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The task

Fitting and limit setting =
(incl. combinations of

measurements &

likelihoods)
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? Kobayashi Hall (KEK)

Presenter Diego Tonelli

A little difficult to cover in 1 hr slot.

Executive decision (by myself) to only cover limits...

For fitting check these out
https://indico.belle2.org/login/?next=/event/1332/contributions/6424/attachments/3194/4876/Fitting.pdf
https://indico.belle2.org/event/3456/contributions/18541/attachments/10210/15687 /fitting-belle2-academy.pdf



Inspirational premise



You (we...) all must
strive to find signal

Even In very-rare-
decay searches



"~ Should be confident

Confidence is essential to
avold missing out on
possible (big) discoveries



...unexpected and so not found...

APPARENT EVIDENCE OF POLARIZATION IN A BEAM oF =~ THE SCATTERING OF FAST ELECTRONS BY METALS.
B-RAYS II. POLARIZATION BY DOUBLE SCATTERING AT

RIGHT ANGLES

By R. T. Cox, C. G. McILwWRAITH AND B. KURRELMEYER*
By CarL T. CHasE

NEW YORK UNIVERSITY AND CoLumBIA UNIVERSITYT NEW York UNiveErsity, UNIVERsITY HEIGHTS, N. Y.

Communicated June 6, 1928 (Received July 28, 1930)

We have made no attempt at a theoretical treatment of double scattering
beyond a consideration of the question whether the results here reported
are of an asymmetry of higher -order than what might be expected of a

1930’s “anomalous polarization” in 3 decays was early indication of parity violation

But Cox, Chase, collaborators and then HEP community were not ready just yet ;)



...unexpected and so not found...
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production (Fy~3 GeV). Errors are sstimsted freely.

Cekte, g~ -

“the lack of pT
‘bumps’ means there
are no significant
heavy objects (M from
3 -> 10 GeV) decaying
into two leptons”

L.M Lederman - 1971



...unexpected and so not found...

Experimental Limits on the Decays K; ®—> u* u-, e*e-, and p*e* 1

Alan R. Clark, T. Elioff,* R, C. Field, H. J. Frisch, Rolland P. Johnson,

Leroy T. Kerth, and W. A. Wenzel

Lawrence Radiation Laboratory, Univevsity of California, Berkeley, Calzfomza
(Received 9 April 1971)

We have performed a search at the Bevatron for the decays K '—u*y", e*e”, and p*e*
with a double magnetic spectrometer using wire spark chambers. Over 10° observed
K;'"—m*r" decays determine the normalization for the di-lepton decay modes. No e'e”
or u*e* events were observed. For each of these decays the upper limit on the branch-

ing ratio relative to all modes is 1.57 x 10™° (90% confidence level). For the decay K e
—p*y”, the limit is 1.82x 107° (90% confidence level).
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But not too confident

Sometimes the signal just isn’t
there

Still, your results are important
and informative, if properly
rekindled as exclusion limits



The real talk
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The simplest example...

_ooking for distinctive signal structure over background

-it data with a model that allows for signal and background, “the (S+B) mode

Data estimate for signal yield Ns consistent with zero....let’s set an exclusion limit



Fundamental ingredients
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The model

p(x|m) = p(data | physics parameters)

Probability of “data” given “parameters” — a mathematical construct.
Connects what you wanna measure with what you observe.

Interpreted as a function of data x (fixing m = mo), it is the
probability density function p(x|mo): probability to observe each possible value of
data x had the true value of m been mo.

Interpreted as a function of parameter m (fixing x = Xo) it is the
likelihood p(xo|m) = L(m) to observe data xo for different choices of m

13



INn our case

p(x|m) = p(invariant mass | signal yield) o const 4+ bump

14



Accelerated recap: Bayesian/frequentist inference

Measuring physics parameter m consists Iin
- devising a model p(x|m) that approximately describes the phenomenon
* observing data x

* using the model and the data x to get information on m.

