Global fits: we are not just a pretty picture...

Marcella Bona

真瑠千恵良 望奈

Queen Mary University of London (QMUL) Belle II Physics Week KEK, Japan

8 October 2025

Global Fit: tool to test the SM and probe NP

- Introduction and motivations
 - the tool: the Unitarity Triangle (UT) fit
- SM UT analysis:
 - provides the best determination of CKM parameters
 - tests the consistency of the SM ("direct" vs "indirect" determinations)
 - provides predictions (from data..) for SM observables
- NP UT analysis:
 - model-independent analysis
 - provides limit on the allowed deviations from the SM
 - obtains the NP scale

UTfit collaboration

Talk based on implementation/inputs/plots of the UTfit collaboration:

- Founded in 2003 (2nd CKM workshop in Durham) from the people from the 2000 paper: https://arxiv.org/abs/hep-ph/0012308 with some experimental characters sneaking in..
- Yearly updates: look for us at conferences, the webpage is... often late...
- If you need something specific, let me know!

latest paper (2023):_
<u>"New UTfit analysis of the unitarity triangle in the Cabibbo–Kobayashi</u>
–Maskawa scheme"

10.1007/s12210-023-01137-5

M.Bona, M. Ciuchini, D. Derkach, F. Ferrari, E. Franco, V. Lubicz, G. Martinelli, D. Morgante,

M. Pierini, L. Silvestrini, S. Simula, A. Stocchi,

C. Tarantino, V. Vagnoni, M. Valli and L. Vittorio

The CKM matrix

The charged current interactions get a flavour structure encoded in the Cabibbo-Kobayashi-Maskawa (CKM) matrix V:

$$\mathcal{L}_{\text{CC}} = -\frac{g}{\sqrt{2}} \left(\bar{\tilde{U}}_L \gamma^{\mu} W_{\mu}^+ V \tilde{D}_L + \bar{\tilde{D}}_L \gamma^{\mu} W_{\mu}^- V^{\dagger} \tilde{U}_L \right)$$

 V_{ij} connects left-handed up-type quark of the \emph{i} th generation to left-handed

down-type quark of jth generation.

Intuitive labelling by flavour:

$$\left(egin{array}{ccc} ar{u} & ar{c} & ar{t} \end{array}
ight) \left(egin{array}{ccc} oldsymbol{V_{ud}} & oldsymbol{V_{us}} & oldsymbol{V_{ub}} \ oldsymbol{V_{cd}} & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{V_{td}} & oldsymbol{V_{ts}} & oldsymbol{V_{tb}} \end{array}
ight) \left(egin{array}{ccc} oldsymbol{d} \ s \ b \end{array}
ight)$$

Foto by M.Bona

Marcella Bona CK @ CKM2006 in Nagoya

Unitarity

The CKM matrix is a 3x3 complex unitary matrix described by 4 (real) parameters:

- 3 can be expressed as (Euler) mixing angles
- the fourth makes the CKM matrix complex (i.e. gives it a phase)
 - weak interaction couplings differ for quarks and antiquarks
- Have you thought about how to obtain this above?
 - You might have... if you have not, let me quickly run through it...

Marcella Bona

5

Unitarity

In general, an $n \times n$ unitary matrix has n^2 real and independent parameters:

- ightharpoonup a $n \times n$ matrix would have $2n^2$ parameters
- ► the unitary condition imposes n normalization constraints
- \rightarrow n(n 1) conditions from the orthogonality between each pair of columns:

thus $2n^2 - n - n(n - 1) = n^2$.

In the CKM matrix, not all of these parameters have a physical meaning:

- ► with n generations, 2n 1 phases are absorbed by the freedom to select the quark field phases
- ► Each u, c or t phase allows for multiplying a row of the CKM matrix by a phase, while each d, s or b phase allows for multiplying a column by a phase.

thus: n^2 - $(2n - 1) = (n - 1)^2$.

Among the n² real independent parameters of a generic unitary matrix:

- ► ½ n(n 1) of these parameters can be associated to real rotation angles,
- ► so the number of independent phases is

			•	•	
n ² - ½ n((n- 1) -	(2n – 1)	$= \frac{1}{2}$	(n – 1)	(n - 2)

n(families)	Total indep. params. $(n-1)^2$		Complex phase factors $\frac{1}{2}(n-1)(n-2)$
2	1	1	0
3	4	3	1
4	9	6	3

The CKM matrix: rotation decomposition

The CKM matrix can be seen as the product of three rotation matrices and each rotation involves two of the three families:

$$\bigvee = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

which gives the classic exact parameterisation that can be found for example on the PDG:

$$\forall = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

with $c_{ij} = cos\theta_{ij}$ and $s_{ij} = sin\theta_{ij}$, and i,j = 1,2,3. δ is the CP violating phase

fit

The CKM matrix: Wolfenstein parameterisation

From measurements, V results hierarchical $\rightarrow \theta_{13} \ll \theta_{23} \ll \theta_{12}$ We can see this hierarchy via the Wolfenstein parameterisation:

- \rightarrow the CKM matrix elements are expanded in order of sin θ_{12} historically called Cabibbo angle θ_{c} :
- → Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$

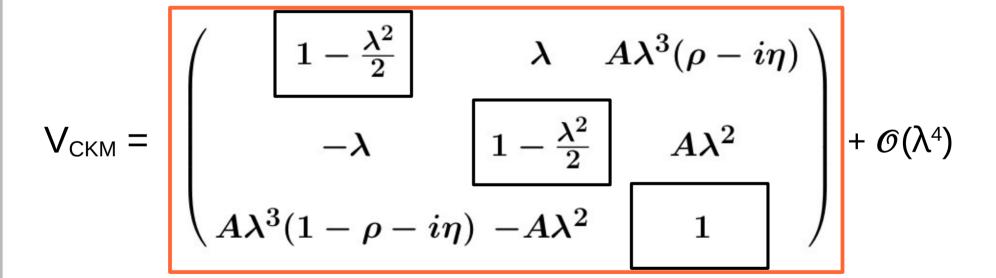
$$V_{\mathsf{CKM}} = egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & A \lambda^3 (
ho - i \eta) \ - \lambda & 1 - rac{\lambda^2}{2} & A \lambda^2 \ A \lambda^3 (1 -
ho - i \eta) & - A \lambda^2 & 1 \end{pmatrix} +$$

 \rightarrow Wolfenstein parameters: $\lambda \sim 0.22$, A ~ 0.83 , $\rho \sim 0.15$, $\eta \sim 0.35$

Tfit

The CKM matrix: Wolfenstein parameterisation

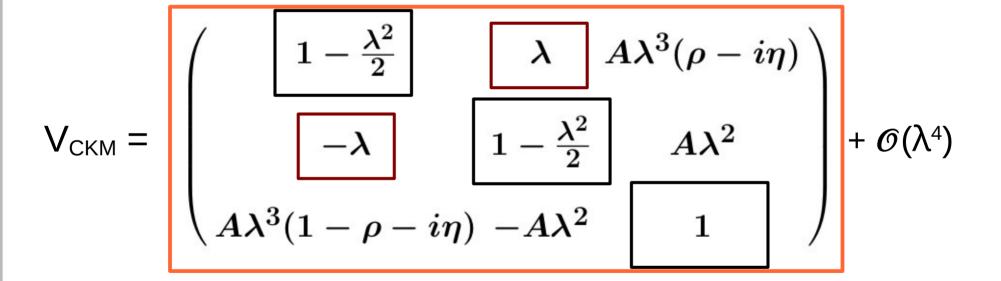
From the Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$, we can get an idea on the sizes of the various CKM matrix elements:



fit

The CKM matrix: Wolfenstein parameterisation

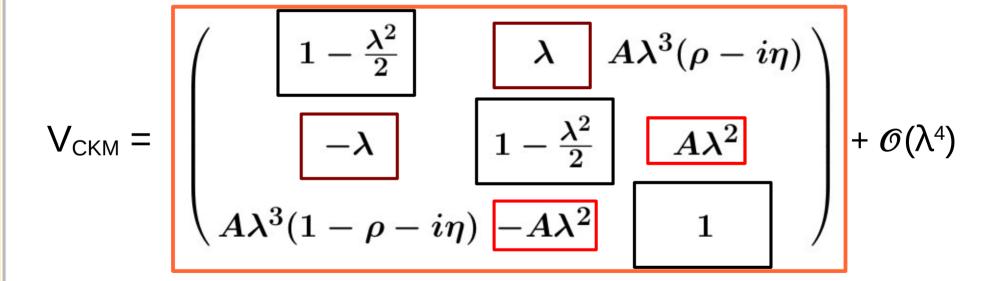
From the Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$, we can get an idea on the sizes of the various CKM matrix elements:



fit

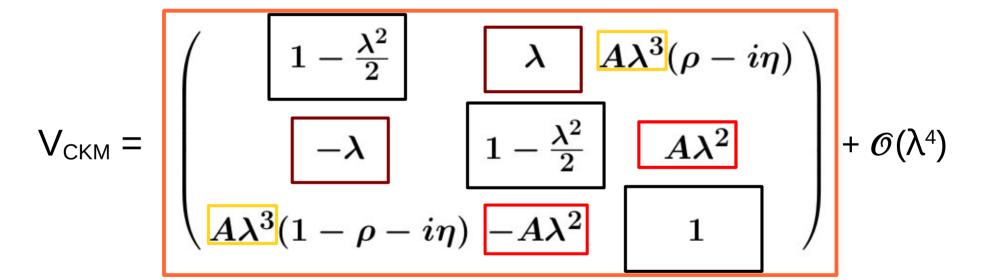
The CKM matrix: Wolfenstein parameterisation

From the Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$, we can get an idea on the sizes of the various CKM matrix elements:



The CKM matrix: Wolfenstein parameterisation

From the Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$, we can get an idea on the sizes of the various CKM matrix elements:



T_{fit}

The CKM matrix: Wolfenstein parameterisation

From the Wolfenstein parameter $\lambda = \sin \theta_{12} \sim 0.22$, we can get an idea on the sizes of the various CKM matrix elements:

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

At λ^2 order, the third generation decouples $\eta \neq 0$ signals CP violation \rightarrow imaginary part of V_{ub} and V_{td} (1st \rightleftharpoons 3rd family)

The CKM matrix: Wolfenstein-Buras parameterisation

Usually the Buras correction to the Wolfenstein parameterisation is used:

$$\frac{\overline{\rho} = \rho \ (1 - \lambda^2/2)}{\overline{\eta} = \eta \ (1 - \lambda^2/2)}$$

also in this "approximation" at all λ orders.

