

Inclusive tagging

S. Glazov Belle II Physics Week

Tagging methods at Y(4S) factory

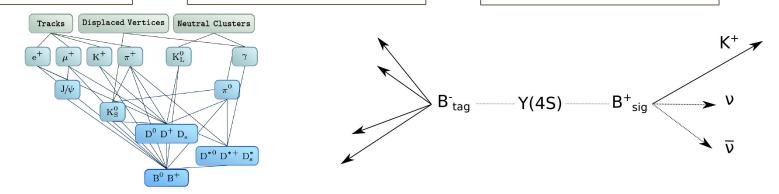
Hadronic tagging ε <1%
highest purity
Best Kinematic
constraints

Semileptonic tagging ε ~ 1% High purity Partial constraints

Inclusive tagging ε > 1%

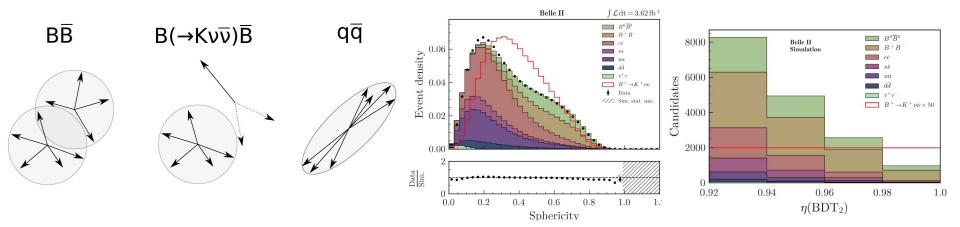
Lowest purity

Beam constraints only



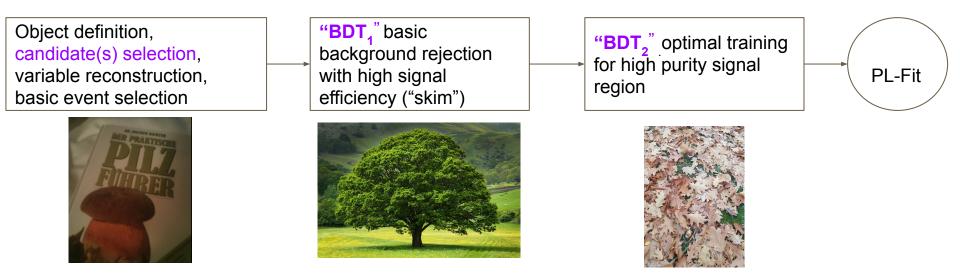
- The partner B-meson ("tag") is an important part of data analysis at Y(4S) factory
- It can be reconstructed explicitly in one of the hadronic or semileptonic decay modes or its properties can be used inclusively
- The approaches differ in efficiency, purity, and kinematic constraining power

Inclusive tag in a nutshell



- Use event properties to suppress background with multiple variables combined by a classifier ("BDT"). Optimize specifically for channel of interest
- Use classifier output as (one of) the fit variable(s), use simulation for signal and background templates
- Use multiple control channels to validate simulation with data

Analysis flow for inclusive tagging

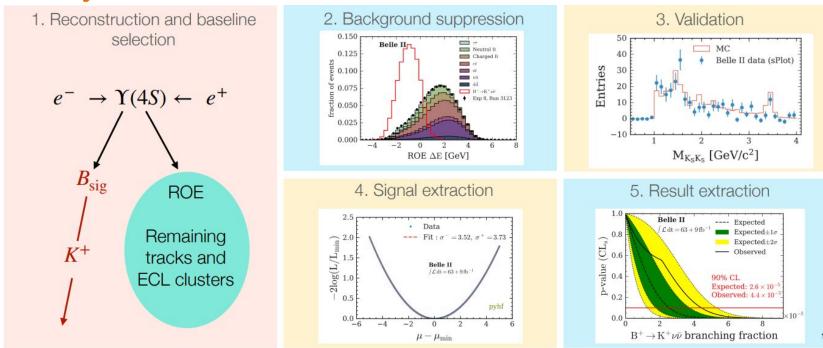


- Start from candidate(s) selection, not from tag: natural flow for a search
- Data volume is large: dedicated skim with BDT₁
- BDT₂ boosts the training for the most interesting signal region
- Sample-composition profile-likelihood fit to extract the signal

