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Tagging methods at Y(4S) factory

Hadronic tagging
€<1%
highest purity
Best Kinematic
constraints

Semileptonic tagging
E~1%
High purity
Partial constraints

its properties can be used inclusively

Inclusive tagging
£e>1%
Lowest purity
Beam constraints only

Brag

The partner B-meson (“tag”) is an important part of data analysis at Y(4S) factory
It can be reconstructed explicitly in one of the hadronic or semileptonic decay modes or

The approaches differ in efficiency, purity, and kinematic constraining power




Inclusive tag in a nutshell
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e Use event properties to suppress background with multiple variables
combined by a classifier (“BDT"”). Optimize specifically for channel of

interest

e Use classifier output as (one of) the fit variable(s), use simulation for

signal and background templates

e Use multiple control channels to validate simulation with data



Analysis flow for inclusive tagging

Object definition, “BDT, basic “BDT.” optimal trainin
candidate(s) selection, | background rejection 1o optimal 9
: : BN ) = for high purity signal

variable reconstruction, with high signal :
. . . e region
basic event selection efficiency (“skim”)

Start from candidate(s) selection, not from tag: natural flow for a search
Data volume is large: dedicated skim with BDT,

BDT, boosts the training for the most interesting signal region
Sample-composition profile-likelihood fit to extract the signal




Main challenges of inclusive tagging

e Candidate selection for complex final states is a substantial combinatorial
problem

e Data volume is significantly increased, efficient analysis framework is
essential

e Low purity signal region requires accurate simulation - validation with
control samples is essential

e Profile likelihood fit with large amount of nuisance parameters to describe
systematic uncertainties can be tricky



Analysis overview
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5. Result extraction
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BT — KTvp analysis is used as the main example to illustrate the

method



https://arxiv.org/abs/2311.14647

Candidate(s) Selection



Reconstruction of particles
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e Inclusive tagging uses consistent selection for the signal and ROE: perform basic
optimization

e Prefer moderately conservative selection: smaller systematic uncertainties

e Build event/ROE from your own lists: simplifies propagation of systematic
uncertainty. Remember that e.g. tracking efficiency affects both signal and ROE

e Consider using composite objects for the signal when building event properties:

can helptounifye.g. B — K vy, BT — K*Tvp analyses



Reconstruction of ¢*

Belle II simulation
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Signal candidate selection VIVA based on M(K), K2

momentum in CMS, and

BY _y K*Oup vertex - to IP distance

cuts signal avg. signal avg. background
efficiency [%] multiplicity multiplicity
K*® Mass 39.8 5:2 10.5
K™ PXD hits and PID 30.2 1.8 2.4
7~ PXD hits and PID 26.2 1.5 1.9
MVA-two-candidate selection 26.1 1.3 1.5
e For wide resonances, there is a large combinatorial background
e Consider applying required cuts early on (e.g. PID)
e Dedicated MVA for signal selection may help
e Keep sufficient amount of candidates to maintain high signal efficiency
e Perform final candidate selection after final selection.
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Removal of low multiplicity (Yy) events

x 104 Belle II preliminary [ £dt = 0.9{b" x10?* Belle II preliminary [ £dt=0.9fb"
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DATA
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e Belle Il simulation does not contain gamma-gamma processes for more
complex hadronic final states, e.g. vy — K*K*
e Empirical removal by missing momentum direction and total energy cuts

e Fix residual background by using off-resonance data to tune MC
11




BDT1 Skim



S/VSTB

Features of the BDT1

Belle II simulation
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Main goal: keep signal efficiency
high while removing the bulk of the
background

Use simple event shape/ROE
variables: can be the same set for
several channels

Typically, training does not require
large MC samples (few fb™")

Can be made official WG skim
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BDT, and Signal Region



Selection of input variables for BDT,

Belle T1 JLdi=36205" Belle IT JLdi=3.620
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BDT, training
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BDT, training is standard: balance signal vs background, optimize FOM (e.g.
S/+/S + B), tune hyperparameters (use e.g. optuna, but check the result)
Optionally: transform BDT, into signal efficiency (better for interpretation,
specific sideband studies) -