Also $\overline{\rho}$ +i $\overline{\eta}$ is phase-convention independent:

Tfit

The CKM matrix: unitarity relations

$$egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

multiply with its hermitian conjugate (complex conjugate + transpose)
$$VV^{\dagger} = V^{\dagger}V = \mathbf{1}$$

column orthogonality

row orthogonality

$$\Sigma_{i} V_{ij} V^{*}_{ik} = \delta_{jk}$$

$$\Sigma_{j} V_{ij} V^{*}_{kj} = \delta_{ik}$$

nted as

The six vanishing combinations can be represented as triangles in a complex plane

The CKM matrix: unitarity relations

The triangles obtained by taking scalar products of neighboring rows or columns are nearly degenerate. However, the areas of all triangles are the same, half of the Jarlskog invariant J.

same, half of the Jarlskog invariant J.
$$1^{st} \rightleftharpoons 2^{nd}$$
 family

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* \simeq \mathcal{O}(\lambda) + \mathcal{O}(\lambda) + \mathcal{O}(\lambda^5) = 0$$

column orthogonality 2nd
$$pprox 3^{rd}$$
 family $V_{us}V_{ub}^*+V_{cs}V_{cb}^*+V_{ts}V_{tb}^*\simeq \mathcal{O}(\lambda^4)+\mathcal{O}(\lambda^2)+\mathcal{O}(\lambda^2)=0$

$$1^{
m st}
ightarrow 2^{
m st} + V_{cd}V_{cb}^* + V_{td}V_{tb}^* \simeq \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) = 0$$
 $1^{
m st}
ightarrow 3^{
m riangles}$ not to scale

Tfit

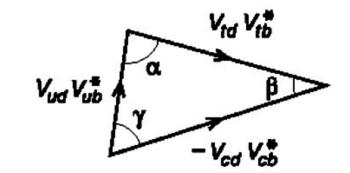
The CKM matrix: third unitarity relation

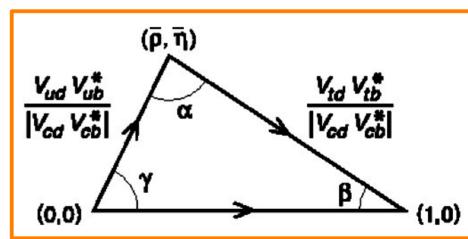
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* \simeq \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) = 0$$

 $V_{id}V^*_{ib}$ = 0 is the orthogonality condition between the first and the third column: the orientation depends on the phase convention

Usually we see re-scaled version where sides have been divided by $|V_{cd}V^*_{cb}|$

In the Wolfenstein parameterization, the coordinates are (0, 0), (1, 0) and $(\bar{\rho}, \bar{\eta})$, and the two sides are $(\bar{\rho} + i\bar{\eta})$ and $(1 - \bar{\rho} - i\bar{\eta})$.

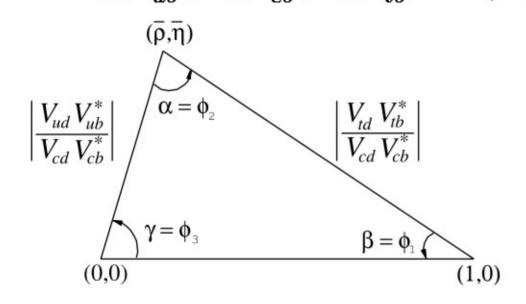




fit

The CKM matrix: third unitarity relation

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* \simeq \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) + \mathcal{O}(\lambda^3) = 0$$



The angles can be written in terms of CKM matrix elements as:

$$egin{aligned} lpha &\equiv ext{arg}[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*] \ eta &\equiv ext{arg}[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*] \ \gamma &\equiv ext{arg}[-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*] \end{aligned}$$

In the Wolfenstein parameterisation:

- the β/ϕ_1 angle corresponds to the phase of V_{td}
- the y/ϕ_3 angle corresponds to the phase of V_{ub}
- the α/ϕ_2 angle can be obtained with $\pi \beta \gamma$ (assumes unitarity)

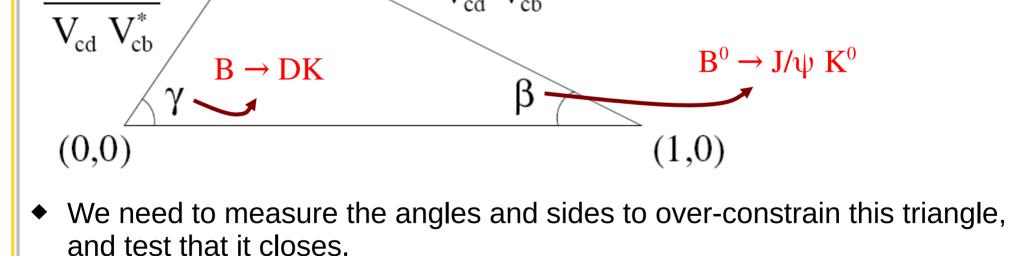
Many different ways to

measure the angles and sides.

The Unitarity Triangle

 $\bar{\alpha}$

 $B^0 \to \pi^+\pi^-$



Need to define observables and experiments to measure these quantities

Global Fits

$$f(ar
ho,ar\eta,X|c_1,...,c_m) \sim \prod f_j(\mathcal{C}|ar
ho,ar\eta,X) *$$

$$X \equiv x_1,...,x_n = m_t,B_K,F_B,...$$

$$\mathcal{C} \equiv c_1,...,c_m = \epsilon, \Delta m_d/\Delta m_s, A_{CP}(J/\psi K_S),...$$

$$\mathcal{C} \equiv c_1,...,c_m = \epsilon, \Delta m_d/\Delta m_s, A$$

 ϵ_{K}

 Δm_d

 $\Delta m_d/\Delta m_s$

 $A_{CP}(J/\psi K_S)$

$$egin{aligned} &\equiv c_1,...,c_m = \epsilon, \Delta m_d/\Delta m_s, A_{CP}(J/\psi K_S),... \end{aligned} \ &
ightarrow u)/(b
ightarrow c) \qquad ar{
ho}^2 + ar{\eta}^2 \qquad ar{\Lambda}, \lambda_1, F(1), ... \end{aligned}$$

$$(b o u)/(b o c)$$
 $ar
ho^2+ar\eta^2$

$$ar{ar{\eta}[(1-ar{
ho})+P]}$$

$$\eta[(1-\rho)+$$

$$(1-ar
ho)^2+i$$

$$(1-\rho) + \eta$$

$$(1-\bar{\rho})^2 + \bar{\sigma}^2$$

 $\sin 2\beta$

$$(1-\bar{\rho})^2+\bar{\eta}^2$$

$$(1-\bar{\rho})^2+\bar{\eta}^2$$

$$f_B^2B_B$$
 $oldsymbol{\xi}$

 B_{K}

Bayes Theorem

 $f_i(x_i)f_0(ar
ho,ar\eta)$

Standard Model +

quarks to hadrons

j=1,m

i=1,N

Global fit constraints

Before the B factories, the available constraints used were:

- ► Mixing in the K system: ε_K
- $ightharpoonup \Delta m_{d,s}$ in the $B_{d,s}$ systems
- ► V_{ub}/V_{bc} from semileptonic b to c and b to u

B factories started to improve some of the above And also adding the measurements of the angles:

► β/ϕ_1 , γ/ϕ_3 and α/ϕ_2

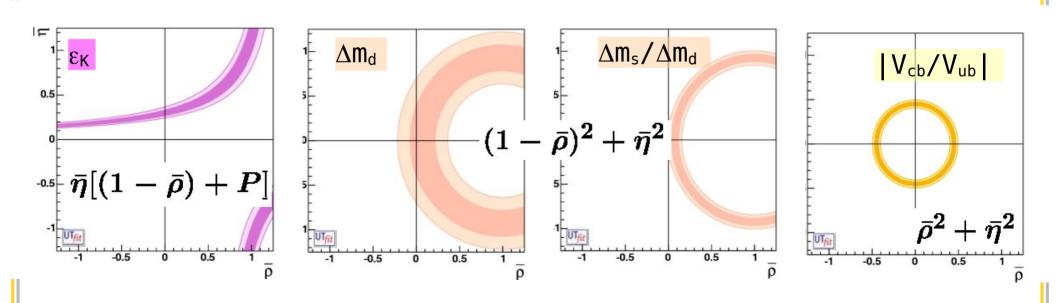
In any case, we need to reconnect the experimental observables with the fundamental parameters we want to obtain, in our case the CKM matrix elements.

fit

Global fit constraints

Before the B factories, the available constraints used were:

- Mixing in the K system: ε_K
- $ightharpoonup \Delta m_{d,s}$ in the $B_{d,s}$ systems
- ► V_{ub}/V_{bc} from semileptonic b to c and b to u



Global fit constraints

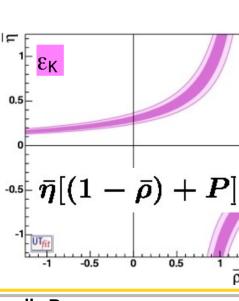
ightharpoonup Mixing in the K system: ε_{K}

 S_0 = Inami-Lim functions for c-c, c-t, e t-t contributions (from perturbative calculations)