Bayesian — combine model with prior probabilities for m to determine the
posterior probability p(m|x), which expresses the probability for each value of
parameter m given the data. (“Prior” == known or chosen before observing x)

Frequentists — cannot define p(m|x), use model and probabilities for all other
possible x outcomes to determine which values of m would produce the observed
data x with highest probability

15



Sayesian lImits



Probabillity for the parameter given the data

Use trivial property of conditional probabilities to answer the question: what’s the
probability that physics parameter has a certain value given the data | observed ?

Likelihood of your data (model) Prior probability (your assumption)

m) X p(m)

o) p(x

p(m

Posterior probability

p(x)

Normalization

17



A “visual” demonstration of

Sayes theorem

P(A) =

Whole space

P(B) =

]8> ) o PEA-

P(AnB)= -

P(A) x P(BJA) =

P(B) x P(A|B) =

= P(AN B)

P(A N B)

Bob Cousins, HCPSS, 2009 = P(BlA) = P(AIB) X P(B) l P(A)

18



Those p(...|...) are all different things....
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True signal yield Ns
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In case that’s not yet clear....

P(A|B) is NOT equal to P(B|A).

Variable A: “pregnant”, “not pregnant”

Variable B: “male”, “female”.

P(pregnant | female) ~ 3% but

P(female | pregnant) >>> 3% !

[Lyons]

www.amibnusnormot.com
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Sayesian inference — elementary example 0,

Three identical bags. Two balls in each. Balls can be black or white

bag A bagB bagC

Pick a random bag (of type m — parameter, unobservable) and a random ball
inside it (of color x — data, observable)

Ball is white: x = w. What can one say about the chosen bag?

Wanna know probability p(m|w) for picking each type of bag, given the observed
ball is white

| know the priors p(m), which are 1/3 for each bag type

If priors are known - everyone should be Bayesian

21



Bayesian inference — elementary example

p(m) 1/3 1/3
A 3
O O O
p(w|m) 1 1/2
P(W,m) — p(w|m) p(m) 1/3 1/6
p(m|w) = p(w|lm) p(m)/p(w) 23 13

The posterior probabilities are p(A|w) = 66%, p(B|w) = 33%, p(C|w) =O0.

o oo

1/3

22



Once you got the posterior, limits are easy

Choose prior probablity p(Ns): expresses knowledge on unknown parameter

Integrate (marginalize) posterior

Likelihood Prior

p(z|Ns)p(N;)
. P(z|Ns)p(Ns)dN;

- p(Ns|z) =

over true values of parameter Ns until
reaching fractional area corresponding to
desired Bayesian credibility, e.g. 95%.

(better to call it “Bayesian credibility”
than confidence level if Bayesian
inference is involved)

Obtained upper limit depends on the choice of the prior

23



Priors (long story short)

Priors carry subjective information that influences results.

Results dominated by data information (i.e., by the likelihood) rather than by prior
iInformation are preferable

While dealing with limits data typically scarce — so priors often relevant
Revert then to use “noninformative priors”

Noninformative priors do not exist.

“Flat priors” seem naively equanimous.

Plus, maximum of the posterior coincide with maximum of the likelihood when
likelihood is only one-dimensional

But flat has no special role — it depends on the metric, can be as much
informative as any other choice

Serious efforts toward priors (Jeffreys’ et al.) that inject statistically-motivated
information in the inference — difficulties in high dimensions.

These days emphasis on prior-sensitivity studies

24



Assessing sensitivity to priors

How much is the final result driven by data and how much by the prior?

Change the prior and check variation in results

T. AALTONEN et al.

TABLE V. Summary of the sensitivity study. The 68% credi-
bility interval on Bf/ ¥ is given for the unconstrained result and

when 2|I*},| is constrained to its SM prediction.

Variation ConstrainedUnconstrained
Default [0.09,0.32] [0.11,0.41]
Flat sin282/** [0.08,031] [0.09,0.37]
Flat coséd | [0.09,0.33] [0.10,0.43]
Flat cosd) [0.09,0.32] [0.11,0.41]
Previous three together [0.07,0.31] [0.09,0.39]
Flat in amplitudes [0.09,0.32] [0.11,0.41]

Gaussian mixing-induced CP violation [0.09,0.34]

PRD 85, 072002 (2011)

A desirable “calibration” of any Bayesian result.

