hadronic B decays \Rightarrow improve B-tagging efficiency 38

Retraining FEI: Validation

Once we have a new model for how the B \rightarrow D^(*) (n π ⁺) (m π ⁰) decays, we can train BDTs again with it and see performance:

Nothing changes in the FEI modes where we did not change anything.

There is a significant background reduction in FEI modes where MC model is improved.

Retraining FEI: Effective cuts

Training FEI with new MC ⇒ Better sigprob

Reminder:

Had FEI calibration with Xl ν and D π samples

 $X\ell v$ sample: High statistics, low purity

Dπ sample: Low statistics, high purity

MC15ri (B+ tag)

[Karim, Meihong, Niharika, Vidya: BELLE2-NOTE-PH-2023-004]

Had FEI calibration with Xl ν and D π samples

 $X\ell\nu$ sample: High statistics, low purity

 $D\pi$ sample: Low statistics, high purity

Calibration factors are calculated from signal yields i.e., correctly-reconstructed B_{tag} . Hence, applicable on Signal MC.

Had FEI calibration: Combined for MC15 ri

- > CFs from both samples are combined, with an additional uncertainty added to cover the absolute discrepancies between both.
- \rightarrow For $\mathscr{P} > 0.001$ and $\mathscr{P} > 0.01$
- ➤ Results and procedure documented: BELLE2-NOTE-PH-2023-029
- > Available on kekcc: /hsm/belle2/bdata/users/sutclw/fei_calibration/hadronic_FEI_calibration_factors/v1

Had FEI calibration: For MC15rd

Once correction tables available, we combine both samples through a chi² fit like for MC15ri.

FEI metrics: comparison with Belle

The overall calibration factor in Belle II is ~65%, much lower than the ~75% in Belle.

Belle II has lower performance in terms of efficiency and purity too.

Belle and Belle II uses different MC ⇒ Different performance is expected!

- Belle: $\int L dt = 771 \, \text{fb}^{-1}$

$D^{*0} \rightarrow D^0 \pi^0$ reconstruction

FEI mode: $B^+ \to \overline{D}^{*0} \pi^+$ where $\overline{D}^{*0} \to \overline{D}^0 \pi^0$

In Belle II, the yield of $D^{*0} \rightarrow D^0 \pi^0$ is much worse than Belle.

E > 0.09 GeV cut for γ is too tight for slow π^{o} Should be loosened.

```
if convertedFromBelle:
    gamma_cut = 'goodBelleGamma == 1 and clusterBelleQuality == 0'
else:
    gamma_cut = '[[clusterReg == 1 and E > 0.10] on [clusterReg
                                                                                    or [clusterReg == 3 and E > 0.16]]'
if specific:
    gamma cut += ' and isInRestOfEvent > 0.5'
gamma = Particle('gamma',
                 MVAConfiguration(variables=['clusterReg', 'clusterNHits', 'clusterTiming', 'extraInfo(preCut_rank)',
                                             'clusterE9E25', 'pt', 'E', 'pz'],
                                  target='isPrimarySignal'),
                 PreCutConfiguration(userCut=gamma cut,
                                     bestCandidateMode='highest',
                                     bestCandidateVariable='E'.
                                     bestCandidateCut=40).
                 PostCutConfiguration(bestCandidateCut=20, value=0.01))
gamma.addChannel(['gamma:FSP'])
```


$D^{*0} \rightarrow D^0 \pi^0$ reconstruction

Optimize ΔM for D^{*0} reconstruction

Along with looser preselection for photons, mass-constraint is applied for π^0 candidates in Belle II. This will improve ΔM distribution which is used in preselection and training for D*0. Retraining FEI provides expected results:

Improving metrics of FEI

For Hadronic B+:

Updated decay model for the most efficient B decay modes

Belle $0.75 \rightarrow 1.04$: 39% **1** in Calibration factor

 $0.65 \rightarrow 0.81$: 25% 1 in Calibration factor

➤ Training with the MCri-up (new DECAY.dec)

 $56\% \rightarrow 63\%$: 12% 1 in purity

 \succ Loosen the γ preselection and mass-constraint π^0

 $0.93\% \rightarrow 1.13\% : 21\%$ in efficiency

All these improvements are default for MC16/proc16 (shared knowledge) still studying the impact on SL FEI

Trickle down B-tagging

(ambition behind our work on B-tagging)

implemented improvements:

- better decay file for MC to improve calibration factors, training
- update precuts on γ to improve efficiency for modes with π^0
- $\circ~$ add a mass constrain fit on π^0 to improve $\Delta\,M$ resolution

Hadronic B-tagging with proc16

see M.Marfoli's talk (+BELLE2-NOTE-PH-2025-033)

B⁰:

○ Purity: from 33% to 37% Efficiency: from 0.38% to 0.47%

B⁺:

○ Purity: from 34% to 39% Efficiency: from 1.06% to 1.54%

- improvement is clear... and already available (proc 16)
- now finally better than Belle
- run 2 seems to be of comparable quality

Hadronic B-tagging with proc16

see M.Marfoli's talk (+BELLE2-NOTE-PH-2025-033)

