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Introduction and motivations
the tool: the Unitarity Triangle (UT) fit

SM UT analysis: 
provides the best determination of CKM parameters 
tests the consistency of the SM (“direct” vs “indirect” determinations)
provides predictions (from data..) for SM observables

NP UT analysis: 
model-independent analysis
provides limit on the allowed deviations from the SM
obtains the NP scale

 Global Fit: tool to test the SM and probe NP 
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www.utfit.org

latest paper (2023): 
“New UTfit analysis of the unitarity 
triangle in the Cabibbo–Kobayashi
–Maskawa scheme”
10.1007/s12210-023-01137-5

M.Bona, M. Ciuchini, D. Derkach, F. Ferrari,
E. Franco, V. Lubicz, G. Martinelli, D. Morgante,
M. Pierini, L. Silvestrini, S. Simula, A. Stocchi,

C. Tarantino, V. Vagnoni, M. Valli and L. Vittorio 

 UTfit collaboration

Talk based on implementation/inputs/plots of the UTfit 
collaboration:

 Founded in 2003 (2nd CKM workshop in Durham)
 from the people from the 2000 paper:
 https://arxiv.org/abs/hep-ph/0012308
 with some experimental characters sneaking in.. 
 Yearly updates: look for us at conferences,
 the webpage is… often late… 
 If you need something specific, let me know!

https://rdcu.be/eJJMs
https://rdcu.be/eJJMs
https://rdcu.be/eJJMs
https://arxiv.org/abs/hep-ph/0012308


4 Marcella Bona

Global Fits

 The CKM matrix

CK @ CKM2006 in Nagoya

 Foto by M.Bona

The charged current interactions get a flavour structure encoded in
the Cabibbo-Kobayashi-Maskawa (CKM) matrix V:

Vij connects left-handed up-type quark of the ith generation to left-handed
down-type quark of jth generation.
Intuitive labelling by flavour:
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 Unitarity

The CKM matrix is a 3x3 complex unitary matrix
described by 4 (real) parameters: 
 3 can be expressed as (Euler) mixing angles
 the fourth makes the CKM matrix complex (i.e. gives it a phase)

weak interaction couplings differ for quarks and antiquarks

 Have you thought about how to obtain this above?
You might have… if you have not, let me quickly run through it… 
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 Unitarity
In general, an n × n unitary matrix has n2 real and independent parameters:
► a n × n matrix would have 2n2 parameters
► the unitary condition imposes n normalization constraints
► n(n - 1) conditions from the orthogonality between each pair of columns:
thus 2n2 - n - n(n - 1) = n2.
In the CKM matrix, not all of these parameters have a physical meaning:
► with n generations, 2n - 1 phases are absorbed by the freedom to select the quark field phases 
► Each u, c or t phase allows for multiplying a row of the CKM matrix by a phase, while each d, s
or b phase allows for multiplying a column by a phase.

thus: n2 - (2n - 1) = (n – 1)2.
Among the n2 real independent parameters of a generic unitary matrix:
► ½ n(n - 1) of these parameters can be
associated to real rotation angles,

► so the number of independent phases is
n2 - ½ n(n- 1) - (2n – 1) = ½ (n – 1)(n - 2)
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 The CKM matrix: rotation decomposition 

V = 

The CKM matrix can be seen as the product of three rotation matrices 
and each rotation involves two of the three families:

which gives the classic exact parameterisation that can be found for 
example on the PDG:

V = 

with cij=cosθij and sij=sinθij, and i,j=1,2,3. δ is the CP violating phase
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 The CKM matrix: Wolfenstein parameterisation  
From measurements, V results hierarchical  →  θ13  ≪ θ23  ≪ θ12

We can see this hierarchy via the Wolfenstein parameterisation:
→ the CKM matrix elements are expanded in order of sin θ12

historically called Cabibbo angle θC:
→ Wolfenstein parameter λ = sinθ12 ~ 0.22

VCKM = + 𝓞(λ4)

→ Wolfenstein parameters: λ ~ 0.22, A ~ 0.83, ρ ~ 0.15, η ~ 0.35 
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 The CKM matrix: Wolfenstein parameterisation  
From the Wolfenstein parameter λ = sinθ12 ~ 0.22, we can get an idea on 
the sizes of the various CKM matrix elements:

VCKM = + 𝓞(λ4)
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 The CKM matrix: Wolfenstein parameterisation  
From the Wolfenstein parameter λ = sinθ12 ~ 0.22, we can get an idea on 
the sizes of the various CKM matrix elements:

VCKM = + 𝓞(λ4)
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 The CKM matrix: Wolfenstein parameterisation  
From the Wolfenstein parameter λ = sinθ12 ~ 0.22, we can get an idea on 
the sizes of the various CKM matrix elements:

VCKM = + 𝓞(λ4)
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 The CKM matrix: Wolfenstein parameterisation  
From the Wolfenstein parameter λ = sinθ12 ~ 0.22, we can get an idea on 
the sizes of the various CKM matrix elements:

VCKM = + 𝓞(λ4)
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 The CKM matrix: Wolfenstein parameterisation  
From the Wolfenstein parameter λ = sinθ12 ~ 0.22, we can get an idea on 
the sizes of the various CKM matrix elements:

VCKM = + 𝓞(λ4)

At λ2 order, the third generation decouples
η ≠ 0 signals CP violation → imaginary part of Vub and Vtd  (1st ⇄ 3rd family)
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 The CKM matrix: Wolfenstein-Buras parameterisation  

r = r (1- l2/2)
h = h (1-l2/2)

V = 

Usually the Buras correction to the Wolfenstein parameterisation is used:

Looks indentical to the Wolfenstein one but now the matrix is unitary 
also in this “approximation” at all λ orders.
Also ρ +iη is phase-convention independent:

+ 𝓞(λ4)
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 The CKM matrix: unitarity relations 

 Si Vij V*ik = djk

 Sj Vij V*kj = dik

column orthogonality

row orthogonality

multiply with its hermitian conjugate
(complex conjugate + transpose)
VV† = V†V = 1

The six vanishing combinations can be represented as 
triangles in a complex plane



16 Marcella Bona

Global Fits

 The CKM matrix: unitarity relations 

column orthogonality

The triangles obtained by taking scalar products of neighboring rows or 
columns are nearly degenerate. However, the areas of all triangles are the 
same, half of the Jarlskog invariant J.

1st ⇄ 3rd family

2nd ⇄ 3rd family

1st ⇄ 2nd family

triangles
not to scale
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 The CKM matrix: third unitarity relation 

VidV*ib = 0 is the orthogonality condition 
between the first and the third column:
the orientation depends on the phase 
convention
Usually we see re-scaled version where 
sides have been divided by |VcdV*cb|

In the Wolfenstein parameterization,
the coordinates are
(0, 0), (1, 0) and (ρ, η),
and the two sides are
(ρ + iη) and (1 − ρ − iη).
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 The CKM matrix: third unitarity relation 

In the Wolfenstein parameterisation:
 the β/ϕ1 angle corresponds to the phase of Vtd

 the γ/ϕ3 angle corresponds to the phase of Vub

 the α/ϕ2 angle can be obtained with π – β – γ (assumes unitarity)

The angles can be written 
in terms of CKM matrix 
elements as:
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 The Unitarity Triangle 

 Many different ways to
 measure the angles and sides. 

B → DK

B0 → p+p-

B0 → J/y K0

 We need to measure the angles and sides to over-constrain this triangle, 
and test that it closes.

 Need to define observables and experiments to measure these quantities
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 Bayes Theorem 

Standard Model +
OPE/HQET/
Lattice QCD

to go from
quarks to hadrons

, mt

 UTfit method and inputs:
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 Global fit constraints

Before the B factories, the available constraints used were:
► Mixing in the K system: εK

► Δmd,s in the Bd,s systems
► Vub/Vbc from semileptonic b to c and b to u

B factories started to improve some of the above
And also adding the measurements of the angles:
► β/ϕ1, γ/ϕ3 and α/ϕ2

In any case, we need to reconnect the experimental observables
with the fundamental parameters we want to obtain,
in our case the CKM matrix elements.
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 Global fit constraints

Before the B factories, the available constraints used were:
► Mixing in the K system: εK