SesetGeteintmene eI

B

Appendix B: Prior sensitivity study

To investigate the sensitivity of the results in
to the choice of priors, we derived the posterior mode and
credible intervals for alternative sets of priors.

Firstly, we select truncated-normal priors, centered on
the SM expectation (the only non-zero Wilson coefficient
being CM = 6.6), which disfavor deviations from the
SM expectation,

_JN@ilp=CM,0=20) ;>0
p (m) {0 e B
Here 7; € [|CyL+Cvr|, |Cs.+Csrl,|CrL|] and C7M cor-
respond to the respective SM point CPM € [6.6,0.0, 0.0].

Secondly, we select uniform priors in the squared Wil-
son coefficients, as these enter Eq. (7), which subse-

Smama oy

in Belle |l too: arXiv: 2507.12393 (2025)

25



-requentist limits



Coverage (of the true value)

A property of an inference procedure: yield results that include the true value
with the stated confidence level

For instance, 1/3 of the 1-sigma (68%) intervals should contain the true value

The true value isn’t random — cannot move around or have a probability distribution

Data, that is, the interval extremes, are random and fluctuate



Coverage (of the true value)

Coverage is the central requirement of frequentist inference.
It provides a precise and objective meaning to the results of an inference

When someone reads your paper, she knows (or assumes) that the central
values and uncertainties are obtained through a procedure that has
coverage, therefore knowing where the true value is likely to be.

As coverage implies repeatability of the inference, toys simulation is
commonplace in frequentist statistics.

28



Back to our example — testing a signal strength

Test compatibility of data with an assumed signal strength

Assume a signal strength, which determines expected signal yield in sample
Generate a set of toys by drawing simulated data from the signal+background model
Generate a set of toys by drawing simulated data from the background-only model
Each toy has same size as the real data (within total Poisson fluctuations of course)
Fit each toy of each set with S+B model: two sets of result for signal yield Nis

Plot distributions of the fit results, separately for the two sets 29



po-value = 1- CL

Location of data
observation relative to the
two curves offers a
measure of compatibility
of the data with either.

Fractional integral of the S+B curve over values as bgck-like as the one we
observed, or more, is the p-value for the “S+B hypothesis”.

The smallest the p-value, the lower the compatibility of data with S+B hypothesis.
Small p-value means it’s unlikely to observe our data if model S+B is realized

That is data “excludes the S+B model at a confidence level CL = 1- p”
30



Testing multiple signal strengths
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We only have tested one signal strength.

Useful to test a whole range of signal stregths: repeat for different signal strengths
31



Comments

It seems straightforward.
It has issues

The principal issue comes from our sequence first look at data and then decide
what to do

“Do you see a signal?” “Then measure its strength” “Do you see nothing?”
“Then set a limit”)

This spoils coverage

Need a procedure that transitions consistently from limit-setting to signal-
strength measurement, prior to looking at data.

Let’s look at this in detail from scratch

32



Confidence intervals

Given a model p(x|m), what values of the unknown parameter m make the
observed data xo among the least extreme outcomes possible?

“Extreme” needs ordering: rank values of data observations x for each possible
value of m from likely to extreme

Accumulate the highest-ranked (i.e., less extreme) values of x and sum the
corresponding p(x|m) until reaching a CL fraction of the x probability.

Given an ordering and chosen a CL, the confidence interval [m1(x), m2(x)] includes
values of m for which observed data xo are not “extreme” at the chosen CL

33



One-sided, two-sided.

p(z|m)

A

' If “extreme” is defined as low-valued x, start

/L« accumulating from high values of x. Yields

one-sided interval (upper limit on m)

If “extreme” is defined as high-valued x, start
accumulating from low values of x. Yields one-
sided interval (lower limit on m)

If “extremes” are high- and low-valued x, take

the smallest central quantile. Yields central
interval (interval estimate of m)

T

p(z|m) 4

(above is simplified: applies only for x one-dimensional and p(x|m) is such that
higher m imply higher average Xx).