Main challenges of inclusive tagging

- Candidate selection for complex final states is a substantial combinatorial problem
- Data volume is significantly increased, efficient analysis framework is essential
- Low purity signal region requires accurate simulation validation with control samples is essential
- Profile likelihood fit with large amount of nuisance parameters to describe systematic uncertainties can be tricky

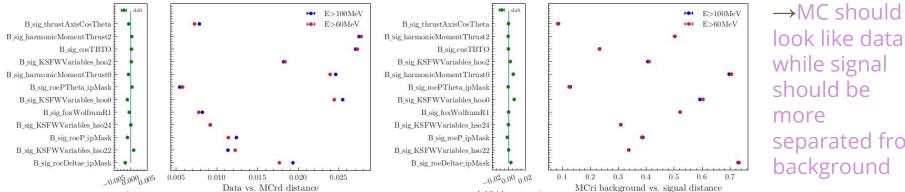
Analysis overview



 $B^+ o K^+
u ar{
u}$ analysis is used as the main example to illustrate the method

Candidate(s) Selection

Reconstruction of particles



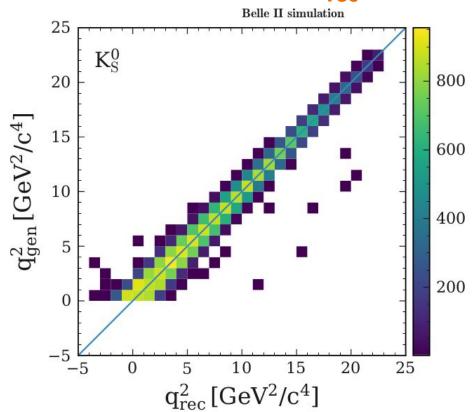
- separated from background

 DE: perform basic
- Inclusive tagging uses consistent selection for the signal and ROE: perform basic optimization

 $\Delta d^* (d_{E>100MeV})$

- Prefer moderately conservative selection: smaller systematic uncertainties
- Build event/ROE from your own lists: simplifies propagation of systematic uncertainty. Remember that e.g. tracking efficiency affects both signal and ROE
- Consider using composite objects for the signal when building event properties: can help to unify e.g. $B^+ \to K^+ \nu \bar{\nu}, B^+ \to K^{*+} \nu \bar{\nu}$ analyses

Reconstruction of q²_{rec}



$$q_{\text{rec}}^2 = s/(4c^4) + M_{K^{(*)}}^2 - \sqrt{s}E_{K^{(*)}}^*/c^4$$

- Reconstruct q²_{rec} as a recoil mass using candidate momentum in CME
- Resolution is much worse compared to hadronic tagging, but sufficient to distinguish main background features

Signal candidate selection

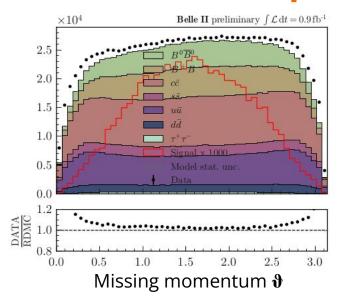
MVA based on $M(K^*), K^*$ momentum in CMS, and vertex - to IP distance

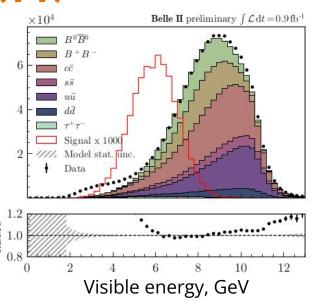
B^0	\rightarrow	K^*	$^{\circ 0}\nu\bar{\nu}$

cuts	signal efficiency [%]	0 0	avg. background multiplicity
K^{*0} Mass	39.8	5.2	10.5
K^+ PXD hits and PID	30.2	1.8	2.4
π^- PXD hits and PID	26.2	1.5	1.9
MVA-two-candidate selection	26.1	1.3	1.5

- For wide resonances, there is a large combinatorial background
- Consider applying required cuts early on (e.g. PID)
- Dedicated MVA for signal selection may help
- Keep sufficient amount of candidates to maintain high signal efficiency
- Perform final candidate selection after final selection.

