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Upper limits




The task
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A little difficult to cover in 1 hr slot.

Executive decision (by myself) to only cover limits…


For fitting check these out 


https://indico.belle2.org/login/?next=/event/1332/contributions/6424/attachments/3194/4876/Fitting.pdf


https://indico.belle2.org/event/3456/contributions/18541/attachments/10210/15687/fitting-belle2-academy.pdf



Inspirational premise 
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Why — inspirational premise 
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You (we…) all must 
strive to find signal


 

Even in very-rare-
decay searches



Why
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Should be confident 


Confidence is essential to 
avoid missing out on 

possible (big) discoveries



…unexpected and so not found…
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1930’s “anomalous polarization” in β decays was early indication of parity violation

But Cox, Chase, collaborators and then HEP community were not ready just yet ;)
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…unexpected and so not found…

“the lack of pT 
‘bumps’  means there 
are no significant 
heavy objects (M from 
3 -> 10 GeV) decaying 
into two leptons” 
L.M Lederman -  1971

…whoops…
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PDG today

…whoops…

…unexpected and so not found…



But not too confident 
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But not too confident


Sometimes the signal just isn’t 
there


Still, your results are important 
and informative, if properly 
rekindled as exclusion limits



The real talk 
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The simplest example…
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Looking for distinctive signal structure over background

Fit data with a model that allows for signal and background, “the (S+B) model”

Data estimate for signal yield N̂s consistent with zero….let’s set an exclusion limit



Fundamental ingredients
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The model

13

Probability of “data” given “parameters” — a mathematical construct. 

Connects what you wanna measure with what you observe.

Interpreted as a function of data x (fixing m = m0), it is the                                    
probability density function p(x|m0): probability to observe each possible value of 
data x had the true value of m been m0.  
Interpreted as a function of parameter m (fixing  x = x0) it is the                                  
likelihood p(x0|m) = L(m) to observe data x0 for different choices of m

p(x |m) = p(data |physics parameters)



In our case
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p(x |m) = p(invariant mass |signal yield) ∝ const + bump



Accelerated recap: Bayesian/frequentist inference
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Measuring physics parameter m consists in

• devising a model p(x|m) that approximately describes the phenomenon

• observing data x

• using the model and the data x to get information on m.


Bayesian — combine model with prior probabilities for m to determine the 
posterior probability p(m|x), which expresses the probability for each value of 
parameter m given the data. (“Prior” == known or chosen before observing x)


Frequentists — cannot define p(m|x), use model and probabilities for all other 
possible x outcomes to determine which values of m would produce the observed 
data x with highest probability



Bayesian limits



Probability for the parameter given the data
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Likelihood of your data (model) Prior probability (your assumption)

Normalization

Posterior probability

p(m|x) = p(x|m)⇥ p(m)

p(x)

Use trivial property of conditional probabilities to answer the question: what’s the 
probability that physics parameter has a certain value given the data I observed ?




A “visual” demonstration of Bayes theorem
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Those p(…|…) are all different things….
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0 1 2 3 4 5
True signal yield Ns



In case that’s not yet clear….
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P(A|B) is NOT equal to P(B|A).


Variable A: “pregnant”, “not pregnant”


Variable B: “male”, “female”.


P(pregnant | female) ~ 3% but


P(female | pregnant) >>> 3% !
[Lyons]



Bayesian inference — elementary example

Three identical bags. Two balls in each. Balls can be black or white


Pick a random bag (of type m — parameter, unobservable) and a random ball 
inside it (of color x — data, observable)

Ball is white: x = w. What can one say about the chosen bag?

Wanna know probability p(m|w) for picking each type of bag, given the observed 
ball is white

I know the priors p(m), which are 1/3 for each bag type

If priors are known - everyone should be Bayesian
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bag A bag B bag C

homework



Bayesian inference — elementary example
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p(m) 1/3 1/3 1/3

1 1/2 0
1/3 1/6 0
2/3 1/3 0

p(w|m)
p(w,m) = p(w|m) p(m)
p(m|w) = p(w|m) p(m)/p(w)

The posterior probabilities are p(A|w) = 66%, p(B|w) = 33%, p(C|w) =0.