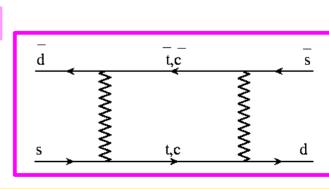
$$| \epsilon_K | = C_{\epsilon} \frac{B_K A^2 \lambda^6 \overline{\eta}}{\eta} \{ -\eta \left(S_0(x_c) (1 - \lambda^2/2) + \eta \left(S_0(x_c, x_t) \right) + \eta \left(S_0(x_t) A^2 \lambda^4 (1 - \overline{\rho}) \right) \}$$

 $\frac{\langle K | J_{\mu} J^{\mu} | \overline{K} \rangle}{\langle K | J_{\mu} | 0 \rangle \langle 0 | J^{\mu} | \overline{K} \rangle}$ from lattice QCD

PDG



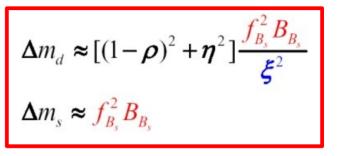
 $B_{\kappa} = 0.7627 \pm 0.0060$ $\varepsilon_{\rm K} = (2.228 \pm 0.011) \cdot 10^{-3}$



Global fit constraints

$$\Delta m_{d,s}$$
 in the B_{d,s} systems
$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_W^2 \eta_b S(x_t) m_{B_d} f_{B_d}^2 \hat{B}_{B_d} |V_{tb}|^2 |V_{td}|^2 =$$

$$\frac{1}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \mathring{B}_{B_{d}} |V_{tb}|^{2} |V_{td}|^{2} =
= \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{b} S(x_{t}) m_{B_{d}} f_{B_{d}}^{2} \mathring{B}_{B_{d}} |V_{cb}|^{2} \lambda^{2} ((1-\overline{\rho})^{2} + \overline{\eta}^{2})$$

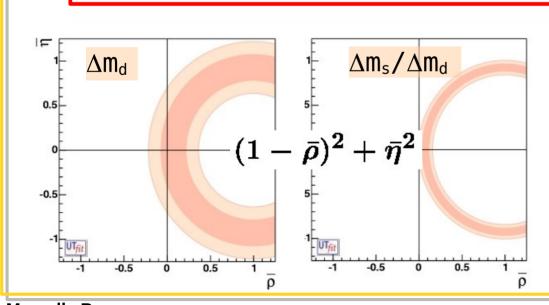


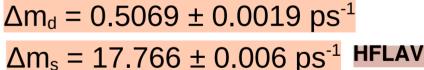
(from perturbative calculations)

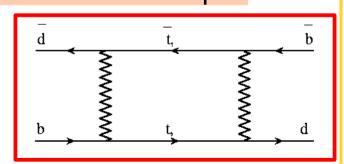
S = Inami-Lim function

for the t-t contribution

 $B_{B_{q}}$ and $f_{B_{q}}$ from lattice QCD





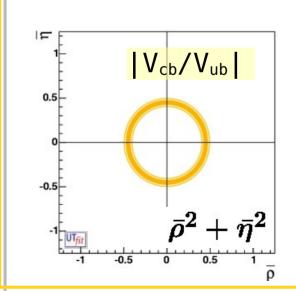


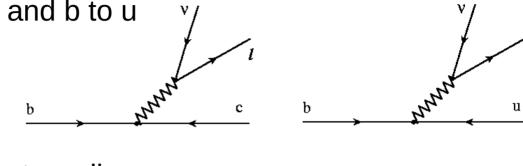
T_{fit}

Global fit constraints

 $ightharpoonup V_{ub}/V_{cb}$ from semileptonic b to c and b to u

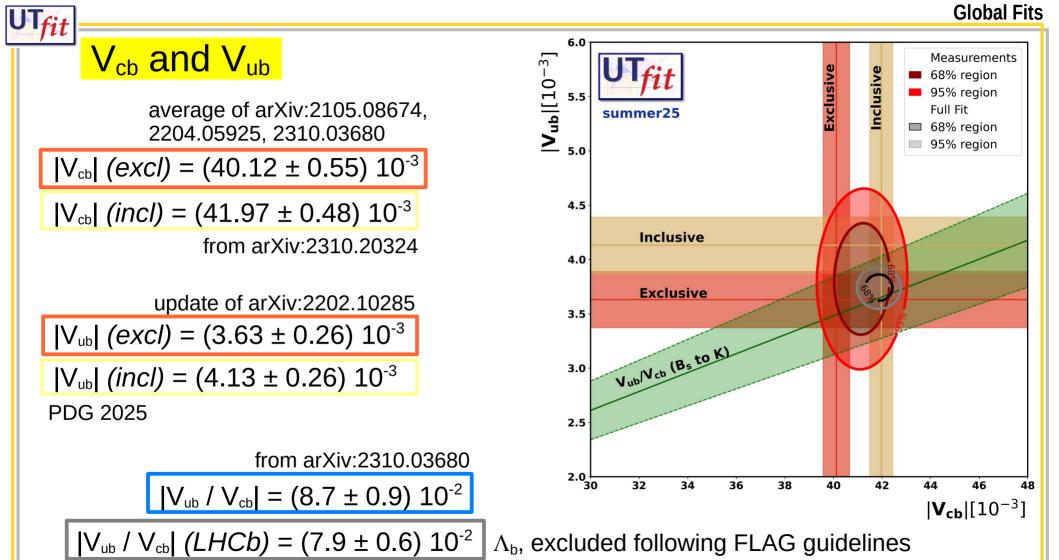
$$\left| rac{V_{ub}}{V_{cb}}
ight| = rac{\lambda}{1 - rac{\lambda^2}{2}} \sqrt{ar{
ho}^2 + ar{\eta}^2}$$





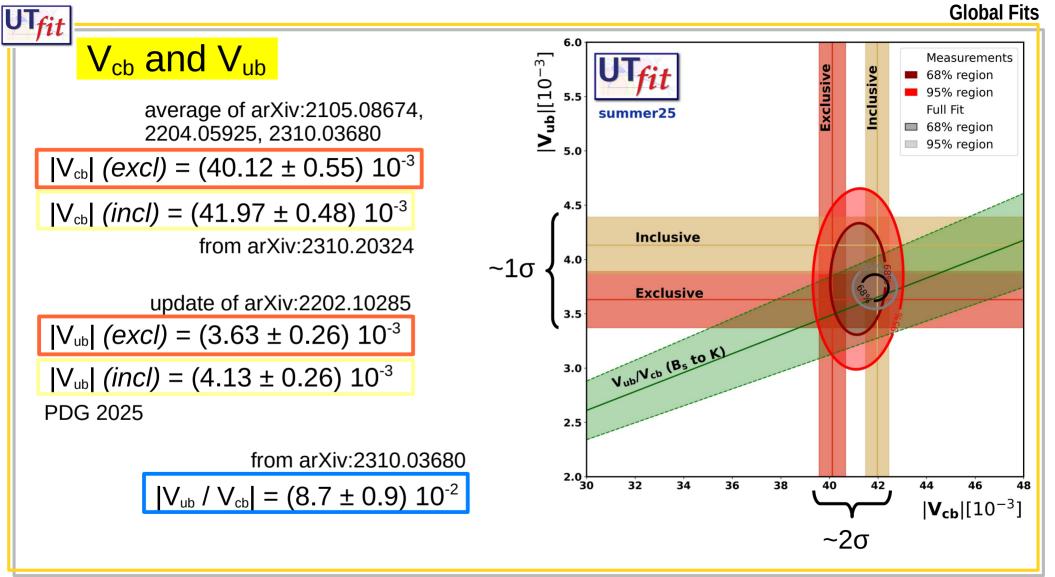
o negligible new physics contributions
o inclusive and exclusive semileptonic
B decay branching ratios

QCD corrections to be includedo inclusive measurements: OPEo exclusive measurements: form factors from lattice QCD



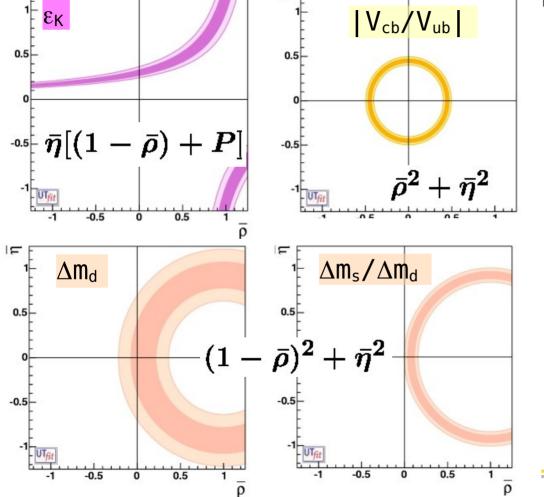
Marcella Bona

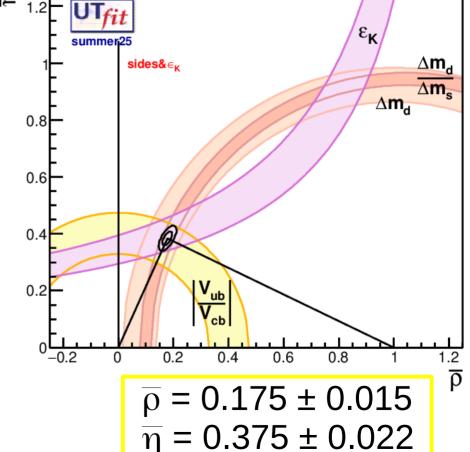
26



Global Fits

Global fit with pre-B-factory constraints:

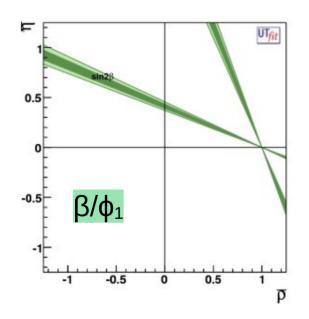


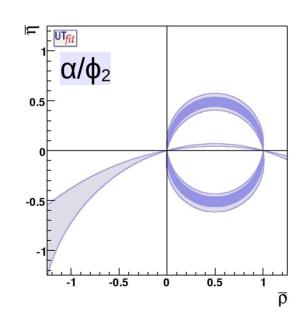


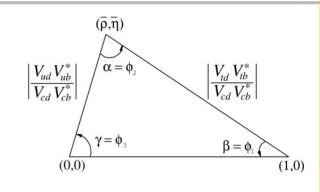
The angles

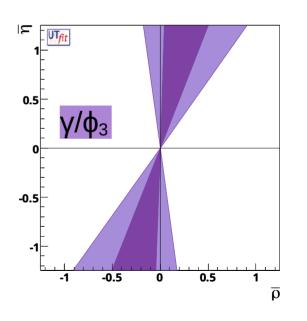
B factories have been groundbreaking in measuring the angles:

► β/ϕ_1 , α/ϕ_2 and γ/ϕ_3





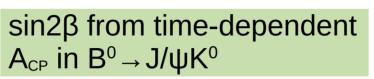


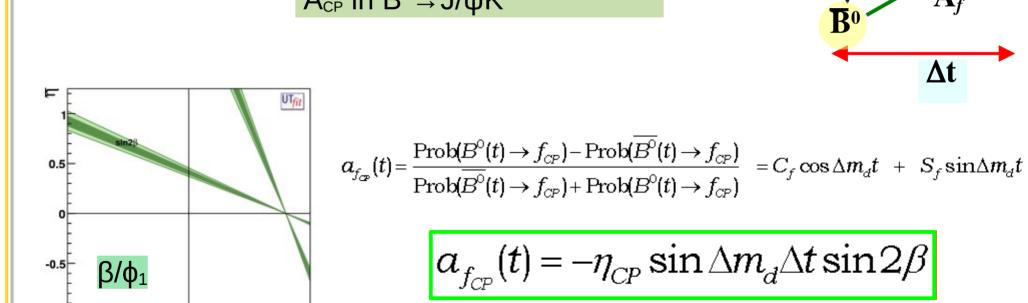


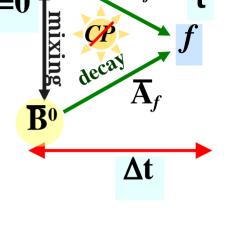
Global Fits

The angles

β/φ₁







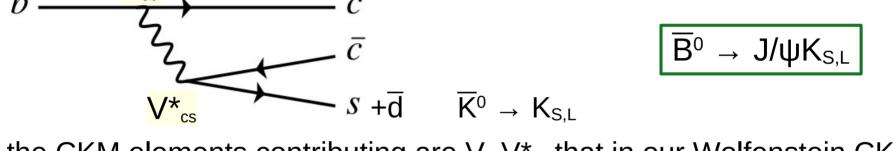
$$a_{f_{CP}}(t) = -\eta_{CP} \sin \Delta m_d \Delta t \sin 2\beta$$

Marcella Bona

30

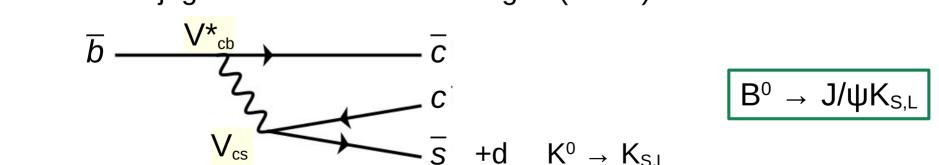
$-\frac{1}{\sin 2\beta}$ in golden b $\rightarrow c\overline{c}s$ modes

leading-order tree decays to ccs final states



here the CKM elements contributing are $V_{cb}V^*_{cs}$ that in our Wolfenstein CKM parameterisation have no phase.

The CP conjugated case is also leading to (about) the same final state:



Global Fits

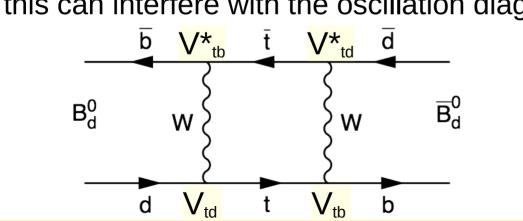
K mixing

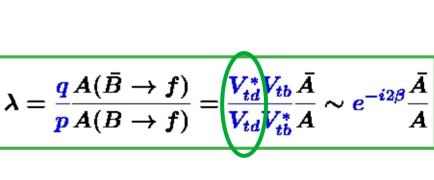
leading-order tree decays to ccs final states

 $\overline{\mathsf{B}}^0 \to \mathsf{J}/\psi \mathsf{K}_{\mathsf{S},\mathsf{L}}$ tree diagram

 $b \xrightarrow{c} c$ \overline{C} $\sqrt{S} + \overline{d} \qquad \overline{K}^0 \rightarrow K_{S,L}$ $\overline{A} = \frac{V_{cb}V_{cs}^*}{V_{cb}V_{cs}^*}$

because both B and \overline{B} can decay in this common final state, this can interfere with the oscillation diagram:





Global Fits

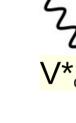
$sin2\beta$ in golden b \rightarrow ccs modes

leading-order tree decays to ccs final states

tree diagram

 $V_{cb}V_{cs}^{\star}$ $V_{cs}V_{cd}^{\star}$

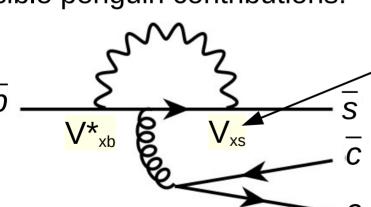
 $\to J/\psi K_{S,L}$



 $\overline{K}{}^0 \ \to \ K_{S,L}$

K mixing

possible penguin contributions:



where x can be any up-type quark hence this counts for three penguin diagrams

$sin2\beta$ in golden b \rightarrow ccs modes

$$\overline{b}$$
 V^*_{xb}
 V^*_{xb}
 \overline{c}
 \overline{c}

$$\begin{cases} x=u \rightarrow P^{u} \sim V_{ub}V^{*}_{us} \\ x=c \rightarrow P^{c} \sim V_{cb}V^{*}_{cs} \\ x=t \rightarrow P^{t} \sim V_{tb}V^{*}_{ts} \end{cases}$$

using this unitary condition ($2^{nd} \rightleftharpoons 3^{rd}$ family), we eliminate $V_{tb}V^*_{ts}$

$$V_{ub}V^*_{us} + V_{cb}V^*_{cs} + V_{tb}V^*_{ts} = 0 \quad \rightarrow \quad V_{tb}V^*_{ts} = -V_{ub}V^*_{us} - V_{cb}V^*_{cs}$$

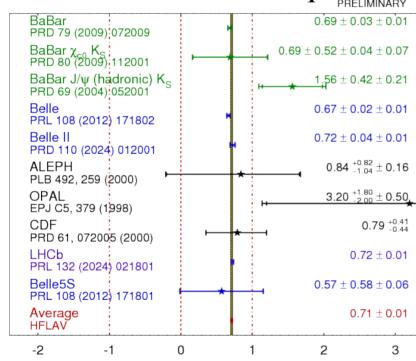
thus the amplitude is:

$$A_{ccs} \sim V_{cb}V_{cs}^*$$
 (T + P^c – P^t) + $V_{ub}V_{us}^*$ (P^u – P^t)

CKM-suppressed $\mathcal{O}(\lambda^2)$ pollution by penguins

$sin2\beta$ in golden b \rightarrow ccs modes

$$sin(2\beta) \equiv sin(2\phi_1) \stackrel{\textit{HFLAV}}{\underset{\text{PDG 2025}}{\text{PRELIMINARY}}}$$



Use HFLAV charmonium value

- Include correction due to Cabibbo-suppressed penguin contributions
- O Model-independent data-driven estimation from $J/\psi\pi^0$ data $\Delta S_{J/\psi K0} = S_{J/\psi K0} \sin 2\beta = -0.01 \pm 0.01$
- Final corrected number: $\sin 2\beta = 0.700 \pm 0.015$

Ciuchini, Pierini, Silvestrini https://arxiv.org/abs/hep-ph/0507290

 $b \rightarrow u \bar{u} d$

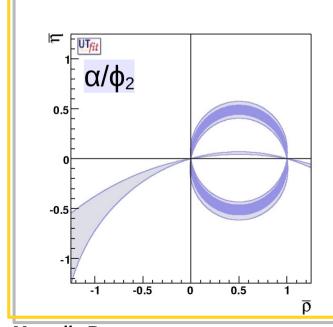
 $B \to \pi\pi$

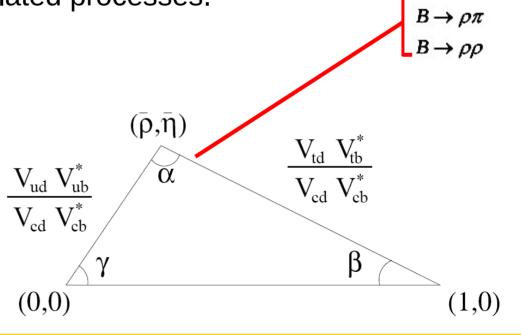
The angles

 $\sim \alpha/\phi_2$

 $b \rightarrow u\overline{u}d$ transitions with possible loop contributions. Extract α using

- SU(2) Isospin relations.
- SU(3) flavour related processes.

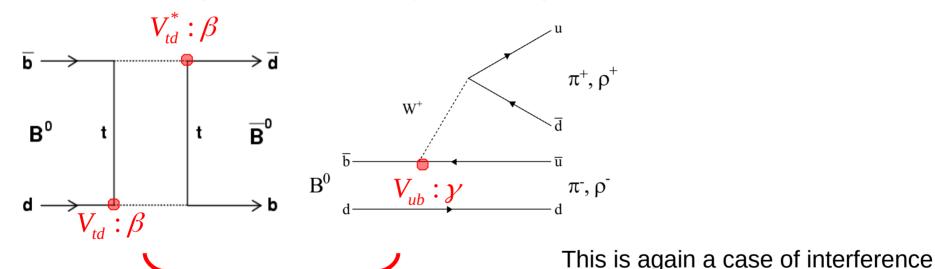




fit

The angle α/ϕ_2

Interference between box and tree results in an asymmetry that is sensitive to α/ϕ_2 in B \rightarrow hh decays: h = π , ρ , ...