Removal of low multiplicity (yy) events

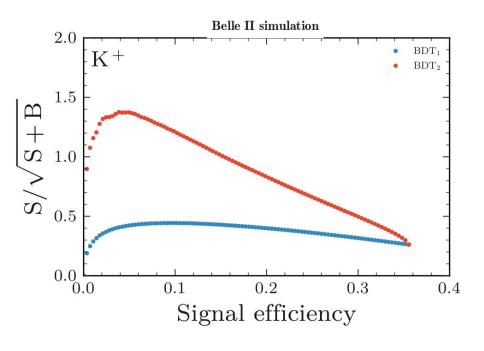




- ullet Belle II simulation does not contain gamma-gamma processes for more complex hadronic final states, e.g. $\gamma\gamma o K^*K^*$
- Empirical removal by missing momentum direction and total energy cuts
- Fix residual background by using off-resonance data to tune MC

BDT₁ Skim

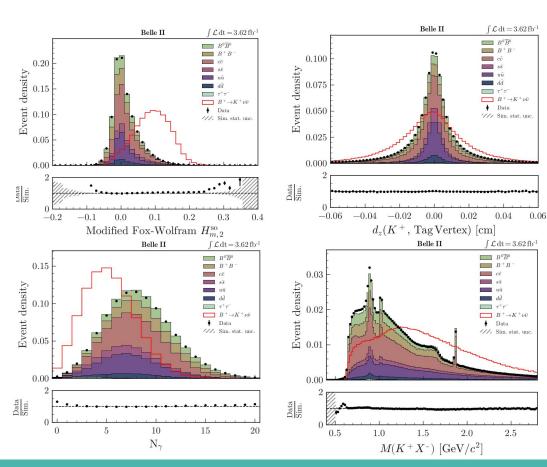
Features of the BDT₁



- Main goal: keep signal efficiency high while removing the bulk of the background
- Use simple event shape/ROE variables: can be the same set for several channels
- Typically, training does not require large MC samples (few fb⁻¹)
- Can be made official WG skim

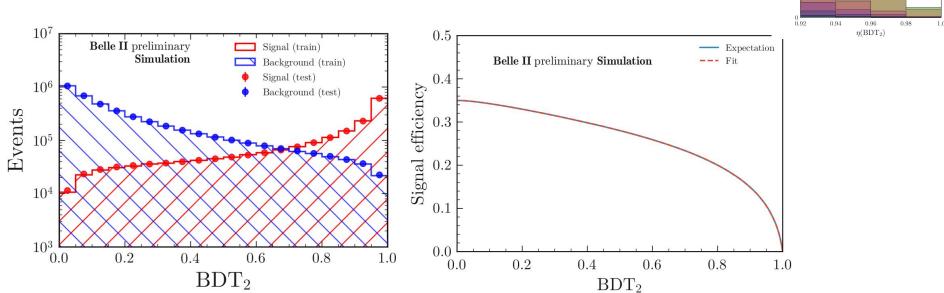
BDT₂ and Signal Region

Selection of input variables for BDT₂



- Use variables with large discriminating power, which are well described by simulation. Residual differences should be covered by systematics
- If the sample composition fit uses additional to BDT₂ variable(s), seek for low correlation with them
- Investigate background in the signal region to add dedicated variables

BDT₂ training

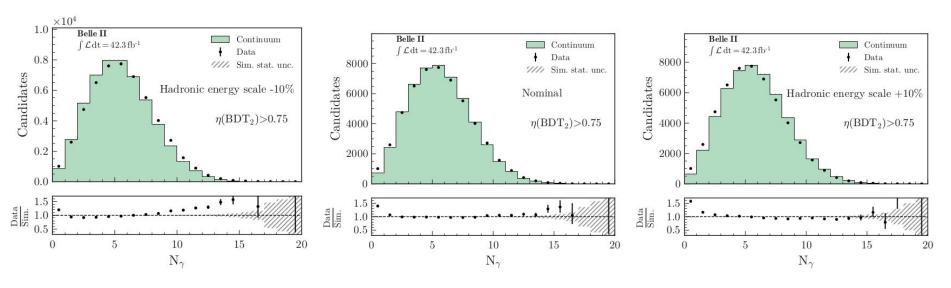


- BDT₂ training is standard: balance signal vs background, optimize FOM (e.g. $S/\sqrt{S+B}$), tune hyperparameters (use e.g. optuna, but check the result)
- Optionally: transform BDT₂ into signal efficiency (better for interpretation, specific sideband studies)