Calibration factors at P_{FFI}>0.001 for Belle - MC15 - MC16

Calibration factors for $B^+ \rightarrow D\pi$

Calibration factors for $B^0 \rightarrow D\pi$

General improvements

B+: from 0.65+/-0.01 to 1.04+/-0.02

 B^0 : from 0.88 + /-0.03 to 1.22 + /-0.04

Still some discrepancies, especially in $D^{(*)}3(^{0})$ and Λ_{c} modes

Good Tags and Bad Tags

- To estimate how many events are tagged correctly for truth matched signal we consider a Good Tag (GT) event either as a:
 - perfect match (isSig=1)
 - recovered (isSig!=1) but with correct final state
- It is also included as a systematic for the CFs but the effect is rather small (1%)

Trickle down B-tagging

(ambition behind our work on B-tagging)

Still need improvements:

- improve our simulation of all B_{tag} modes included \rightarrow better B-tagging performance
- also some opportunities to remeasure/study those B decays and intermediate states

Keep improving the modelisation

Remains some room for improving the modelisation of dominant B_{tag} modes, for for example $B \rightarrow D^{(*)} 3\pi\pi^0$ (see below), $B \rightarrow \Lambda_c pn\pi...$

- ∘ new modes: $B^+ \rightarrow D^{*-}(4\pi)^{++}$, $B^+ \rightarrow D^{*0}(5\pi)^{+}$ have large BFs
- \circ improve the code: implement cuts based when obvious cases (narrow resonances), remove the ΔE from sigprob for a partial reconstruction

First, understand better the B decays...

First, understand better the B decays...

B→DKK: largely unexplored sector

- few % of B branching fraction expected
- Only 0.3% measured so far

[arXiv:2406.06277, JHEP 08 (2024) 206]

Measurement of the branching fractions of $B \rightarrow D^{(*)}KK_s^{(*)}...$

- Efficiency correction applied in the planes $m(D^{(*)}K^{-})$ and $m(K^{-}K_{(S)}^{(*)0})$
- Extraction of bkg-subtracted and efficiency corrected invariant mass and helicity
- Dominant transitions $J^P = 1^{-/+}$
- $B \rightarrow D^{(*)}D_s(\rightarrow KK^{(*)})$ are used as control modes

Further improvements → inclusive

Semileptonic ($\ell = \{e, \mu\}$) Semileptonic ($\ell = \tau$)

Hadronic☐ Covered by FEI

- need more measurements to ''constrain'' our MC
- ∘ $B \rightarrow DX$ (**but also B \rightarrow D^*X**), on -going analysis...
- o difference between Belle and Belle II MC shows room for improvement:

Momentum spectra, for correlated cases in the B to D() cases considering the B+ rest frame,

Trickle down B-tagging

(ambition behind our work on B-tagging)

to get more inclusive, we need more inclusive measurements

Summary

"from rare to not understood"

- knowledge of hadronic B-decays is essential for any B-tagging
- a large part (50%) of the hadronic B decays not measured...
- ...and PYTHIA is generating something...

clear overall improvement for proc 16 thanks to long term efforts

⇒ ambition is to provide (soon) a DECAY table without PYTHIA

exclusive

partial

inclusive

- ⇒ nice perspectives for using proc16 (run1+2 + Belle, had/SL B-tagging)...
 ...in missing energy modes searches
- ∘ further on-going inclusive measurements $B \rightarrow (D^0, D^+, D^{*0}, D^{*+})X$, but also $B \rightarrow (D_s, D_s^*)X$ and $B \rightarrow (\Lambda_c, \Sigma_c)X$ will keep improving our knowledge of B decays and improve exclusive/inclusive B-tagging

SL FEI calibration with D*lv sample

[Andre Huang, Kevin Varvell: BELLE2-NOTE-PH-2023-022]

Consistent selection between B_{sig} and B_{tag}

The calibration factors for MC15ri:

FIG. 1: Data-MC $\cos \theta_{BY}$ distributions, following reconstruction of an $\Upsilon(4S)$ candidate and the additional selections listed in Table [V] with all dataset corrections.

SL FEI calibration with D*lv sample

[Andre Huang, Kevin Varvell: BELLE2-NOTE-PH-2023-022]

 $\begin{array}{c}
K^{-} \searrow \pi^{+} \\
\pi^{+} \searrow D^{0} \\
D^{*+} \ell^{-} \\
\hline
P^{0} \searrow \overline{\nu}_{l}
\end{array}$ $\begin{array}{c}
\bar{B}^{0} \\
\bar{e}^{+} \\
\hline
B^{0} \\
\end{array}$

Consistent selection between B_{siq} and B_{taq}

The calibration factors for MC15ri: Mixed SLFEI CF at log(sigProb) > -2.4

Recommendations:

- > Use only the 4 $D^{(*)}\ell\nu$ modes (select after BCS).
- Apply mode-dependent CF, not the overall.
- > The p_{ℓ} * selection could be analysis dependant.

RC in progress to approve the procedure. Yet to check for MC15rd (Not used for this winter).

$D^{*0} \rightarrow D^{0} \gamma$ reconstruction

In Belle II, the yield of $D^{*0} \rightarrow D^0 \pi^0$ is much worse than Belle, because the tighter pre-cuts on γ hurts slow π^0 reconstruction.

A part of it is recovered in the tail of $D^{*0} \rightarrow D^0 \gamma$, but not ideal.

This also shows that a tight ΔM constraint, which could bring high purity is not effectively utilized.

Should tighten the ΔM pre-BDT cut?