Propagation of detector systematics
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e Detector systematic effects (track efficiency, photon energy, unmatched photon
("hadronic”) energy, K, efficiency) affect both signal and ROE variables

e Propagate in the analysis by varying them and repeating ntuple production

e Use KDE when comparing signal region templates to avoid double counting of

statistical uncertainties -



Signal efficiency validation



https://software.belle2.org/light-2507-europa/sphinx/analysis/doc/embedding.html#signal-embedding

Signal embedding for signal simulation validation

Rest of Hadronic
the tag
event

Identify B decay by a clean hadronictag (e.g. Bt — J/¥K™* )
Remove the hadronic tag from the event

Insert the signal decay instead

Do the same operation for both data and MC simulation
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https://software.belle2.org/light-2507-europa/sphinx/analysis/doc/embedding.html#signal-embedding

BDT efficiency validation with embedding

6000 ] 2 Belle IT [ £dt = 362fb™"
5000 / *
L0 = wn
S | S 1000
=~ 4000 v - =
N .- r—
s N E N
< 3000 = U
= & o 0.0 0.5 1.0 N\
= 2000 L BDT, (BDT; > 0.9) AN
= / CZB* — K+ J/v simulation § Bt— K+ .J/v data \
1000 p”| B+ K+ J/6 simulation § BT — K+ JA5 data B
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BDTx

Embedded MC ~ signal: representative
Embedded data vs MC: efficiency check

Embedding validates ROE
modeling for signal topologies
Variables related to signalB-ROE
correlation are validated too
Signal side is always from
simulation: it is not validated.

Instead:

o Use standard performance
recommendations

o dedicated control channels for the
signal side, if selection beyond
recommendations (e.g. extra checks
of K*0 s K+t vertexfit)

o  Physics modeling systematics: vary
signal form factors
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Signal side validation: kaon identification check
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e Kaon identification efficiency/pion fakes: from systematics framework
e Check using Bt — rtD(— K+n~)decays. Remove D0 decay products to mimic

the signal, select signal region. Use AE = E*B - E, .., distribution to separate

h =m"vs K". )



Background Validation



Continuum simulation tuning and validation

6 Belle II preliminary -8 Z Data (train) 6 F Belle II preliminary ; 23 Data (train)
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Use off-resonance data sample. Train BDT_ classifier to distinguish data from simulation.
Apply w=p/(1-p) reweighting where p is the BDT_output.

—Classifier uses the same variables as BDT, : analysis specific tune

—Given small data sample, make sure that BDTc is not overtrained, use simpler model
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Continuum simulation tuning and validation
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—BDT_weights improve agreement. Include them as shape uncertainty with
100% uncertainty (relative): it is a direction of maximal data-to-simulation
disagreement for BDT, variables, useful to keep free in the profile likelihood fit.
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Background composition studies

-D* Y
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B -~ D*(2010) K ———— i
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——B=D(2010)*pvu(y)

B+ — K*K/K? B=D*pvu(y)

B+ - DOK* BY- i

B+ - D'(2007)°K\

B* -Dn*
|

B* - DOK*RO___
B+ =D0%(770)* —

B* = D%*ve(y)

\B°—~D*(2010)+e-ue(y)

Belle 1T
/ S
simulation s / L
others simulation

e Use your favorite tool (e.g. topoAna) to study background composition in the
signal region; check fractions and BDT, distribution.

e For analyses with missing energy, semizleptonic and decays containing K, and
neutrons are most important

e Check D decays too (with K, in particular)
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Example background study: B —D —K
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e Substantial background from K produced in (low multiplicity) D decays
Can be suppressed by explicitly reconstructing M(K*X) (BDT, variable)
BDT, optimization leaves some events in the SR: can be used to study
residual background (note: non-trivial background shape)
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sPlot weights/(1GeV?2/c?)

Pull

Example background study: B* — K" K, K,
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t{ Data
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Backgrounds with K, in the final state
are among most dangerous

K, interaction probability in ECL is
af)out 50% and energy deposit is low

—Dedicated study of B* —K* K, K,
background

Fully reconstruct B* —-K* KK_decay.
Suppress background while f<eeping
M(K.K ) efficiency flat.