ndidate 4000

2000

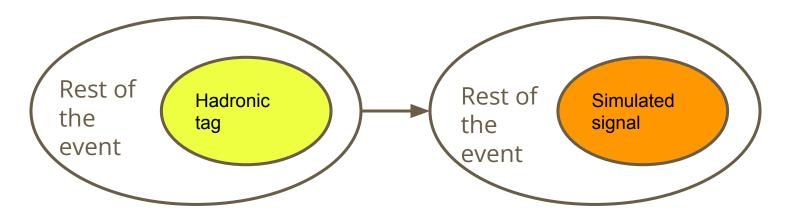
Propagation of detector systematics



- Detector systematic effects (track efficiency, photon energy, unmatched photon ("hadronic") energy, K₁ efficiency) affect both signal and ROE variables
- Propagate in the analysis by varying them and repeating ntuple production
- Use KDE when comparing signal region templates to avoid double counting of statistical uncertainties

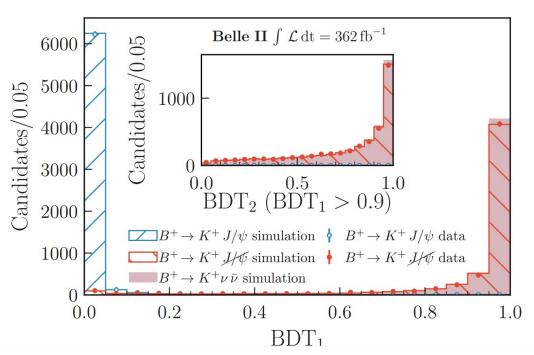
Signal efficiency validation

Signal embedding for signal simulation validation



- ullet Identify B decay by a clean hadronic tag (e.g. $B^+ o J/\psi K^+$)
- Remove the hadronic tag from the event
- Insert the signal decay instead
- Do the same operation for both data and MC simulation

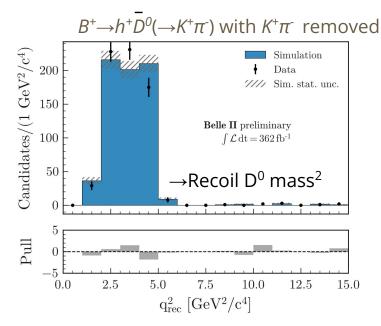
BDT efficiency validation with embedding

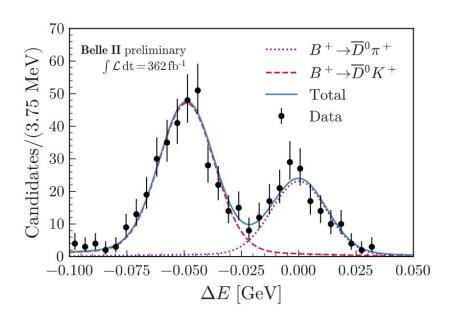


Embedded MC ~ signal: representative Embedded data vs MC: efficiency check

- Embedding validates ROE modeling for signal topologies
- Variables related to signalB-ROE correlation are validated too
- Signal side is always from simulation: it is not validated. Instead:
 - Use standard performance recommendations
 - dedicated control channels for the signal side, if selection beyond recommendations (e.g. extra checks of $K^{*0} \to K^+\pi^-$ vertex fit)
 - Physics modeling systematics: vary signal form factors

Signal side validation: kaon identification check

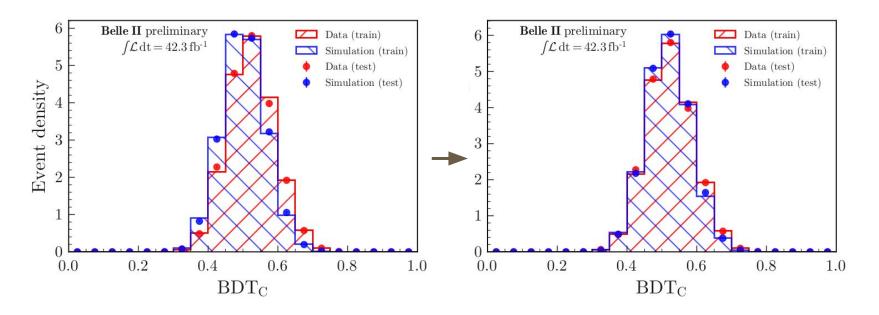




- Kaon identification efficiency/pion fakes: from systematics framework
- Check using $B^+ \to h^+ \bar{D^0} (\to K^+ \pi^-)$ decays. Remove $\bar{D^0}$ decay products to mimic the signal, select signal region. Use $\Delta E = E^*_{B} E_{beam}$ distribution to separate $h^+ = \pi^+ \text{ vs } K^+$.