CL chosen to match the standard thresholds 68.3% (10) 95.5% (20) etc. 34



Neyman construction illustrated

Prior to looking at data, consider p(x|m) for each possible true value of parameter m

X—Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability

By J. NEYmMAN
Reader in Statistics, University College, London
p ( a:. ‘ m) (Communicated by H. Jerrreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937;
2 / /\/\/\ »
TN 1 =
- >
€I

(Tipically “x” is chosen to be the maximum likelihood estimator of m) 35



Neyman illustrated |

Take a specific value mo of the parameter

p(x|mo)

36



Neyman illustrated

Use p(x|mo) to define an acceptance range in x, such that p(x € range | mo) = 68%.

37



Neyman illustrated |l

Derive the acceptance region for every possible true value of the parameter m

p(z|m)

"

38



Neyman illustrated [V

This defines a confidence belt (aka acceptance region) for m.

p(z|m)

A

™

vl N
N |

£

o

The confidence belt consists of those values of parameter m for which the
observed data values x are among the most probable to be observed.

X and m don’t need to have the same units, range, or dimensionality

39



Neyman illustrated V

Look at data and observe value xo —should intersect confidence belt.

Union of all m values for which xo intercepts the confidence belt defines the
confidence interval [m_(xo) m,(xo)] at the 68% CL for m.

The extremes of the interval are random variables (functions of data x)

m

m4 .
projection of acceptance region onto space of
parameters: a set-theory union, not an integral

m_ .
mo / ///
>

o
In repeated experiments, the boundaries [m_(x) m,(x)] will fluctuate, but 68% of them
will contain the (unknown) true value of the parameter m 40




Neyman’s "magic” explained

Suppose the true value is mo

>

Depending on observation x, could
pick either red of green intervals.

Red intervals don’t include mg —
green intervals do. /! /i

parameter m
N
N
N
N
N
N

3
e
pS

Since probability of observing data |
that yields a green interval is CL by |
construction, and green intervals /ﬂm /
contain mo, then any observation ' /
yields an interval that include true
value with probability CL

data x

Coverage enforced by construction.

Result is expressed as “m is contained in the interval [a, b] at the 68% CL”.

Not assigning a probability to true value m, which is fixed and unknown, but to the
iIntegral extremes 41




Toy example

|dentical bags of various classes. Each class contains a different fraction of
white balls (class A has 1%, B has 5%, C has 50%, D has 95%, D has 99%).

Pick a bag, extract 5 balls, and find the bag class by setting a 95% CL upper
limit on the true fraction of white balls.

white balls observed (this is “x”)

True fraction of white balls (this is “m”)

Class A=1% | Class B=5% |Class C = 50% |Class D = 95% | Class E = 99%
5 10-10 3*10-7 3.1% 77.4% | 95.1%
4 5*10-8 3*10-5 15.6% | 20.4% 4.8%
3 10-° 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-°
1 4.8% 20.4% 15.6% 3*10-° 5*10-8
0 95.1% | 77.4% 3.1% 3*10-7 10-10

42



Start constructing one-sided confidence lband.

%,

Q
"o,

For true value A, accumulate probability p(x|m) starting from high values of

observations x, which are “extreme” for an upper limit, until accumulated
probability is at least CL (chosen to be 95%)

white balls observed (this is “x”)

True fraction of white balls (this is “m”)

Class B = 5% |Class C = 50% |Class D = 95% | Class E = 99%
5 3*10-7 3.1% 77.4% | 95.1%
4 3*10-° 15.6% | 20.4% 4.8%
3 0.1% 31.3% 2.1% 0.1%
2 2.1% 31.3% 0.1% 10-°
1 20.4% 15.6% 3105 5108
0 77.4% 3.1% 3107 10-10

43



...Keep constructing the confidence band...

white balls observed (this is “x”)

True fraction of white balls (this is “m”)

ClassA=1%

O =N  W|PH|O

Class B = 5% |Class C = 50% |Class D = 95% | Class E = 99%
3.1% 77.4% | 95.1%
15.6% | 20.4% 4.8%
31.3% 2.1% 0.1%
31.3% 0.1% 10-°
15.6% 3*10-5 5108
3.1% 3107 10-10

44



Confidence band is complete

Green is the acceptance region, white the exclusion region

white balls observed (this is “x”)

True fraction of white balls (this is “m”)

Ol =N  W|H,H|O

ClassA=1%

Class B =5% |Class C =50% |Class D = 95%

Class E =99%

45



Now look at data Oy

Pick five balls from an unknown bag. Find only one white ball out of five.