► Δmd,s in the Bd,s systems
► Vub/Vbc from semileptonic b to c and b to u

eK Dms/DmdDmd |Vcb/Vub|
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 Global fit constraints
► Mixing in the K system: εK

eK

S0 = Inami-Lim functions for c-c, c-t, e t-t 
contributions (from perturbative calculations)

from lattice QCD

BK = 0.7627 ± 0.0060
εK = (2.228 ± 0.011) · 10-3

 PDG PDG

B
K
=

K ∣J


J ∣K

K∣J

∣00∣J ∣K
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 Global fit constraints
► Δmd,s in the Bd,s systems

Dms/DmdDmd

BBq and fBq from lattice QCD

S = Inami-Lim function
       for the t-t contribution 
       (from perturbative calculations)

Δmd = 0.5069 ± 0.0019 ps-1

HFLAVHFLAVΔms = 17.766 ± 0.006 ps-1
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 Global fit constraints
► Vub/Vcb from semileptonic b to c and b to u

|Vcb/Vub|

 tree diagrams
  o negligible new physics contributions
  o inclusive and exclusive semileptonic
     B decay branching ratios

        QCD corrections to be included
        o inclusive measurements: OPE
        o exclusive measurements: form
           factors from lattice QCD
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 Vcb and Vub 

|Vcb| (excl) = (40.12 ± 0.55) 10-3

|Vcb| (incl) = (41.97 ± 0.48) 10-3

|Vub| (excl) = (3.63 ± 0.26) 10-3

|Vub| (incl) = (4.13 ± 0.26) 10-3

Λb, excluded following FLAG guidelines|Vub / Vcb| (LHCb) = (7.9 ± 0.6) 10-2

PDG 2025

|Vub / Vcb| = (8.7 ± 0.9) 10-2

average of arXiv:2105.08674,
2204.05925, 2310.03680 

update of arXiv:2202.10285 

from arXiv:2310.20324

from arXiv:2310.03680 
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 Vcb and Vub 

|Vcb| (excl) = (40.12 ± 0.55) 10-3

|Vcb| (incl) = (41.97 ± 0.48) 10-3

|Vub| (excl) = (3.63 ± 0.26) 10-3

|Vub| (incl) = (4.13 ± 0.26) 10-3

PDG 2025

|Vub / Vcb| = (8.7 ± 0.9) 10-2

average of arXiv:2105.08674,
2204.05925, 2310.03680 

update of arXiv:2202.10285 

from arXiv:2310.20324

from arXiv:2310.03680 

~1σ

~2σ
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eK

Dms/DmdDmd

|Vcb/Vub|

 Global fit with pre-B-factory constraints:

 r = 0.175 ± 0.015
 h = 0.375 ± 0.022 
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The angles
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B factories have been groundbreaking
in measuring the angles:
► β/ϕ1, α/ϕ2 and γ/ϕ3
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The angles

β/ϕ1

► β/ϕ1

 sin2β from time-dependent
 ACP in B0→J/ψK0 

CP

m
ixing decay

 f 
 t Af

Af

B0

B0

 Dt 

 t=0 
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 sin2b in golden b  ccs modes 

Vcb

V*cs

leading-order tree decays to ccs final states

here the CKM elements contributing are VcbV*cs that in our Wolfenstein CKM 
parameterisation have no phase.
The CP conjugated case is also leading to (about) the same final state:

V*cb

Vcs

+d

+d

c

c

s

b

K0 → KS,L

K0 → KS,L

B0 → J/ψKS,L

B0 → J/ψKS,L
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 sin2b in golden b  ccs modes 

Vcb

V*cs

leading-order tree decays to ccs final states

+d K0 → KS,L

B0 → J/ψKS,L

A     VcbV*cs   VcsV*cd  

A     V*cbVcs     V*csVcd
=

tree diagram

K mixingbecause both B and B can decay in this common final state,
this can interfere with the oscillation diagram:

V*tb V*td

Vtd Vtb
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 sin2b in golden b  ccs modes 

Vcb

V*cs

leading-order tree decays to ccs final states

+d K0 → KS,L

B0 → J/ψKS,L

A     VcbV*cs   VcsV*cd  

A     V*cbVcs     V*csVcd
=

tree diagram

K mixing

where x can be any up-type quark
hence this counts for three penguin
diagrams

b

c

c

s
V*xb Vxs

possible penguin contributions:
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b

c

c

s
V*xb Vxs

VubV*us + VcbV*cs + VtbV*ts = 0

using this unitary condition (2nd ⇄ 3rd family), we eliminate VtbV*ts 

VtbV*ts = – VubV*us – VcbV*cs→

Accs  ~ VcbV*cs (T + Pc – Pt ) + VubV*us ( P
u – Pt )

thus the amplitude is:

𝒪(λ2) 𝒪(λ4)
CKM-suppressed 
pollution by penguins

x=u → Pu ~ VubV*us 

x=c → Pc ~ VcbV*cs 

x=t  → Pt ~ VtbV*ts 

 sin2b in golden b  ccs modes 
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 sin2b in golden b  ccs modes 

Ciuchini, Pierini, Silvestrini
https://arxiv.org/abs/hep-ph/0507290

Use HFLAV charmonium value
 Include correction due to
 Cabibbo-suppressed penguin
 contributions
 Model-independent data-driven
 estimation from J/yp0 data 
 DSJ/yK0 = SJ/yK0 – sin2b = -0.01 ± 0.01

 Final corrected number:
 sin2b = 0.700 ± 0.015
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The angles
► α/ϕ2

α/ϕ2

b → uud transitions with possible loop 
contributions.  Extract α using
• SU(2) Isospin relations.
• SU(3) flavour related processes.
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0

sin(2 )
hh

hh

C

S a

=

=

This is again a case of interference 
between mixing and decay.
This scenario is equivalent to the 
measurement of sin2β in charmonium 
decays … but in this case it is more 
complicated..

:tdV 

* :tdV 

:ubV 

The angle  α/ϕ2

Interference between box and tree results in an asymmetry that 
is sensitive to α/ϕ2 in B→hh decays: h = π, ρ, …
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The angle  α/ϕ2

:tdV 

* :tdV 

:ubV 

𝓞(λ3) 𝓞(λ3)

In this case the penguin diagram is not CKM suppressed so 
it spoils the clean measurement of the CP violation effect

Interference between box and tree results in an asymmetry that 
is sensitive to α/ϕ2 in B→hh decays: h = π, ρ, …
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The angle  α/ϕ2

:tdV 

* :tdV 

:ubV 

0

sin(2 )
hh

hh

C

S a

=

=
2

eff

sin( )

1 sin(2 )

hh

hh hh

P T

C

S C

d

a

d d d

ﾵ

= -

= -

∝ Measure S  aeff

Need to determine da = aeff – a 
[P/T is different for each final state]

Interference between box and tree results in an asymmetry that 
is sensitive to α/ϕ2 in B→hh decays: h = π, ρ, …
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The angle  α/ϕ2

Several recipes describe how to bound penguins and measure α/ϕ2.
These are based on SU(2) [or SU(3)] symmetry.

SU(2)
(Isospin analysis)

+ and +

Gronau-London
Isospin Triangles



Lipkin (et al.)
Isospin Pentagons

Use charged and neutral 
B decays to the hh final 
state to constrain the 
penguin contribution and 
measure a.

Use charged and neutral B 
decays to the  final state
to constrain the penguin 
contribution and measure 
a. Remove any overlapping 
regions in the Dalitz plot.

p0

Snyder-Quinn (et al.)
Fit Dalitz plot and extract 
parameters related to 

Regions of the Dalitz plot 
with intersecting  bands 
are included in this 
analysis; this helps 
resolve ambiguities. 
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The angle  α/ϕ2

 from aeff  to a: isospin analysis

B  p+p-, p+p0, p0p0 connected by isospin relations
pp states can have I = 2 or I = 0

gluonic penguins contribute only to I = 0 state (DI=1/2)
 p+p0 is a pure I = 2 state (DI = 3/2) and it gets
contribution only from the tree diagram
triangular relations allow for the determination
of the phase difference induced on a

    Both BR(B0) and BR(B0)
    have to be measured
    in all the pp channels

 = eff-

  

00 0

00 0

1

2
1

2

A A A

A A A

 

 

 

 
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The angle  α/ϕ2 Isospin analysis inputs
from HFLAV

p+p-

p0p0

p+p0
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The angle  α/ϕ2

ππ

αexp = 84.5° ± 3.4°
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The angle  α/ϕ2

αexp = 95° ± 8°
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The angles

To be compared 
with

To be compared 
with

► γ/ϕ3

To be compared 
with
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γ/ϕ3 from B to D decays via tree diagrams 