Background Validation

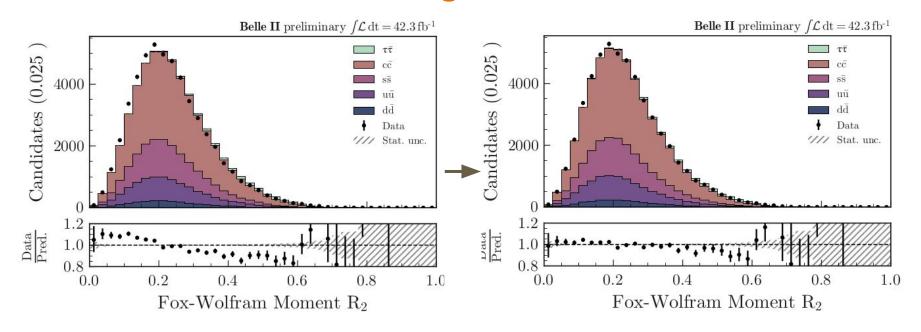
Continuum simulation tuning and validation



Use off-resonance data sample. Train BDT_c classifier to distinguish **data from simulation**. Apply w=p/(1-p) reweighting where p is the BDT_c output.

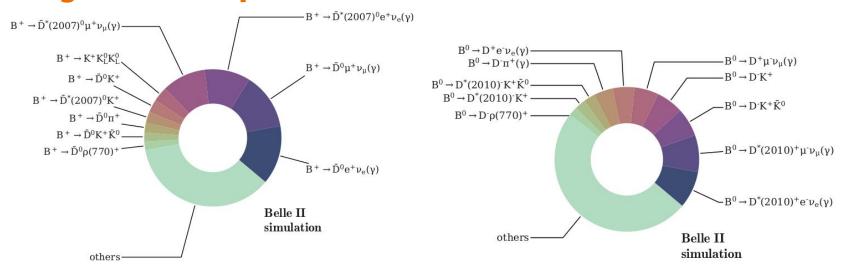
- \rightarrow Classifier uses the same variables as BDT $_2$: analysis specific tune
- →Given small data sample, make sure that BDTc is not overtrained, use simpler model

Continuum simulation tuning and validation



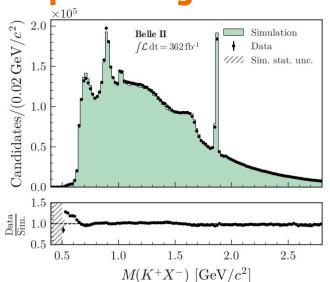
→BDT_c weights improve agreement. Include them as **shape uncertainty** with **100%** uncertainty (relative): it is a direction of maximal data-to-simulation disagreement for BDT₂ variables, useful to keep free in the profile likelihood fit.

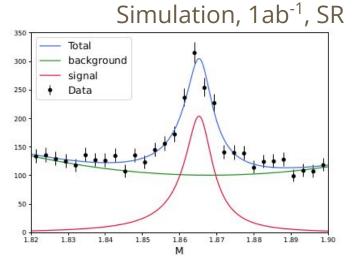
Background composition studies



- Use your favorite tool (e.g. topoAna) to study background composition in the signal region; check fractions **and** BDT₂ distribution.
- For analyses with missing energy, semileptonic and decays containing $\mathbf{K_L}$ and neutrons are most important
- Check \mathbf{D} decays too (with \mathbf{K}_{l} in particular)

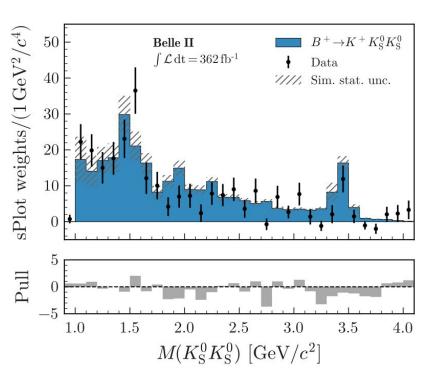
Example background study: $B \rightarrow D \rightarrow K$