True fraction of white balls (this is “m”)

ClassA=1% | Class B =5% |Class C =50% |Class D =95% | Class E = 99%

K2

K% 3}

‘fg 4 4.8%
% 3 0.1%
pr 2 105
= 3* 10-10

==> D and E class out of the confidence region.



Which ordering”?

Definition of acceptance range not unique.
Only constraint: p(x|m) outside it is <= 1-CL

Criterion to choose acceptance region is
ordering rule — order of accumulation of
possible observations x until a CL amount of
probability is accumulated.

Ordering may determines the precision of your
inference

Decide prior to look at data otherwise could
artificially exclude the result of the experiment

(Also, usually one wants a connected region
and no “zebra” bands)

47



Probability ordering

Try to get the shortest possible interval, so that resulting confidence intervals are
narrower (more precise results).

Probability ordering or Crow-Gardner ordering”

. Choose one value for m, m=mo, and look at p(x|mo)

. Rank the x values in decreasing order of p(x|mo)

. Accumulate x starting from the x with highest probability

. Accumulate all other x until the desired CL is reached.

. Repeat for all m

lll-defined: probability depends on the metric for observable x

Shortest interval in one metric isn’t shortest in others.

48



Issues — empty intervals

Long-standing inconsistencies found Iin
simplistic ordering criteria.

Measurement with Gaussian resolution near
physical boundary (e.g., neutrino mass square
close to zero)

Observe a negative fluctuation

Resulting confidence regions is empty - that is
no true value of parameter m could have
generated the data | see....

Clearly a problem.

6_IIII | L L DL | | L DL | L L DL | L L | L DL
. Central 90% CL band for a
[ — Gaussian of unit width
4 :—"""' [l 7 '“'é'"' -
=T
: p—
53
=
- _Obse-rved -
= =
v .
0
-2 -1 0 1 2 3 4

Measured Mean x
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Likelihood-ratio ordering (“Feldman and Cousins”)

Issues solved by adopting the likelihood-ratio ordering

When constructing the band P(x\,m) t

for each value mo of the I
parameter accumulate values
of X in decreasing order of

. p(x|mg)
W= p(x|m)

where m is the value that p(x|mo)e

maximizes the likelihood for
that x

mo

The “accumulation score” of each element in x, no longer depends only on p(x|mo)
but also on p(x|m) at other m values



Got your brain tangled”? Try with Poisson. Oy

Reproduce LR bands as per the original paper. http://arxiv.org/pdf/physics/
9711021v2.pdf. Further useful and interesting info in http://
users.physics.harvard.edu/~feldman/Journeys.pdf

TABLE I. Illustrative calculations in the confidence belt construction for signal mean p in the
presence of known mean background b = 3.0. Here we find the acceptance interval for g = 0.5.

n P(n|w) Ibest P(n|pest) R rank U.L. central
0 0.030 0. 0.050 0.607 6
1 0.106 0. 0.149 0.708 5 Vv Vv
2 0.185 0. 0.224 0.826 3 Vv Vv
3 0.216 0. 0.224 0.963 2 Vv Vv
4 0.189 1. 0.195 0.966 1 Vv Vv
5 0.132 2. 0.175 0.753 4 Vv Vv
6 0.077 3. 0.161 0.480 7 v v
7 0.039 4. 0.149 0.259 Vv Vv
8 0.017 5. 0.140 0.121 Vv
9 0.007 6. 0.132 0.050 Vv
10 0.002 7. 0.125 0.018 Vv
11 0.001 8. 0.119 0.006 Vv
Observed L(u=0.5) i that L) Likelihood ratio
count of maximizes L of L(utest = 0.5)/L({)
observed of observed observed (ordering score)
count count count

51
Can use this for Poisson http://stats.areppim.com/calc/calc_poisson.php


http://arxiv.org/pdf/physics/9711021v2.pdf
http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf

Natural transition from limit to point estimate

Important to keep distinct

- data x, which, due to resolution and bck
fluctuations could fluctuate negative.