 $C_{hh} = 0$

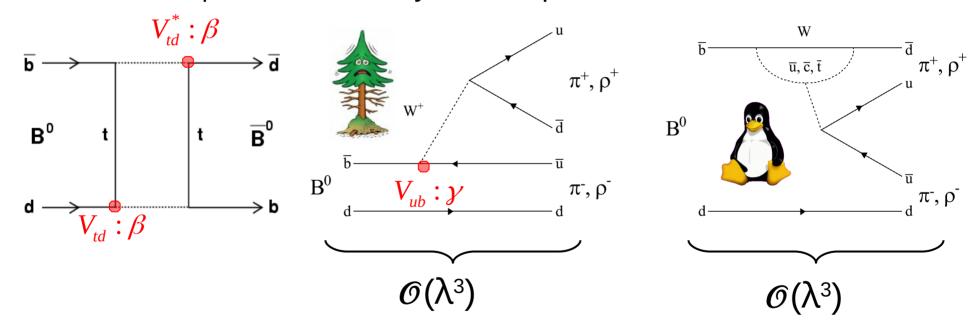
 $S_{hh} = \sin(2\alpha)$

between mixing and decay.
This scenario is equivalent to the measurement of sin2β in charmonium

decays ... but in this case it is more complicated..

The angle α/φ₂

Interference between box and tree results in an asymmetry that is sensitive to α/ϕ_2 in B \rightarrow hh decays: h = π , ρ , ...

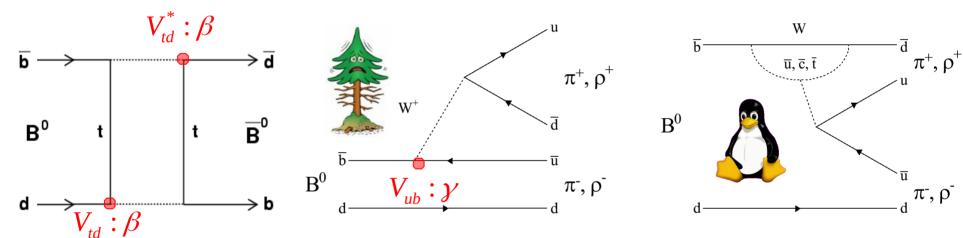


In this case the penguin diagram is not CKM suppressed so it spoils the clean measurement of the CP violation effect

^Tfit

The angle α/ϕ_2

Interference between box and tree results in an asymmetry that is sensitive to α/ϕ_2 in B \rightarrow hh decays: h = π , ρ , ...



$$C_{hh} = 0$$

$$S = \sin(2\alpha)$$

$$C_{hh} \propto \sin(\delta)$$

$$S_{hh} = \sqrt{1 - C_{hh}^2}$$

 $\delta = \delta_{\scriptscriptstyle D} - \delta_{\scriptscriptstyle T}$

Measure S $\propto \alpha_{\text{eff}}$ Need to determine $\delta_{\alpha} = \alpha_{\text{eff}} - \alpha$ [P/T is different for each final state]

The angle α/φ₂

Several recipes describe how to bound penguins and measure $\alpha/\varphi_2.$

SU(2)

These are based on SU(2) [or SU(3)] symmetry.

M. Gronau and D. London, 65, 3381 (1990) $\pi^+\pi^- \text{ and } \rho^+\rho^-$ Gronau-London Isospin Triangles

Use charged and neutral B decays to the hh final state to constrain the penguin contribution and measure α .

(Isospin analysis)

π[±]ρ[±]

Lipkin (et al.)

Isospin Pentagons

Use charged and neutral B decays to the $\rho\pi$ final state to constrain the penguin contribution and measure α . Remove any overlapping regions in the Dalitz plot.

H. Lipkin et al., Phys. Rev. Lett. D 44, 1454 (1991)

A. Snyder and H. Quinn, Phys. Rev. Lett. D **48**, 2139 (1993); H. Quinn and J Silva, Phys. Rev. Lett. D **62**, 054002 (2000).

Snyder-Quinn (et al.) Fit Dalitz plot and extract parameters related to α

Regions of the Dalitz plot with intersecting ρ bands are included in this analysis; this helps resolve ambiguities.

 $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$

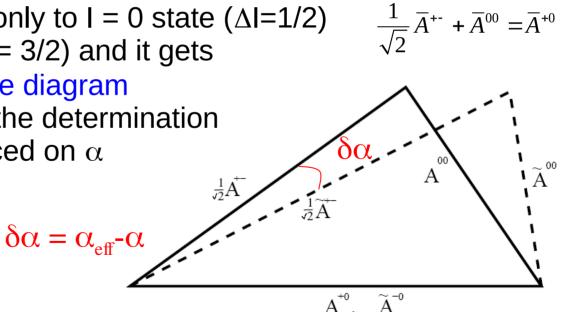
The angle α/ϕ_2

from $\alpha_{\text{eff}} \rightarrow$ to α : isospin analysis

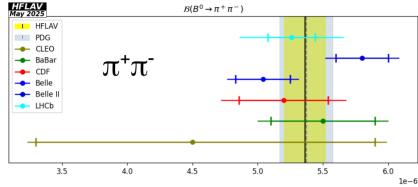
$$\begin{array}{c|c} \text{Channel} & \text{Decay Amplitudes} \\ \hline \pi\pi & A(B^+ \to \pi^+\pi^0) = \frac{\sqrt{3}}{2}A_{3/2,2} \\ & \frac{1}{\sqrt{2}}A(B^0 \to \pi^+\pi^-) = \frac{1}{\sqrt{12}}A_{3/2,2} - \sqrt{\frac{1}{6}}A_{1/2,0} \\ & A(B^0 \to \pi^0\pi^0) = \frac{1}{\sqrt{3}}A_{3/2,2} + \sqrt{\frac{1}{6}}A_{1/2,0} \\ \end{array}$$

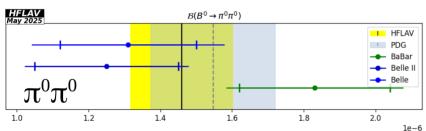
- \bullet B $\to \pi^+\pi^-$, $\pi^+\pi^0$, $\pi^0\pi^0$ connected by isospin relations
- \mathbf{D} $\pi\pi$ states can have I=2 or I=0
 - \circ gluonic penguins contribute only to I = 0 state (Δ I=1/2)
 - contribution only from the tree diagram
 - triangular relations allow for the determination of the phase difference induced on α

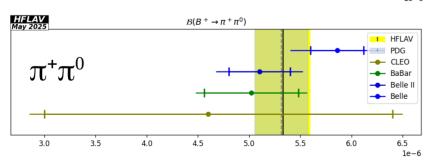
Both BR(B⁰) and BR(\overline{B}^0) have to be measured in all the $\pi\pi$ channels



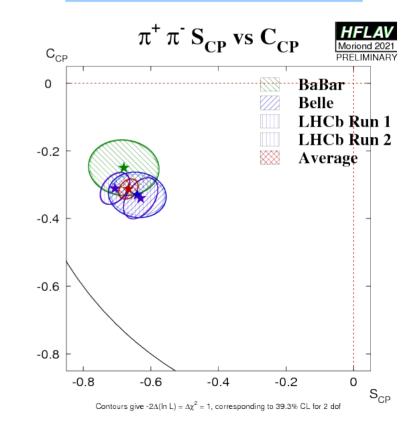
The angle α/φ₂



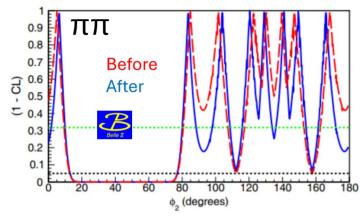


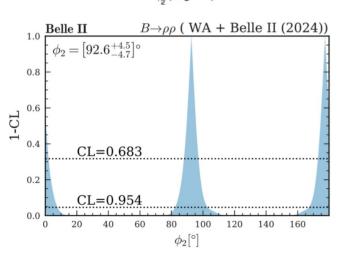


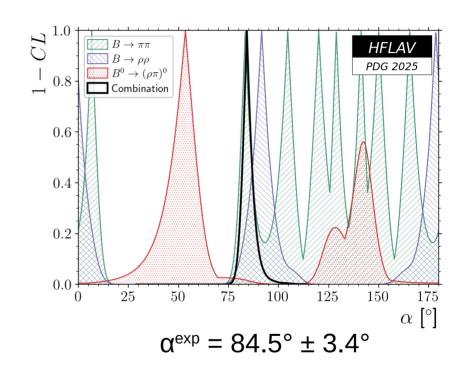
Isospin analysis inputs from HFLAV



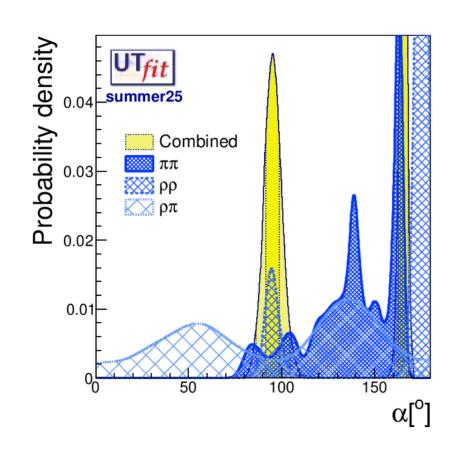
The angle α/φ₂

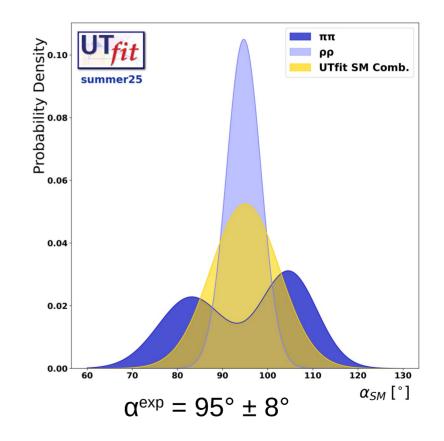




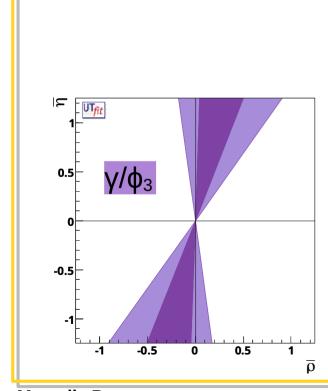


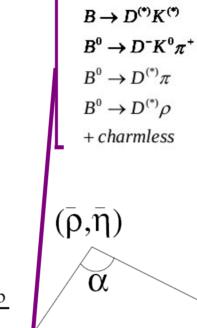
The angle α/ϕ_2



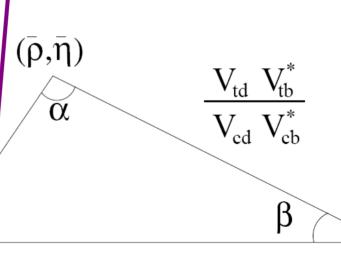


The angles





(0,0)