A B C

homework



Once you got the posterior, limits are easy
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over true values of parameter Ns until 
reaching fractional area corresponding to 
desired Bayesian credibility, e.g. 95%.                   

(better to call it “Bayesian credibility” 
than confidence level if Bayesian 
inference is involved)

Choose prior probablity p(Ns): expresses knowledge on unknown parameter

Integrate (marginalize) posterior

Likelihood Prior

Obtained upper limit depends on the choice of the prior



Priors (long story short)
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Priors carry subjective information that influences results.    

Results dominated by data information (i.e., by the likelihood) rather than by prior 
information are preferable

While dealing with limits data typically scarce — so priors often relevant

Revert then to use “noninformative priors”

Noninformative priors do not exist. 

“Flat priors” seem naively equanimous. 

Plus, maximum of the posterior coincide with maximum of the likelihood when 
likelihood is only one-dimensional

But flat has no special role —  it depends on the metric, can be as much 
informative as any other choice

Serious efforts toward priors (Jeffreys’ et al.) that inject statistically-motivated 
information in the inference — difficulties in high dimensions.  

These days emphasis on prior-sensitivity studies



Assessing sensitivity to priors
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PRD 85, 072002 (2011)

A desirable “calibration” of any Bayesian result. 

in Belle II too: arXiv: 2507.12393 (2025)

How much is the final result driven by data and how much by the prior?

Change the prior and check variation in results 



Frequentist limits



Coverage (of the true value)
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A property of an inference procedure: yield results that include the true value 
with the stated confidence level 
For instance, 1/3 of the 1-sigma (68%) intervals should contain the true value

The true value isn’t random — cannot move around or have a probability distribution 

Data, that is, the interval extremes, are random and fluctuate



Coverage (of the true value)
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Coverage is the central requirement of frequentist inference.

It provides a precise and objective meaning to the results of an inference

When someone reads your paper, she knows (or assumes) that the central 
values and uncertainties are obtained through a procedure that has 
coverage, therefore knowing where the true value is likely to be.  

As coverage implies repeatability of the inference, toys simulation is 
commonplace in frequentist statistics.



Back to our example — testing a signal strength
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Assume a signal strength, which determines expected signal yield in sample

Generate a set of toys by drawing simulated data from the signal+background model

Generate a set of toys by drawing simulated data from the background-only model

Each toy has same size as the real data (within total Poisson fluctuations of course)

Fit each toy of each set with S+B model: two sets of result for signal yield N̂s 
Plot distributions of the fit results, separately for the two sets

S+B toys B toys

Test compatibility of data with an assumed signal strength



p-value = 1- CL
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Location of data 
observation relative to the 
two curves offers a 
measure of compatibility 
of the data with either.

Fractional integral of the S+B curve over values as bgck-like as the one we 
observed, or more, is the p-value for the “S+B hypothesis”. 

The smallest the p-value, the lower the compatibility of data with S+B hypothesis. 
Small p-value means it’s unlikely to observe our data if model S+B is realized

That is data “excludes the S+B model at a confidence level CL = 1- p”

Background-like observation signal-like observation



Testing multiple signal strengths
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We only have tested one signal strength.

Useful to test a whole range of signal stregths: repeat for different signal strengths 



Comments
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It seems straightforward. 

It has issues

The principal issue comes from our sequence first look at data and then decide 
what to do

“Do you see a signal?” “Then measure its strength” “Do you see nothing?” 
“Then set a limit”) 

This spoils coverage 
Need a procedure that transitions consistently from limit-setting to signal-
strength measurement, prior to looking at data. 
Let’s look at this in detail from scratch



Confidence intervals
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Given a model p(x|m), what values of the unknown parameter m make the 
observed data x0  among the least extreme outcomes possible?                                                                                                                       
“Extreme” needs ordering: rank values of data observations x for each possible 
value of m from likely to extreme  

Accumulate the highest-ranked (i.e., less extreme) values of x and sum the 
corresponding p(x|m) until reaching a CL fraction of the x probability. 