- Substantial background from K produced in (low multiplicity) D decays
- Can be suppressed by explicitly reconstructing $M(K^{\dagger}X)$ (BDT₂ variable)
- BDT₂ optimization leaves some events in the SR: can be used to study residual background (note: non-trivial background shape)

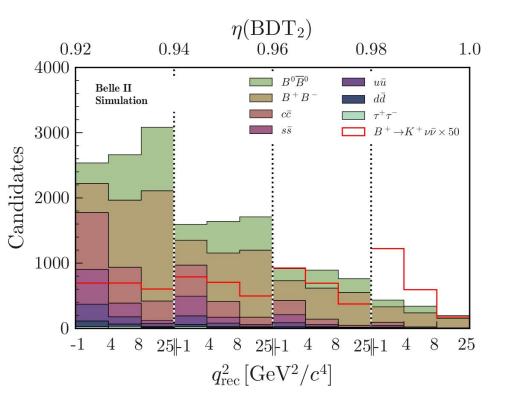
Example background study: $B^+ \rightarrow K^+ K_S K_S$



- Backgrounds with K_L in the final state are among most dangerous
- **K**, interaction probability in ECL is about 50% and energy deposit is low
 - \rightarrow Dedicated study of $B^+ \rightarrow K^+ K_L K_L$ background
- Fully reconstruct $B^+ \to K^+ K_S K_S$ decay. Suppress background while keeping $M(K_S K_S)$ efficiency flat.
- Fit ΔE distribution, use sPlot to extract $M(K_sK_s)$ distribution, compare data to simulation

Signal extraction

Sample composition fit



- Template simulation based fit to binned data counts
- Systematic uncertainties are propagated using nuisance parameters
- Several standard tools: pyhf (+ cabinetry), HistFactory, Combine with minimization backends
- Gaussian approximation is often sufficient (χ^2 fit)
- Fast tools: **sghf** (compatible with pyhf input)

Modeling systematic uncertainties

Source	Correction	Uncertainty type, parameters	Uncertainty size	Impact on σ_{μ}
Normalization of $B\overline{B}$ background		Global, 2	50%	0.90
Normalization of continuum background		Global, 5	50%	0.10
Leading B -decay branching fractions		Shape, 6	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K_{\rm L}^0 K_{\rm L}^0$	q^2 dependent $O(100\%)$	Shape, 1	20%	0.49
p-wave component for $B^+ \to K^+ K_{\rm S}^0 K_{\rm L}^0$	q^2 dependent $O(100\%)$	Shape, 1	30%	0.02
Branching fraction for $B \to D^{**}$		Shape, 1	50%	0.42
Branching fraction for $B^+ \to K^+ n\bar{n}$	q^2 dependent $O(100\%)$	Shape, 1	100%	0.20
Branching fraction for $D \to K_{\rm L}^0 X$	+30%	Shape, 1	10%	0.14
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1	100% of correction	0.01
Integrated luminosity		Global, 1	1%	< 0.01
Number of $B\overline{B}$		Global, 1	1.5%	0.02
Off-resonance sample normalization		Global, 1	5%	0.05
Track-finding efficiency		Shape, 1	0.3%	0.20
Signal-kaon PID	p, θ dependent $O(10-100\%)$	Shape, 7	O(1%)	0.07
Photon energy		Shape, 1	0.5%	0.08
Hadronic energy	-10%	Shape, 1	10%	0.37
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1	8.5%	0.22
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3	O(1%)	0.02
Global signal efficiency		Global, 1	3%	0.03
Simulated-sample size		Shape, 156	O(1%)	0.52

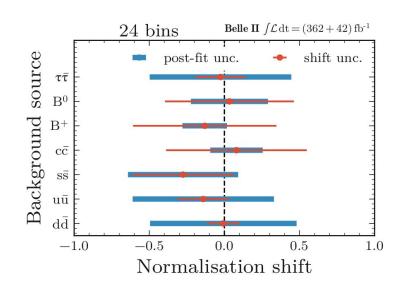
Each Systematic source is described by one or several nuisance parameters

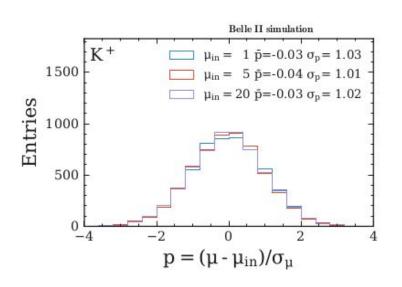
Detector, physics
 modeling systematics is
 correlated across
 channels (if several
 channels are analyzed)
 Analysis specific (e.g.