D(*)K(*) decays: from BRs and BR ratios
no time-dependent analysis, just rates
the phase ɣ is measured exploiting interferences:
two amplitudes leading to the same final states
some rates can be really small: ~ 10-7

Vcb (~l2)

Vub=|Vub|e -i (~l3) 

 Theoretically clean (no penguins neglecting the D0 mixing)
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γ/ϕ3 from B to D decays via tree diagrams 

Vcb (~l2)

Vub=|Vub|e -i (~l3) 

 rB = amplitude ratio

 B = strong 
  phase diff.

hadronic contribution
channel-dependent
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γ/ϕ3 from B to D decays via tree diagrams 

Updated analysis in arXiv:2409.06449
analysis of charm and beauty observables, together 
with neutral D mixing and CP-violating parameters

 ɣ = (65.7 ± 2.5)o 
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
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γ/ϕ3

α/ϕ2

β/ϕ1

The angles

 r = 0.151 ± 0.015
 h = 0.346 ± 0.010 
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|Vcb/Vub| eK

Dms/Dmd
Dmd

f2/

f1/

f3/

 Unitarity Triangle analysis in the SM:
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 Unitarity Triangle analysis in the SM:

levels @
95% Prob

 r = 0.160 ± 0.009
 h = 0.352 ± 0.008 

 l = 0.2250 ± 0.0006
 A= 0.826 ± 0.009
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 Unitarity Triangle analysis in the SM:

Inclusive Vxb inputs vs exclusive Vxb inputs
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 Compatibility plots 
A way to “measure” the agreement of a single measurement with the indirect determination 
from the fit using all the other inputs: test for the SM description of the flavour physics

Colour code: agreement between the predicted values 
and the measurements at better than 1, 2, ...ns 

The cross has the coordinates (x,y)=(central 
value, error) of the direct measurement

gexp = (65.7 ± 2.5)°
gUTfit = (65.7 ± 1.3)°

aexp = (95 ± 8)°
aUTfit = (91.7 ± 1.4)°

X = HFLAV
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 Checking the usual tensions.. 

sin2bexp = 0.700 ± 0.015
sin2bUTfit = 0.768 ± 0.029

 Vubexp = (3.82 ± 0.34) · 10-3 
 VubUTfit = (3.74 ± 0.08) · 10-3 

 Vcbexp = (41.18 ± 0.76) · 10-3 
 VcbUTfit = (42.07 ± 0.42) · 10-3 

x = exclusive
∗ = inclusive
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Observables Measurement Prediction Pull (#s)

sin2b 0.700 ± 0.015 0.768 ± 0.029 ~ 2

g 65.7 ± 2.5 65.7 ± 1.3 < 1
a 95 ± 8 91.7 ± 1.4 < 1

|Vcb| · 103 41.18 ± 0.76 42.07 ± 0.42 ~ 1

|Vcb| · 103 (excl) 40.12 ± 0.55 ~ 2.8

|Vcb| · 103 (incl) 41.97 ± 0.48 < 1

|Vub| · 103 3.82 ± 0.34 3.74 ± 0.08 < 1

|Vub| · 103 (excl) 3.63 ± 0.26 - < 1

|Vub| · 103 (incl) 4.13 ± 0.26 - ~ 1.4

BR(B ® tn)[104] 1.12 ± 0.21 0.884 ± 0.040 ~ 1

Result summary
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UTfit results across the years: 
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UTfit and experimental results across the years: 
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Bd and Bs mixing amplitudes
(2+2 real parameters): Aq=CBq

e
2 i ϕBq Aq

SMe2 i ϕq
SM

=(1+ Aq
NP

Aq
SM
e2 i (ϕq

NP−ϕq
SM))Aq

SMe2 i ϕq
SM

Δmq /K=CBq /ΔmK
(Δmq /K )

SM εK=CεεK
SM

ACP
Bd→ J /ψ K S=sin2(β+ϕBd

) ACP
Bs→ J /ψϕ∼sin2(−βs+ϕBs

)

ASL
q =Im (Γ12

q /Aq ) ΔΓq /Δmq=Re (Γ12
q /Aq )

 UT analysis including new physics 

fit simultaneously for the CKM and
the NP parameters (generalized UT fit)

 add most general loop NP to all sectors
 use all available experimental info  
 find out NP contributions to ΔF=2 transitions
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HFLAV from Cleo, BaBar, 
Belle, D0 and LHCb

semileptonic asymmetries in B0 and Bs:
sensitive to NP effects in both size and phase. .

same-side dilepton charge asymmetry:
admixture of Bs and Bd so sensitive to
NP effects in both.