Given an ordering and chosen a CL, the confidence interval [m1(x), m2(x)] includes 
values of m for which observed data x0  are not “extreme” at the chosen CL



One-sided, two-sided.
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If “extreme” is defined as low-valued x, start 
accumulating from high values of x.  Yields 
one-sided interval (upper limit on m)

If “extreme” is defined as high-valued x, start 
accumulating from low values of x. Yields one-
sided interval (lower limit on m)

If “extremes” are high- and low-valued x, take 
the smallest central quantile. Yields central  
interval (interval estimate of m)

(above is simplified: applies only for x one-dimensional and p(x|m) is such that 
higher m imply higher average x). 

CL chosen to match the standard thresholds 68.3% (1σ) 95.5% (2σ) etc. 

p(x|m)

p(x|m)

p(x|m)



Neyman construction illustrated
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Prior to looking at data, consider p(x|m) for each possible true value of parameter m 

m0

m1

m2

p(x|m)

m

(Tipically “x” is chosen to be the maximum likelihood estimator of m)



Neyman illustrated I
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Take a specific value m0 of the parameter 

p(x|m0)



Neyman illustrated II
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Use p(x|m0) to define an acceptance range in x, such that p(x ∈ range | m0) = 68%.

p(x|m0)

68%



Neyman illustrated III
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p(x|m)

m

m0

m1

m2

Derive the acceptance region for every possible true value of the parameter m



Neyman illustrated IV

39

This defines a confidence belt (aka acceptance region) for m.

m

m2

m1

m0

p(x|m)

The confidence belt consists of those values of parameter m for which the 
observed data values x are among the most probable to be observed.

x and m don’t need to have the same units, range, or dimensionality



Neyman illustrated V
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m

m0

m�

m+

Look at data and observe value x0   —should intersect confidence belt. 

Union of all m values for which x0 intercepts the confidence belt defines the 
confidence interval [m₋(x0) m₊(x0)] at the 68% CL for m. 

The extremes of the interval are random variables (functions of data x)

In repeated experiments, the boundaries [m₋(x) m₊(x)] will fluctuate, but 68% of them 
will contain the (unknown) true value of the parameter m

projection of acceptance region onto space of 
parameters: a set-theory union, not an integral



Neyman’s “magic” explained
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data x

m0

Suppose the true value is m0

Depending on observation x, could 
pick either red of green intervals. 

Red intervals don’t include m0 — 
green intervals do.

Since probability of observing data 
that yields a green interval is CL by 
construction, and green intervals 
contain m0, then any observation 
yields an interval that include true 
value with probability CL

Coverage enforced by construction.

Result is expressed as “m is contained in the interval [a, b] at the 68% CL”.  

Not assigning a probability to true value m, which is fixed and unknown, but to the 
integral extremes

pa
ra

m
et

er
 m



Toy example
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Identical bags of various classes. Each class contains a different fraction of 
white balls (class A has 1%, B has 5%, C has 50%, D has 95%, D has 99%). 

Pick a bag, extract 5 balls, and find the bag class by setting a 95% CL upper 
limit on the true fraction of white balls.

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)

  w
hi

te
 b

al
ls

 o
bs

er
ve

d 
(th

is
 is

 “x
”)

homework



Start constructing one-sided confidence band…
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For true value A, accumulate probability p(x|m) starting from high values of 
observations x, which are “extreme” for an upper limit, until accumulated 
probability is at least CL (chosen to be 95%)

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)

  w
hi

te
 b

al
ls

 o
bs

er
ve

d 
(th

is
 is

 “x
”)

homework
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Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)

  w
hi

te
 b

al
ls

 o
bs

er
ve

d 
(th

is
 is

 “x
”)

…keep constructing the confidence band…

homework



Confidence band is complete
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Green is the acceptance region, white the exclusion region

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls (this is “m”)

  w
hi

te
 b

al
ls

 o
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ve

d 
(th

is
 is

 “x
”)

homework



Now look at data
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Pick five balls from an unknown bag. Find only one white ball out of five.   .