 $b \rightarrow c$ interfering with $b \rightarrow u$

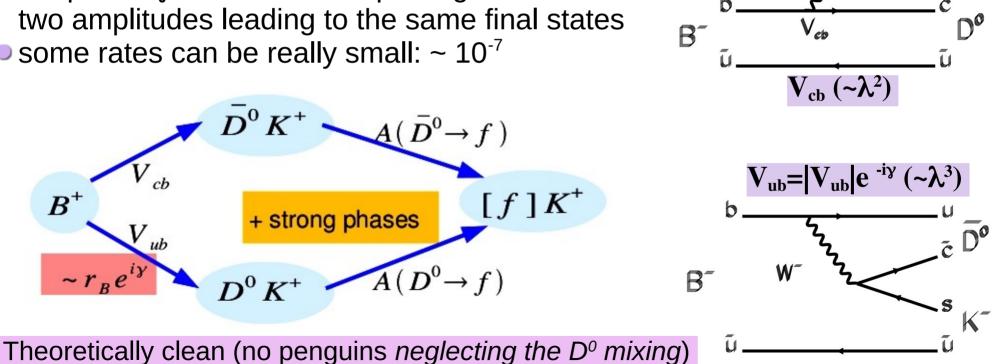
Marcella Bona

(1,0)

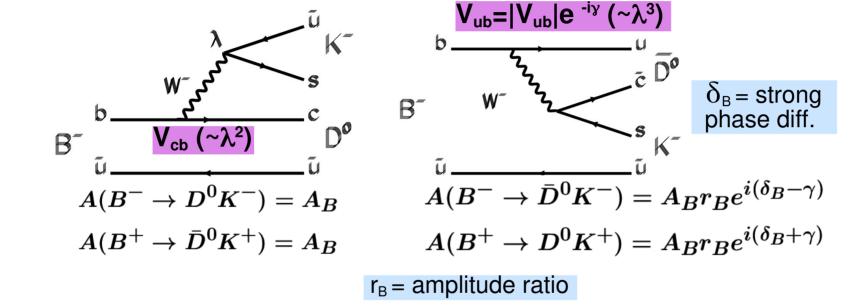
Global Fits

y/φ₃ from B to D decays via tree diagrams

- \bullet D^(*)K^(*) decays: from BRs and BR ratios no time-dependent analysis, just rates
- the phase y is measured exploiting interferences:
- \bullet some rates can be really small: $\sim 10^{-7}$

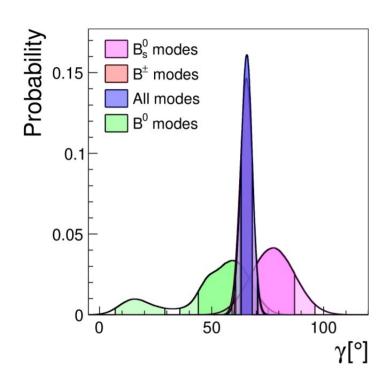


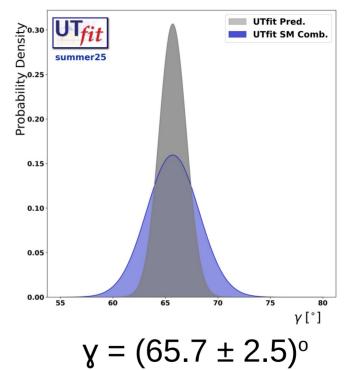
γ/φ₃ from B to D decays via tree diagrams



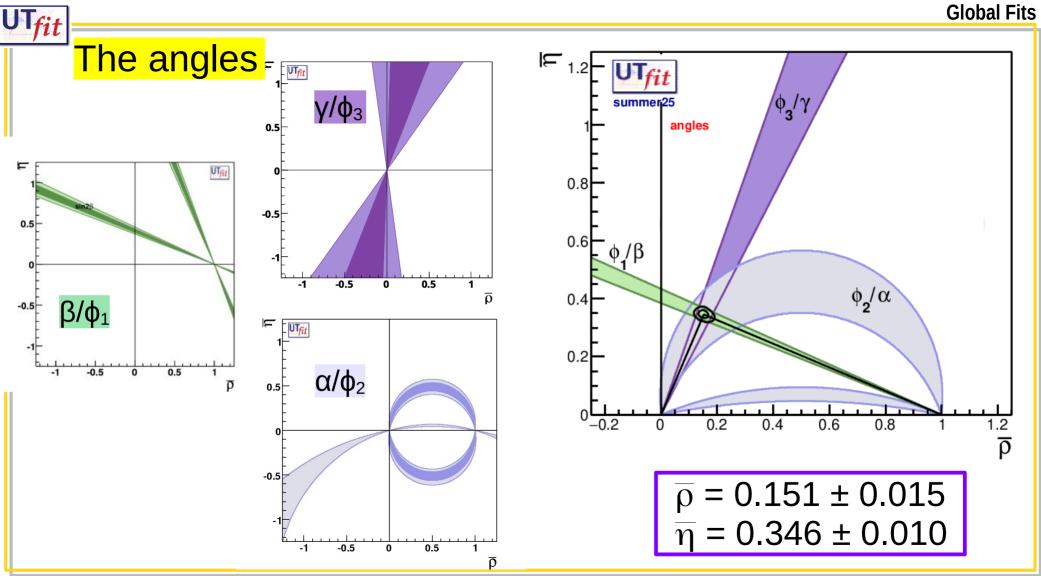
 $r_B = \left| rac{B^- o ar D^0 K^-}{B^- o D^0 K^-}
ight| \ = \sqrt{ar \eta^2 + ar
ho^2} imes F_{CS}$ hadronic contribution channel-dependent

y/ϕ_3 from B to D decays via tree diagrams





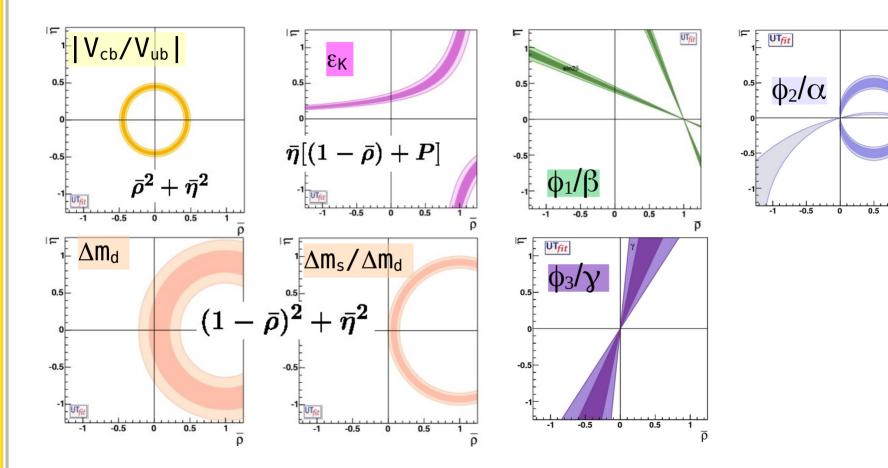
Updated analysis in arXiv:2409.06449 analysis of charm and beauty observables, together with neutral D mixing and CP-violating parameters