BDT_c - uncorrelated Check stability of the result vs correlation assumption

Monitoring fit performance

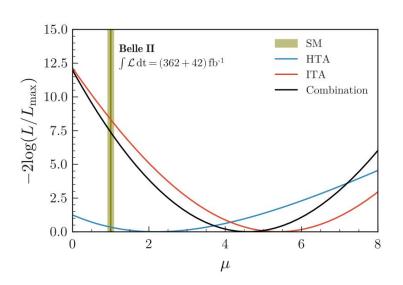
Minuit is not designed to handle > 200 parameters

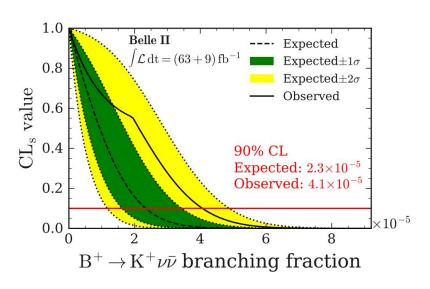




- Study shifts and pulls = $\frac{\sinh(\sqrt{1-post-fit-error^2})}{\int \int \frac{d^2y}{y}}$
- Toys to investigate bias/coverage
- Minuit issues: often useful to first find the minimum using scipy minimizer, and use minuit for error analysis (or perform likelihood scan by hand).

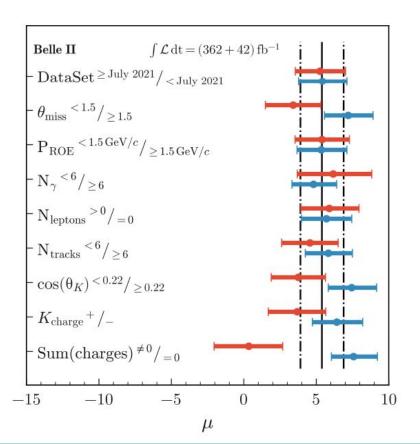
Result representation





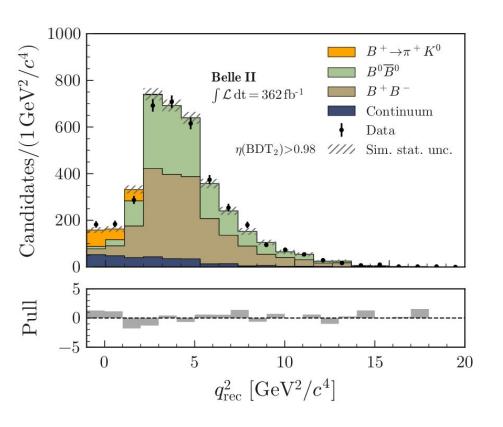
- Signal significance can be determined using log-likelihood scan
- Hadronic tag analysis (HTA) provides a cross check and improved accuracy
- If no significant signal is observed, set limits
- Likelihoods (and example code how to use them) should become public after paper is accepted

Consistency checks



- High statistics of inclusive tagging allows for powerful checks using split samples
- Identify relevant for analysis variables, find median value over the sample, split, and compare results
- Relevant tests for missing energy analysis: missing energy dependence, track/photon multiplicity
- Many tests means > 2sigma fluctuations are possible.

Control channel



- Demonstrate that machinery works using a control channel
- Channels with K_L for missing energy are good candidates
- Analysis of $B^+ \rightarrow \pi^+ K_I$:
 - \circ Change PID from K+ to π+
 - Keep the rest of analysis unmodified
 - Tune binning, but keep fit as for the main analysis
 - Extract signal, compare to measured $B^+ \to \pi^+ K_s$
- B($B+ \rightarrow \pi^+ K^0$) =(2.5 +-0.5)x10⁻⁵ vs PDG (2.39 +- 0.06)x10⁻⁵

Summary

- Inclusive tagging is a powerful method to search for rare decays with missing energy
- All steps in the analysis can be optimized for the specific target
- The method requires accurate modeling by simulation which must be validated by data
- Systematic uncertainties for inclusive and other tagging methods are very different: combination of the approaches is an important cross check and can improve analysis sensitivity.