Class A = 1% Class B = 5% Class C = 50% Class D = 95% Class E = 99%

5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

EXCLUDED at 95% CL 

True fraction of white balls (this is “m”)

  w
hi

te
 b

al
ls

 o
bs

er
ve

d 
(th

is
 is

 “x
”)

==> D and E class out of the confidence region. 

homework



Which ordering?
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p(x|m0)
m

m0

m2

Z

x/2 belt
p(x|m2)dx  0.05

p(x|m0)
Definition of acceptance range not unique. 

Only constraint:  p(x|m) outside it is <= 1-CL

Criterion to choose acceptance region is 
ordering rule — order of accumulation of 
possible observations x until a CL amount of 
probability is accumulated.

Ordering may determines the precision of your 
inference

Decide prior to look at data otherwise could 
artificially exclude the result of the experiment 

(Also, usually one wants a connected region 
and no “zebra” bands)




Probability ordering
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Try to get the shortest possible interval, so that resulting confidence intervals are  
narrower (more precise results). 

Probability ordering or Crow-Gardner ordering”

p(x|m0)

Ill-defined: probability depends on the metric for observable x

Shortest interval in one metric isn’t shortest in others.

1. Choose one value for m, m=m0, and look at p(x|m0)


2. Rank the x values in decreasing order of p(x|m0)


3. Accumulate x starting from the x with highest probability


4. Accumulate all other x until the desired CL is reached.


5. Repeat for all m



Issues — empty intervals
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Central 90% CL band for a 
Gaussian of unit width

Long-standing inconsistencies found in 
simplistic ordering criteria.

Measurement with Gaussian resolution near 
physical boundary (e.g., neutrino mass square 
close to zero)

Observe a negative fluctuation


Resulting confidence regions is empty - that is 
no true value of parameter m could have 
generated the data I see….


Clearly a problem.  

Observed



Likelihood-ratio ordering (“Feldman and Cousins”)

Issues solved by adopting the likelihood-ratio ordering

The “accumulation score” of each element in x, no longer depends only on p(x|m0) 
but also on p(x|m) at other m values 

LR =
p(x|m0)

p(x|m̂)

m0

m1

m2

p(x|m)

m

p(x|m̂)

p(x|m0)

x

When constructing the band 
for each value m0 of the 
parameter accumulate values 
of x in decreasing order of 


where m̂ is the value that 
maximizes the likelihood for 
that x



Got your brain tangled? Try with Poisson.
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Reproduce LR bands as per the original paper. http://arxiv.org/pdf/physics/
9711021v2.pdf. Further useful and interesting info in http://
users.physics.harvard.edu/~feldman/Journeys.pdf 


Observed 
count

Likelihood ratio  
L(μtest = 0.5)/L(μ̂ )        
(ordering score)

Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php

L(μ =0.5) 
of  

observed 
count

μ̂  that  
maximizes L 
of observed 

count

L(μ̂ )        
of  

observed 
count

homework

http://arxiv.org/pdf/physics/9711021v2.pdf
http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf


Natural transition from limit to point estimate
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.
Important to keep distinct 

• data x, which, due to resolution and bck 

fluctuations could fluctuate negative. 

• parameter Ns, for which negative values 

do not exist in the model

Observed 
yield can 
fluctuate 
negative 

True signal yield cannot  
be negative

Observation here 
yields a limit

Observation here 
yields measurement

Pa
ra

m
et

er
 m

Observed x



Likelihood-ratio ordering
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1. Choose one value for m, m0  and generate simulated pseudodata accordingly.