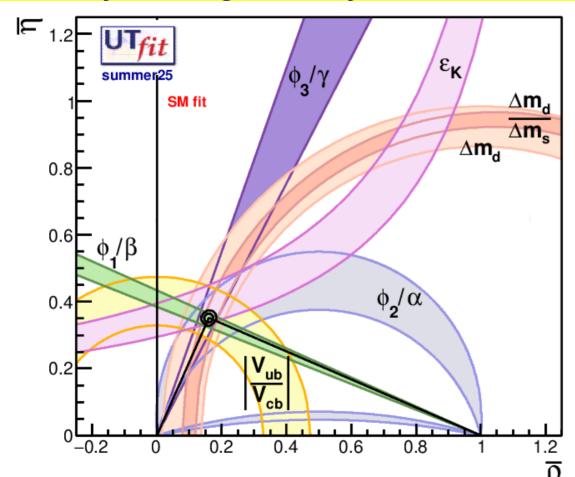


Marcella Bona

49

Unitarity Triangle analysis in the SM:





levels @ 95% Prob

$$\overline{\rho}$$
 = 0.160 ± 0.009 $\overline{\eta}$ = 0.352 ± 0.008

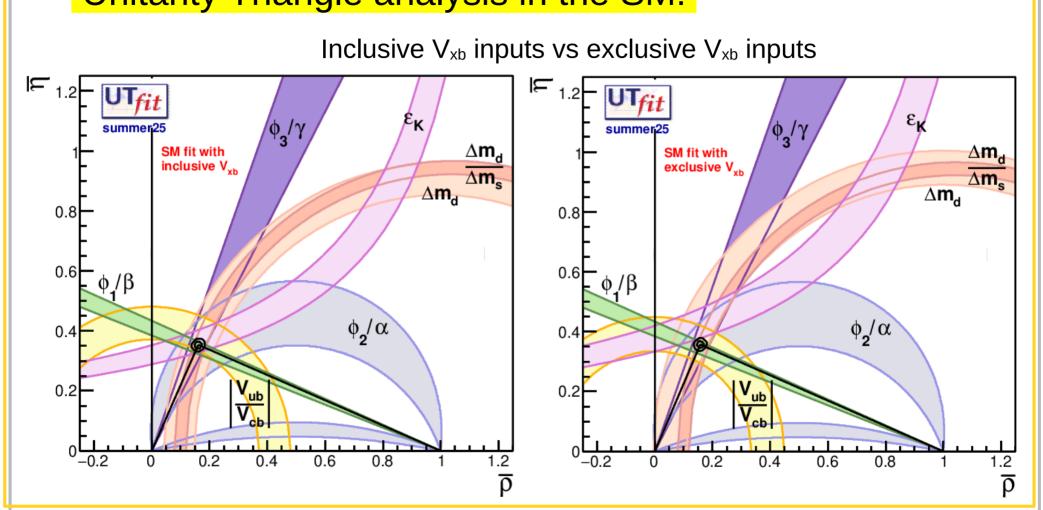
$$\lambda = 0.2250 \pm 0.0006$$

A= 0.826 ± 0.009

Marcella Bona

51

Unitarity Triangle analysis in the SM:



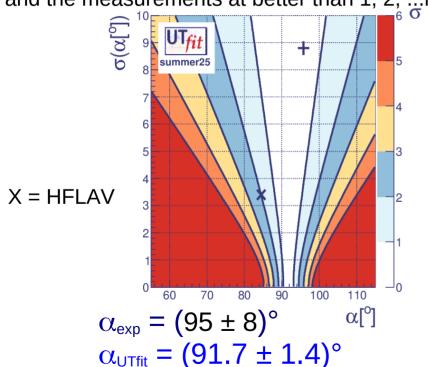
Marcella Bona

52

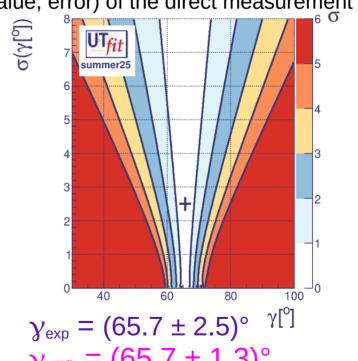
Compatibility plots

A way to "measure" the agreement of a single measurement with the indirect determination from the fit using all the other inputs: test for the SM description of the flavour physics

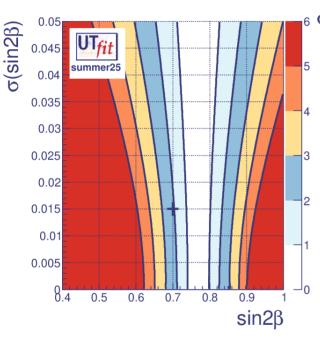
Colour code: agreement between the predicted values and the measurements at better than 1, 2, ... $n\sigma$



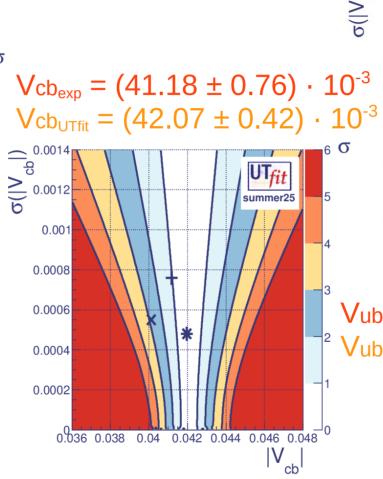
The cross has the coordinates (x,y)=(central)value, error) of the direct measurement

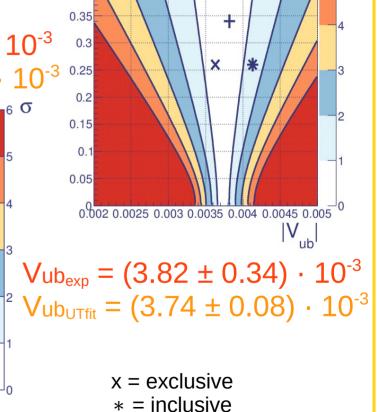


Checking the usual tensions...



 $sin2\beta_{exp} = 0.700 \pm 0.015$ $sin2\beta_{UTfit} = 0.768 \pm 0.029$



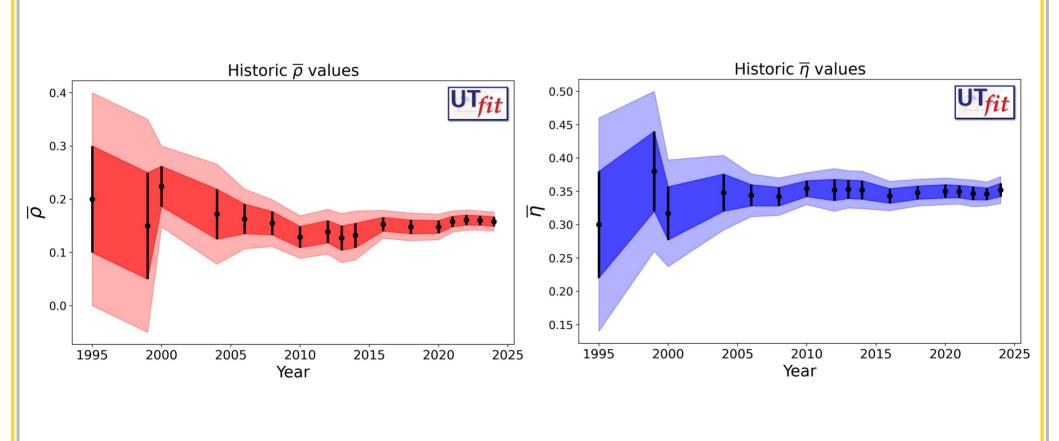


0.5×10

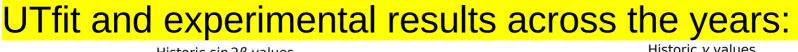
0.45

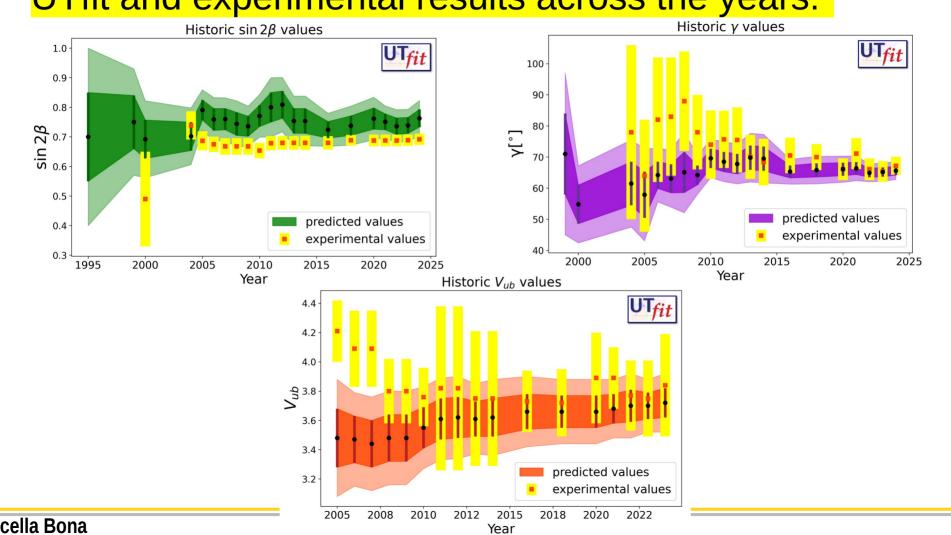
Result summary

Observables	Measurement	Prediction	Pull (#σ)
sin2β	0.700 ± 0.015	0.768 ± 0.029	~ 2
γ	65.7 ± 2.5	65.7 ± 1.3	<1
α	95 ± 8	91.7 ± 1.4	<1
V _{cb} · 10 ³	41.18 ± 0.76	42.07 ± 0.42	~1
V _{cb} • 10 ³ (excl)	40.12 ± 0.55		~ 2.8
$ V_{cb} \cdot 10^3$ (incl)	41.97 ± 0.48		< 1
V _{ub} · 10 ³	3.82 ± 0.34	3.74 ± 0.08	< 1
V _{ub} • 10 ³ (excl)	3.63 ± 0.26	-	< 1
V _{ub} • 10 ³ (incl)	4.13 ± 0.26	-	~ 1.4
$BR(B\to\tau\nu)[10^4]$	1.12 ± 0.21	0.884 ± 0.040	~1



Global Fits





Marcella Bona

57

UT analysis including new physics

fit simultaneously for the CKM and the NP parameters (generalized UT fit)

- add most general loop NP to all sectors
- use all available experimental info
- find out NP contributions to $\Delta F=2$ transitions

B_d and B_s mixing amplitudes
(2+2 real parameters):
$$A_q = C_{B_q} e^{2i\phi_{B_q}} A_q^{SM} e^{2i\phi_q^{SM}} = \left(1 + \frac{A_q^{NP}}{A_q^{SM}} e^{2i(\phi_q^{NP} - \phi_q^{SM})}\right) A_q^{SM} e^{2i\phi_q^{SM}}$$

$$\Delta m_{q/K} = C_{B_q/\Delta m_K} (\Delta m_{q/K})^{SM} \qquad \varepsilon_K = C_{\varepsilon} \varepsilon_K^{SM}$$

$$A_{CP}^{B_d \to J/\psi K_s} = \sin 2(\beta + \phi_{B_d}) \qquad A_{CP}^{B_s \to J/\psi \phi} \sim \sin 2(-\beta_s + \phi_{B_s})$$

$$A_{SL}^q = \operatorname{Im} \left(\Gamma_{12}^q / A_q \right) \qquad \Delta \Gamma^q / \Delta m_q = \operatorname{Re} \left(\Gamma_{12}^q / A_q \right)$$

UTfit

new-physics-specific constraints

semileptonic asymmetries in B⁰ and B_s: sensitive to NP effects in both size and phase.