- parameter Ns, for which negative values
do not exist in the model

Parameter m

Observed
yield can
fluctuate
negative

N W A O OO NN 0 W

lllll"'llll'l llllllllllll lTllIllll llTl'lll

________ 0 —_— __; L ‘ [N 1111i1111i111|i1|11§
82 10 1 2 3 4 5 6 7

"Observed x
27

True signal yield cannot

be negative 5o



Likelihood-ratio ordering

. Choose one value for m, mo and generate simulated pseudodata accordingly.

. For each simulated data set x calculate (i) the value of the likelihood at mo, p(x|mo)=L(mo) and
(ii) the maximum likelihood L(m) over the space of m values (for that observation)

. Rank all x values in decreasing order of likelihood ratio LR=Lx(mq)/Lx(m).

. Accumulate probability p(x|m) starting from the x with higher LR until desired CL is reached.

. Repeat for all m — now acceptance band is constructed

As the likelihood is metric-invariant so is the ratio of likelihoods.

Therefore LR-ordering preserves the metric and avoids empty regions
(mostly, see sec. B.3 in https://arxiv.org/abs/hep-ex/9912048)

By far the most popular ordering in HEP.

53



Recommendation #1: FC is your go-to default option

Take likelihood-ratio ordering as default option in your work unless there are strong
motivations against it.

Among standard frequentists inference procedures, FC has the most convenient,
and statistically supported, properties

o4



Recommendation #2: provide expected limits too

All limit setting procedures incur in counter-intuive results under certain conditions
due to degraded statistical properties when samples are small.

For instance, for zero observations FC limits for Poisson plus background improve
with background yield

To identify those cases, do report expected upper limits in addition to the
observed ones

Expected upper limits are usually medians of limits obtained in many simulated
background-only samples

Reliable assessment of the actual sensitivity of measurements procedure,
regardless of the specific fluctuations happening in your data sample

95



Real life (1.e., your analysis)



Systematic uncertainties



What systematic uncertainty Is

Parametrization of the differences between our model and reality

p(x|m) is an approximation ofreal p(x|m) Real (unknown) theory p(x|m.y)
unknown theory p(x|m,v). 4
Parametrize difference with Assumed model p(x|m)

dependence on unknown parameters v

I

Not only one does not know which data x will be observed for a true value m.
One does not even know precisely the probability for each possible x.

In general both the value of v and its functional dependence p(x|v) are unknown

That’s why it’s generally wrong to assume systematic uncertainties Gaussian

58



Sayesian approach

Assume prior p(v) for the nuisance parameters and integrate (*marginalize”) the
product of that prior by the likelihood over v.

Revert to p(x|m) that no longer depends on the nuisance parameters

px|m) = J px|m,v)pv)dy
12
and then proceed with Bayesian inference as shown before.

Results may depend on priors and won’t guarantee coverage but are valid
Bayesian results - especially if systenatic sources are few

For many systematic sources, the impact of priors in driving the results explodes
with dimensionality rendering the inference problematic

59



Frequentist step 1: simulating alternative models

Identify a few extreme configurations’ for v, (v’, v’ v™,...) that bracket all plausible
configurations of the unknown parameter.

p(x | m) Plausible extreme case

A default Kdel p(X| /

Implausible extreme case

AN

I

o
-

If identifiying extreme cases is not obvious, sample uniformly the nuisance parameter
space to define alternative “Universes” v’',v”, v’”, etc...

Simulate sets of data, each from an alternative Universe using v’, v”,... as true values
for v say

1000 toys from p(x|mo, v’), 1000 from p(x|mo, v”), 1000 from p(x|m1, v’), 1000 from p(x|

mi1, V’).... — where m; are p053|ble true values for the parameters of mterest.
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Frequentist step 2: constructing acceptance band

Replace likelihood with lower-dimensional structure, the profile-likelihood, and
base inference on that.