Fit AE distribution, use sPlot to
extract M(K.K,) distribution, compare
data to simulation
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Signal extraction



Sample composition fit

n(BDT3y)
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Template simulation based fit to
binned data counts

Systematic uncertainties are
propagated using nuisance
parameters

Several standard tools: pyhf (+
cabinetry), HistFactory, Combine
with minimization backends
Gaussian approximation is often
sufficient (x? fit)

Fast tools: sghf (compatible with
pyhf input)
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Modeling systematic uncertainties

Source Correction Uncertainty Uncertainty Impact on o,
type, parameters size

Normalization of BB background Global, 2 50% 0.90
Normalization of continuum background Global, 5 50% 0.10
Leading B-decay branching fractions Shape, 6 O(1%) 0.22
Branching fraction for B¥ — K+ KPK} ¢° dependent O(100%) Shape, 1 20% 0.49
p-wave component for BT — K+ KJK? ¢* dependent O(100%) Shape, 1 30% 0.02
Branching fraction for B — D™ Shape, 1 50% 0.42
Branching fraction for BY — K™ nn ¢* dependent O(100%) Shape, 1 100% 0.20
Branching fraction for D — K2 X +30% Shape, 1 10% 0.14
Continuum-background modeling, BDT. Multivariate O(10%) Shape, 1 100% of correction 0.01
Integrated luminosity Global, 1 1% < 0.01
Number of BB Global, 1 1.5% 0.02
Off-resonance sample normalization Global, 1 5% 0.05
Track-finding efficiency Shape, 1 0.3% 0.20
Signal-kaon PID p, 0 dependent O(10-100%) Shape, 7 0(1%) 0.07
Photon energy Shape, 1 0.5% 0.08
Hadronic energy —-10% Shape, 1 10% 0.37
K? efficiency in ECL —17% Shape, 1 8.5% 0.22
Signal SM form factors ¢* dependent O(1%) Shape, 3 0(1%) 0.02
Global signal efficiency Global, 1 3% 0.03
Simulated-sample size Shape, 156 0(1%) 0.52

Each Systematic source
is described by one or
several nuisance
parameters

Detector, physics
modeling systematics is
correlated across
channels (if several
channels are analyzed)
Analysis specific (e.g.
BDT_ - uncorrelated
Check stability of the
result vs correlation
assumption
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Minuit is not designed to

Monitoring fit performance handle > 200 parameters
_24bins _ Belel/En=Gomb Belle 1 simulation
o ms  post-fit unc. -~ shift unc. K'+' il |:| u'in=' if)'=-0'.03' 0};= 103 ]
H Tf _-!— c 1500 | [ pin= 5p=-0.04 g,= 1.01-:
S BOE — ] " 1 in =20 p=-0.03 6= 1.02 ]
g BT E __'_;_ ; g 1000 | -
&D sS - —: — 500 L ]
c% uﬁ:- —: -
M adf  — e—— 0 e IR
1.0 —05 0.0 0.5 1.0 ~4 -2 0 2 4
Normalisation shift p = (1 - Hin)/Oy,

e Study shifts and pulls = shift/v(1-post-fit-error?) of systematic uncertainties

Toys to investigate bias/coverage

e Minuit issues: often useful to first find the minimum using scipy minimizer,
and use minuit for error analysis (or perform likelihood scan by hand).
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Result representation

15.0
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—
B* — K" v branching fraction

Signal significance can be determined using log-likelihood scan
Hadronic tag analysis (HTA) provides a cross check and improved accuracy
If no significant signal is observed, set limits
Likelihoods (and example code how to use them) should become public after

paper is accepted
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Consistency checks
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Candidates/(1GeV?2/ct)

Pull

Control channel
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Continuum
Data

Sim. stat. unc.

Demonstrate that machinery
works using a control channel
Channels with K, for missing
energy are good candidates
Analysis of B* -»m’K, :
o Change PID from K+ to i+
o Keep the rest of analysis
unmodified
o Tune binning, but keep fit as for
the main analysis

o Extract signal, compare to
measured B* —m' K,

B(B+ — K% =(2.5 +-0.5)x10"
vs PDG (2.39 +- 0.06)x10™
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Summary

e Inclusive tagging is a powerful method to search for rare decays with
missing energy

e All steps in the analysis can be optimized for the specific target

e The method requires accurate modeling by simulation which must be
validated by data

e Systematic uncertainties for inclusive and other tagging methods are very
different: combination of the approaches is an important cross check and
can improve analysis sensitivity.
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