 $A_{\rm SL}^s \equiv \frac{\Gamma(\bar{B}_s \to \ell^+ X) - \Gamma(B_s \to \ell^- X)}{\Gamma(\bar{B}_s \to \ell^+ X) + \Gamma(B_s \to \ell^- X)} = \operatorname{Im}\left(\frac{\Gamma_{12}^s}{A_s^{\rm full}}\right)$

same-side dilepton charge asymmetry:

admixture of B_s and B_d so sensitive to NP effects in both.

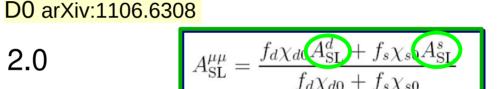
 $A_{\rm SL}^{\mu\mu} \times 10^3 = -7.9 \pm 2.0$

lifetime τ^{FS} in flavour-specific final states:

average lifetime is a function to the width and the width difference

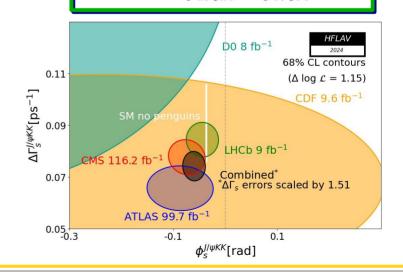
$$\tau^{FS}(B_s) = 1.527 \pm 0.011 \text{ ps}$$
 HFLAV

 ϕ_s =2 β_s vs $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi \phi$ angular analysis as a function of proper time and b-tagging ϕ_s = -0.039 ± 0.016 rad

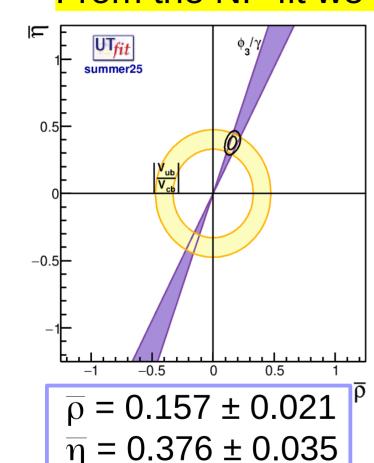


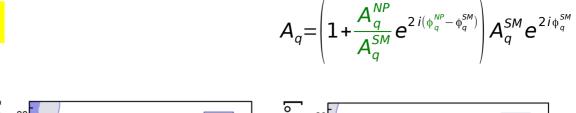
HFLAV from Cleo, BaBar,

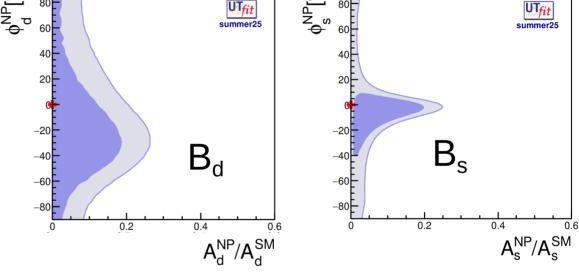
Belle, D0 and LHCb



From the NP fit we get







The ratio of NP/SM amplitudes is:

- < 18% @68% prob. (25% @95%) in B_d mixing
- < 20% @68% prob. (25% @95%) in B_s mixing

Testing the new-physics scale

M. Bona *et al.* (UTfit) JHEP 0803:049,2008 arXiv:0707.0636

At the high scale

new physics enters according to its specific features

At the low scale

use OPE to write the most general effective Hamiltonian. the operators have different chiralities than the SM NP effects are in the Wilson Coefficients C

$$C_i(\Lambda) = F_i \frac{L_i}{\Lambda^2}$$

 $\mathcal{H}_{\text{eff}}^{\Delta B=2} = \sum_{i=1}^{5} \left(C_i \right) Q_i^{bq} + \sum_{i=1}^{3} \left(\tilde{C}_i \right) \tilde{Q}_i^{bq}$ $Q_1^{q_i q_j} = \bar{q}_{jL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta} ,$

$$Q_2^{q_iq_j} \; = \; \bar{q}^\alpha_{jR}q^\alpha_{iL}\bar{q}^\beta_{jR}q^\beta_{iL} \; , \label{eq:Q2qi}$$

$$Q_3^{q_iq_j} \; = \; \bar{q}^\alpha_{jR} q^\beta_{iL} \bar{q}^\beta_{jR} q^\alpha_{iL} \; , \label{eq:Q3}$$

$$Q_4^{q_iq_j} \; = \; \bar{q}^\alpha_{jR} q^\alpha_{iL} \bar{q}^\beta_{jL} q^\beta_{iR} \; , \label{eq:Q4qi}$$

$$Q_5^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\beta} \bar{q}_{iL}^{\beta} q_{iR}^{\alpha} .$$

F.: function of the NP flavour couplings

 Λ : NP scale (typical mass of new particles mediating $\Delta F=2$ processes)

Testing the new-physics scale

The dependence of C on Λ changes depending on the flavour structure. We can consider different flavour scenarios:

• Generic:
$$C(\Lambda) = \alpha/\Lambda^2$$
 $F_i \sim 1$, arbitrary phase

• NMFV:
$$C(\Lambda) = \alpha \times |F_{SM}|/\Lambda^2$$
 $F_i \sim |F_{SM}|$, arbitrary phase

$$\alpha$$
 (L_i) is the coupling among NP and SM

$$\odot \alpha \sim 1$$
 for strongly coupled NP

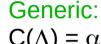
$$\odot \alpha \sim \alpha_w$$
 (α_s) in case of loop
coupling through weak
(strong) interactions

If no NP effect is seen lower bound on NP scale Λ

F is the flavour coupling and so F_{SM} is the combination of CKM factors for the considered process

UTfit

Results from the Wilson coefficients

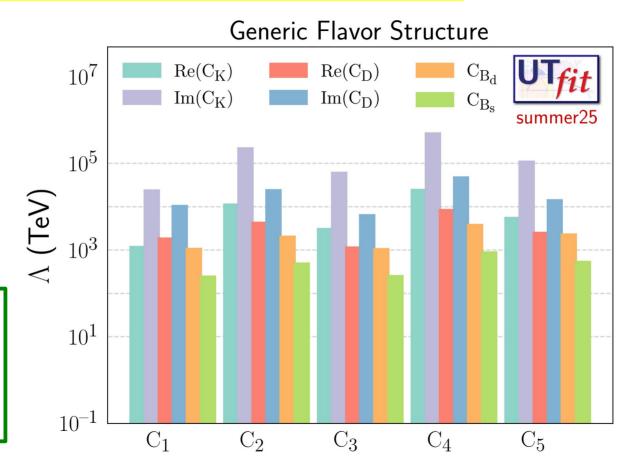


 $C(\Lambda) = \alpha/\Lambda^2$, F_i~1, arbitrary phase $\alpha \sim 1$ for

 $\Lambda > 4.9 \ 10^5 \ TeV$ $\alpha \sim \alpha_w$ in case of loop coupling through weak

interactions

$$\Lambda > 1.5 \ 10^4 \ TeV$$

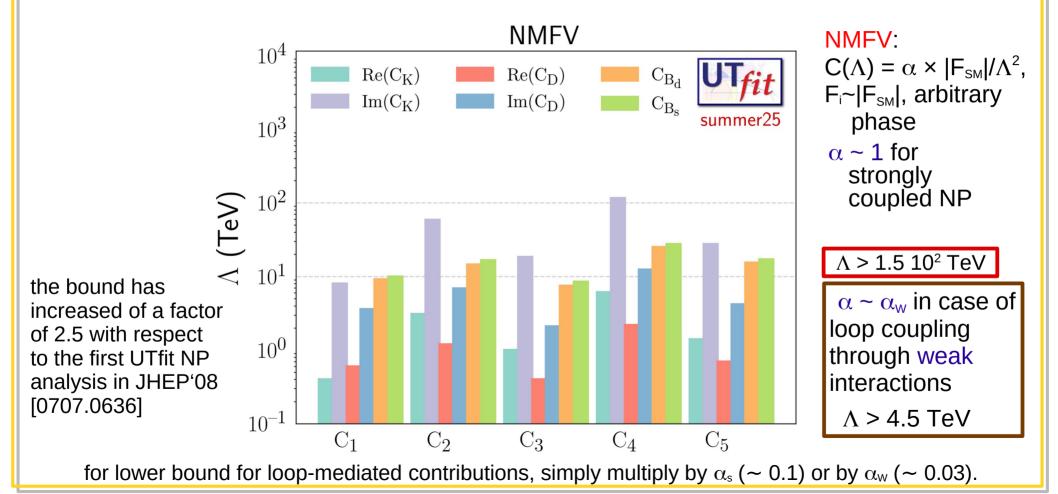


the bound has increased of a factor of 2 with respect to the first UTfit NP analysis in JHEP'08 [0707.0636]

for lower bound for loop-mediated contributions, simply multiply by α_s (~ 0.1) or by α_w (~ 0.03).

t

Results from the Wilson coefficients



some conclusions

- test of the SM consistency and the CKM mechanism: comparison between inputs and indirect determinations
 - using all the available inputs from experiments and theoretical and lattice QCD calculations
 - extraction of the most accurate SM predictions
- model-independent new physics:
 - overconstraining of the SM fit allows for extraction of generic amplitude and phase for all the systems (K, B_d, B_s)
 - scale analysis: putting bounds on the Wilson coefficients gives insights into the NP scale in different NP scenarios

ficients enarios