2. For each simulated data set x calculate (i) the value of the likelihood at m0, p(x|m0)=L(m0) and 
(ii) the maximum likelihood L(m̂) over the space of m values (for that observation)


3. Rank all x values in decreasing order of likelihood ratio LR=Lx(m0)/Lx(m̂).


4. Accumulate probability p(x|m) starting from the x with higher LR until desired CL is reached.


5. Repeat for all m — now acceptance band is constructed

As the likelihood is metric-invariant so is the ratio of likelihoods. 

Therefore LR-ordering preserves the metric and avoids empty regions                   
(mostly, see sec. B.3 in https://arxiv.org/abs/hep-ex/9912048)

By far the most popular ordering in HEP. 



Recommendation #1: FC is your go-to default option
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Take likelihood-ratio ordering as default option in your work unless there are strong 
motivations against it. 

Among standard frequentists inference procedures, FC has the most convenient, 
and statistically supported, properties  



Recommendation #2: provide expected limits too
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All limit setting procedures incur in counter-intuive results under certain conditions 
due to degraded statistical properties when samples are small.

For instance, for zero observations FC limits for Poisson plus background improve 
with background yield

To identify those cases, do report expected upper limits in addition to the 
observed ones

Expected upper limits are usually medians of limits obtained in many simulated 
background-only samples

Reliable assessment of the actual sensitivity of measurements procedure, 
regardless of the specific fluctuations happening in your data sample



Real life (i.e., your analysis)



Systematic uncertainties



58

What systematic uncertainty is

Not only one does not know which data x will be observed for a true value m.    
One does not even know precisely the probability for each possible x.

Parametrization of the differences between our model and reality  

p(x |m)

Assumed model p(x|m)

Real (unknown) theory p(x|m,ν)

In general both the value of ν and its functional dependence p(x|ν) are unknown  

That’s why it’s generally wrong to assume systematic uncertainties Gaussian

p(x|m) is an approximation ofreal 
unknown theory p(x|m,ν).  

Parametrize difference with 
dependence on unknown parameters ν 



Bayesian approach
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Assume prior p(ν) for the nuisance parameters and integrate (“marginalize”) the 
product of that prior by the likelihood over ν.  

Revert to p(x|m) that no longer depends on the nuisance parameters

p(x |m) = ∫ν
p(x |m, ν)p(ν)dν

and then proceed with Bayesian inference as shown before. 

Results may depend on priors and won’t guarantee coverage but are valid 
Bayesian results - especially if systenatic sources are few

For many systematic sources, the impact of priors in driving the results explodes 
with dimensionality rendering the inference problematic



Frequentist step 1: simulating alternative models
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Identify a few `extreme configurations’ for ν,  (ν’, ν’’,ν’’’,…) that bracket all plausible 
configurations of the unknown parameter.

p(x |m)
default model p(x|

Plausible extreme case

Implausible extreme case

If identifiying extreme cases is not obvious, sample uniformly the nuisance parameter 
space to define alternative “Universes” ν’,ν’’, ν’’’, etc…

Simulate sets of data, each from an alternative Universe using ν’,  ν’’,…  as true values 
for ν say

1000 toys from p(x|m0, ν’), 1000 from p(x|m0, ν’’), 1000 from p(x|m1, ν’), 1000 from p(x|
m1, ν’’)…. — where mi are possible true values for the parameters of interest.



Frequentist step 2: constructing acceptance band
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Replace likelihood with lower-dimensional structure, the profile-likelihood, and 
base inference on that.

Profile likelihood: likelihood maximized with respect to a subset of its variables 
(usually the nuisance parameters ν) and replacing their maximized values ν̂ inside it:

L(m1, m2, . . . , mn, ν1, ν2, . . . , νm |x) ⇒ Lp(m1, m2, . . . , mn | ̂ν1, ̂ν2, . . . , ̂νm, x)

Gain convenience due to reduced dimensionality. But lose rigor: profile likelihood 
is not a likelihood nor it has its mathematical properties. 