Profile likelihood: likelihood maximized with respect to a subset of its variables
(usually the nuisance parameters v) and replacing their maximized values v inside it:

Lmy,m,,...,m, vi,Vy,...,U,|X) = Lp(ml,mz, oo | U, D5y U, X)
Gain convenience due to reduced dimensionality. But lose rigor: profile likelihood
IS not a likelihood nor it has its mathematical properties.

However, it approximates sufficiently likelihood properties in many problems thus
offering a reliable inference instrument

Fit each toy with profiled likelihood and plot the distributions of results m for
each ensemble.

Construct the confidence band by using the Universe that yields the lowest CL.
This will make the results to have coverage regardless of the true value of v.
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—xample from Poisson plus uncertain background

In the signal region, we observe non events from a Poisson process with mean Us + Up
In the sideband region, we observe nosr events
The unknown mean number of signal events s is the parameter of interest

We only consider the systematic uncertainty due to the uncertainty in background
expectation (treatment is straightforwardly extensible to multiple nuisance pars.)

The mean number of background events L is the sole nuisance parameter, estimated to
be u*p + 0% from a (scaled) fit to our sideband events.

We know that the likelihood for s is Poisson

We need to know what the likelihood for i is. Since that results from a fit, it might be
~@Gaussian, but should look at the distribution of the estimator 1/*s using toys or bootstrap

Let’s suppose it is Gaussian (any other shape could be replaced in what follows).
Then the likelihood for our problem is

(g + pp)"n 1 (), =)
P(non |/’ts9 /’tb) = LG(IMS’ Hps non) = : ] € st / e 2o, F2
non . O'b 271' O-b

(assume the estimate 0™, to be a good approximation of its unknown true value op) -
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—xample from Poisson plus uncertain background

We now need to construct confidence region based on the Feldman Cousins procedure
applied to the above likelihood - *profiled* against the nuisance parameter L.

Means constructing region by ordering observations according to the profile-likelihood ratio

Loy, fi ()i )

A(pgn,,) = —
S LG(/’tsnub;nmft

where

e [Is and [Ip are the maximume-likelihood estimates of the numbers of signal and
background events (Us and Ly are floating)

e /1, is the result of maximizing the likelihood with respect to the number of background
events only, as a function of us. (Up only is floating)

e Non IS the observation in the given sample
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—xample from Poisson plus uncertain background

Choose a plausible test true value for the signal mean us®
Choose the worse-case true value for the background ppw
Need to “horizontally”’construct the band: accumulate values of observed total yield non' In
decreasing order of A(u,; n,,) until the sum of the P(n! | u?, u,) pieces corresponding
to the included non' values is Z P!, | u), i) >= 90%

i
In practice, for each non need to
e calculate the pdf P(n! | u?, ,Lfb)
e calculate L(A,, fi,; n' ) - likelihood, at given ner, maximized with respect to both pars
e calculate L (u, fi,(ud);n',) - as above but maximized only wrt 1 with ps fixed at 10
e calculate their ratio A(u; n! )

e Rank noy' values in decreasing order of A(,uSO; nén) until the sum of P(n(’;n |,MS ) /Aib)
reaches 90%

Repeat the whole procedure for several relevant values of U

NB: “calculate likelihood” above means either do it analytically (when possible) or
numerically (i.e., fit) otherwise 4



Each of the bulleted sequences above
determines one tiny horizontal line here

Repeating for multiple true values s’ \

determines the full acceptance band

Then, projecting onto the true value the
Intersection of the observation in data

with acceptance band, will give the result\

True value

TN

—xample from Poisson plus uncertain background

IIIII:IIII—I—I—

==|'IIII:IIIIIIIIIIIII

—t—r | | 1 1

2 3 4 5 6

Observation
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Hybrid approaches

Some mix Bayesian and frequentist approaches, especially when trying to include
systematic uncertainties in exclusion limits.