-7.9 ±  2.0

D0 arXiv:1106.6308

lifetime tFS in flavour-specific final states:
average lifetime is a function to the
width and the width difference

angular analysis as a function of proper time
and b-tagging

fs=2bs vs DGs from Bs®J/yf

tFS(Bs) = 1.527 ± 0.011 ps  HFLAV

 new-physics-specific constraints 

fs = -0.039 ± 0.016 rad
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Aq=(1+ Aq
NP

Aq
SM e

2 i(ϕq
NP−ϕq

SM)) Aq
SMe2 iϕq

SM

The ratio of NP/SM amplitudes is:
 < 18% @68% prob. (25% @95%) in Bd mixing
 < 20% @68% prob. (25% @95%) in Bs mixing

From the NP fit we get 

 r = 0.157 ± 0.021 
 h = 0.376 ± 0.035 

Bd Bs
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M. Bona et al. (UTfit)
 JHEP 0803:049,2008

arXiv:0707.0636 

M. Bona et al. (UTfit)
 JHEP 0803:049,2008

arXiv:0707.0636 
At the high scale
new physics enters according to its specific features

At the low scale
use OPE to write the most
general effective Hamiltonian.
the operators have different
chiralities than the SM
NP effects are in the Wilson
Coefficients C

 Testing the new-physics scale  

Fi:  function of the NP flavour couplings
Li:  loop factor (in NP models with no tree-level FCNC)
Λ:  NP scale (typical mass of new particles mediating ΔF=2 processes)
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 Testing the new-physics scale  

The dependence of C on L changes
depending on the flavour structure.
We can consider different flavour scenarios: 
◉ Generic:  C(L) = a/L2               Fi~1, arbitrary phase
◉ NMFV:    C(L) = a × |FSM|/L2    Fi~|FSM|, arbitrary phase 

 a (Li) is the coupling among NP and SM
◎ a ~ 1 for strongly coupled NP
◎ a ~ aW (aS) in case of loop
      coupling through weak
      (strong) interactions 

 F is the flavour coupling and so 
 FSM is the combination of CKM factors for the considered process

If no NP effect is seen
lower bound on NP scale L
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 Results from the Wilson coefficients

for lower bound for loop-mediated contributions, simply multiply by as (  ∼ 0.1) or by aW (  ∼ 0.03).

Generic:
C(L) = a/L2,
Fi~1, arbitrary
    phase
a ~ 1 for
   strongly
   coupled NP

L > 1.5 104 TeV

 L > 4.9 105 TeV

a ~ aW in case of 
loop coupling 
through weak 
interactions

the bound has 
increased of a 
factor of 2 with 
respect to the first 
UTfit NP analysis 
in JHEP‘08
[0707.0636]
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NMFV:
C(L) = a × |FSM|/L2,
Fi~|FSM|, arbitrary
    phase

 Results from the Wilson coefficients

for lower bound for loop-mediated contributions, simply multiply by as (  ∼ 0.1) or by aW (  ∼ 0.03).

a ~ 1 for
   strongly
   coupled NP

L > 4.5 TeV

 L > 1.5 102 TeV

a ~ aW in case of 
loop coupling 
through weak 
interactions

the bound has 
increased of a factor 
of 2.5 with respect 
to the first UTfit NP 
analysis in JHEP‘08
[0707.0636]
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◉ test of the SM consistency and the CKM mechanism:
    comparison between inputs and indirect determinations

◎ using all the available inputs from experiments and theoretical
       and lattice QCD calculations

◎ extraction of the most accurate SM predictions

◉ model-independent new physics:
◎ overconstraining of the SM fit allows

       for extraction of generic amplitude and phase
       for all the systems (K, Bd, Bs)

◎ scale analysis: putting bounds on the Wilson coefficients
       gives insights into the NP scale in different NP scenarios 

 some conclusions  
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