However, it approximates sufficiently likelihood properties in many problems thus 
offering a reliable inference instrument

Fit each toy with profiled likelihood and plot the distributions of results m̂ for 
each ensemble.


Construct the confidence band by using the Universe that yields the lowest CL. 
This will make the results to have coverage regardless of the true value of ν.
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Example from Poisson plus uncertain background
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Example from Poisson plus uncertain background
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Example from Poisson plus uncertain background
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Example from Poisson plus uncertain background



Hybrid approaches
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Some mix Bayesian and frequentist approaches, especially when trying to include 
systematic uncertainties in exclusion limits. 

These approaches usually involve “folding in” the systematic uncertainty along with 
the statistical one first, and then determining limits using the total uncertainty

The folding can happen by either


convolving the likelihood with a Gaussian of width equal to systematic uncert.;

summing in quadrature the statistical and systematic uncertainty;

marginalizing the likelihood only with respect to the nuisance parameters (as in 
slide 18) and then treat the resulting posterior as a proper likelihood for usage in 
standard frequentist inference (Cousins-Highland, NIM A320, 331 (1992),  
RooStats::HybridCalculator)


I recommend against these as mixed treatment obfuscates a proper interpretation of 
the final results - which are likely to be improper both from a frequentist and a 
Bayesian standpoints
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Combining limits

Can quickly become a mess. 

No consensus on statistically proper 
procedure to combine limits.

Much better to combine point-estimates 
(central values with uncertainties) and 
then extract limit from combined result.

That’s why whenever quoting limits is 
good practice to report also central value 
with uncertainties, so that combination 
will be straightforward.
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Final pontification

Try to discover signals, not to exclude them

Try to discover signals not to exclude them

Try to discover signals not to exclude them

…but if you really don’t have signal, then make sure your “exclusion” is proper

Refrain from pre-cooked sw packages, invest time in coding your model, producing your 
toys, and construct your inference from scratch — instructive, transparent, flexible.

Be Bayesian all the way. Or frequentist all the way. Do not mix approaches.

If you like frequentist, Feldman Cousins is the best go-to option by default

If you like Bayesian, consider temporary apostasy if dimensions are many

In any case check for coverage (frequentist) or for prior sensitivity (Bayesian)

Report expected limits for unbiased sensitivity assessments

Report central values with uncertainties to facilitate combination

Exclusion is a poor word: suggests boolean (yes/no) logical condition, while here it is 
associated with probability. For ~1000 limits in the history of PDG there have to be ~100 
cases in which the true value was found to lie in the “excluded” range - is this the case?



Thanks
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Further readings
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G. Cowan,“Statistical 
data analysis”

F. James, “Statistical Methods in 
Experimental Physics, data analysis”

G. Casella, R. Berger, 
“Statistical Inference

A. Stuart, et al “Kendall’s Advanced 
Theory of Statistics Vol 2A”

• Good starting point • Very good book at the 
right level for HEP • Advanced book • Ultimate bible

• Statistics@ http://hcpss.web.cern.ch/hcpss/  (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al. Some are 
video-recorded). Similar expertise level to the lectures given here.


• Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/ Similar or more basic expertise level

• Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confId=11244 

More advanced level.

• T. Junk’s lectures from www-cdf.fnal.gov/~trj/  Similar expertise  level

• L. Lyons lectures: https://indico.cern.ch/event/431038/ Similar or more basic expertise level

• Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/  Basic to advanced

• B. Cousins: find his (CMS-restricted) “Statistics in Theory - prelude to Statistics in Practice” lectures. Look  at his 

statistics papers on inspire and the references he reccommends. Advanced

• Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org Advanced

http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://indico.cern.ch/event/431038/
https://www-cdf.fnal.gov/physics/statistics/
http://phystat.org