These approaches usually involve “folding in” the systematic uncertainty along with
the statistical one first, and then determining limits using the total uncertainty

The folding can happen by either
o convolving the likelihood with a Gaussian of width equal to systematic uncert.;
o summing in quadrature the statistical and systematic uncertainty;

o marginalizing the likelihood only with respect to the nuisance parameters (as in
slide 18) and then treat the resulting posterior as a proper likelihood for usage in
standard frequentist inference (Cousins-Highland, NIM A320, 331 (1992),
RooStats::HybridCalculator)

| recommend against these as mixed treatment obfuscates a proper interpretation of
the final results - which are likely to be improper both from a frequentist and a
Bayesian standpoints
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Combining limits

Can quickly become a mess.

No consensus on statistically proper
procedure to combine limits.

Much better to combine point-estimates
(central values with uncertainties) and
then extract limit from combined result.

That’s why whenever quoting limits is
good practice to report also central value
with uncertainties, so that combination
will be straightforward.

INTERNET INC
EUROPE A LA CARTE

o CAMPAIGN KICK-OFF

Economlst BOUNDFORTHESTARS; =




Final pontification

Try to discover signals, not to exclude them
Try to discover signals not to exclude them
Try to discover signals not to exclude them
...but if you really don’t have signal, then make sure your “exclusion” is proper

Refrain from pre-cooked sw packages, invest time in coding your model, producing your
toys, and construct your inference from scratch — instructive, transparent, flexible.

Be Bayesian all the way. Or frequentist all the way. Do not mix approaches.
If you like frequentist, Feldman Cousins is the best go-to option by default

If you like Bayesian, consider temporary apostasy if dimensions are many

In any case check for coverage (frequentist) or for prior sensitivity (Bayesian)
Report expected limits for unbiased sensitivity assessments

Report central values with uncertainties to facilitate combination

Exclusion is a poor word: suggests boolean (yes/no) logical condition, while here it is
associated with probability. For ~1000 limits in the history of PDG there have to be ~100
cases in which the true value was found to lie in the “excluded” range - is this the case?es



Thanks

Limits, like fear, is often an illusion.

-~ MICHAEL JORDAN
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Further readings

» Good starting point - Very good book at the . Advanced book - Ultimate bible
ey e right level for HEP
STATISTICAL l
DATA Frederick Jamcs
ANALYSIS

Statistical Inference
Second Edition

Statistical Methods in

George Casella
Roger L. Berger

Classical ]”,r{?l'lx’l (G

] ] ]
s ~Apl
¢ [1'.’Iml \!k ael

G. Cowan,“Statistical F. James, “Statistical Methods in G. Casella, R. Berger, A. Stuart, et al “Kendall’s Advanced
data analysis” Experimental Physics, data analysis®  “Statistical Inference Theory of Statistics Vol 2A”

- Statistics@ http://hcpss.web.cern.ch/hcpss/ (Excellent lectures by K. Cranmer, G. Cowan, B. Cousins et al. Some are
video-recorded). Similar expertise level to the lectures given here.

« Lectures from Glen Cowan’s page https://www.pp.rhul.ac.uk/~cowan/ Similar or more basic expertise level

« Terascale Stat School (especially 2015 F. James’ lectures) https://indico.desy.de/conferenceDisplay.py?confld=11244
More advanced level.

T. Junk’s lectures from www-cdf.fnal.gov/~trj/ Similar expertise level

L. Lyons lectures: https://indico.cern.ch/event/431038/ Similar or more basic expertise level

Notes from CDF’s Statistics Committee public page https://www-cdf.fnal.gov/physics/statistics/ Basic to advanced

B. Cousins: find his (CMS-restricted) “Statistics in Theory - prelude to Statistics in Practice” lectures. Look at his
statistics papers on inspire and the references he reccommends. Advanced
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Proceedings/docs from the PHYSTAT conferences and workshops, linked from phystat.org Advanced



http://hcpss.web.cern.ch/hcpss/
https://www.pp.rhul.ac.uk/~cowan/
https://indico.desy.de/conferenceDisplay.py?confId=11244
http://www-cdf.fnal.gov/~trj/
https://indico.cern.ch/event/431038/
https://www-cdf.fnal.gov/physics/statistics/
http://phystat.org

