Physics Week Summary: Theory

Wolfgang Altmannshofer waltmann@ucsc.edu

2025 Belle II Physics Week KEK, October 6 - 10, 2025

Theory at the 2025 Belle II Physics Week

- Wolfgang Altmannshofer: EWP B decays with missing energy in the SM
- David Marzocca: New Physics in EWP B decays with missing E
- Claudia Cornella: Interplays with $B \to K\tau\tau, B \to \tau\tau$, and $K \to \pi\nu\bar{\nu}$
- Chris Bouchard: LQCD results for rare B-decays with missing energy
- Danny van Dyk: Unitarity Bounds for Hadronic Form Factors
- Hector Gisbert: Charm decays with missing energy (NP and SM)
- Hector Gisbert: Introduction to $c \to u \nu \bar{\nu}$ decays
- Hector Gisbert: Introduction to $b \to d\nu\bar{\nu}$ decays
- Olcyr Sumensari: $B \to K^{(*)} \nu \bar{\nu}$ in SM and observables beyond rate
- Jack Jenkins: $B \to X_s \nu \bar{\nu}$ in SM
- Martin Novoa-Brunet: Probing CP Violation in $b \to s \nu \bar{\nu}$ decays
- Michael Schmidt: BSM for $B \to K \nu \bar{\nu}$ & related anomalies
- Patrick Bolton: Impact of new particles on missing energy B decays

13 presentations by theorists

Motivation: Flavor is Puzzling

- hierarchical fermion masses

4. 5. b.

e. /. 7.

10-4 10-3 10-2 10-1 1 10 10-2 10-3 CeV

- hierarchical quark mixing matrix

This puzzle in general **doesn't point to a specific New Physics scale for its solutions**. They could be anywhere from **near the TeV** till up to **GUT/Planck**.

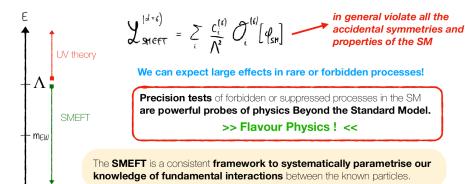
Necessarily Flavourful New Physics:

- non universal
- flavour changing

[David Marzocca]

(m,, ~ 10-11 GeV)

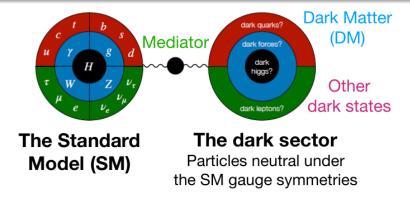
Heavy and Light New Physics


- new physics could be heavy $m_{\rm NP}\gg m_{\rm B}$
- new physics only shows up as virtual particles
- can capture the effect of all possible new physics models using EFTs

Heavy and Light New Physics

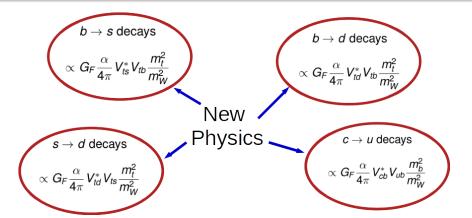
- new physics could be heavy $m_{\rm NP} \gg m_{\rm B}$
- new physics only shows up as virtual particles
- can capture the effect of all possible new physics models using EFTs

- new physics could be light $m_{\rm NP} < m_{\rm B}$
- new physics particles are produced on-shell in the B decays
- axions, sterile neutrinos, dark photons, ... (could have entire dark sectors containing many light particles)


Heavy New Physics and SMEFT

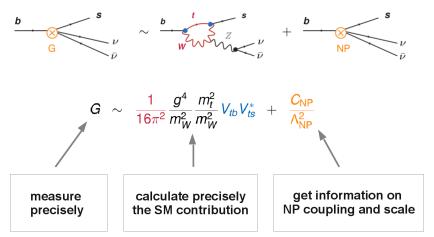
Every little improvement in any direction in the (big) EFT parameter space means that we learn something more of how particles behave at microscopic scales.

[David Marzocca]

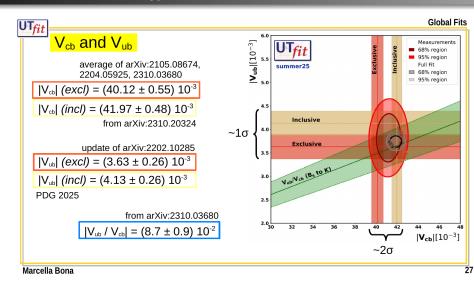

Light New Physics and Dark Sectors

- Dark matter could consist of light fermions
- Dark photons could be a mediator between dark matter and the SM
- light axions motivated by the strong CP problem and can show up in flavour models ("axiflavons")

o ..


Complementarity of Rare Decays

Are there BSM sources of flavor violation?
What structure do they have?
What is their origin?

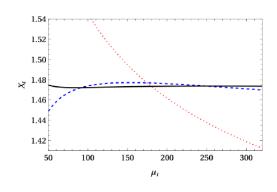

Searching for New Physics with Rare Decays

Example: heavy new physics in rare $b \to s \nu \bar{\nu}$ decays

Mismatch between experiment and SM prediction indicates new physics and provides a scale!

The Issue with V_{cb}

[Marcella Bona]


The SM Wilson Coefficient for $b \to s \nu \bar{\nu}$

• In the SM there is a single Wilson coefficient relevant for the $b \to s \nu \nu$ decays

$$C_L = -\frac{1}{s_W^2} X_t$$

 known at NLO in QCD and NLO in EW interactions; NNLO QCD corrections will be available very soon.

$$b o s
uar
u$$
 (V-A) Preliminary, from E. Stamou's talk at Kaon25

[Jack Jenkins]

Inclusive vs Exclusive

inclusive:

$$B o X_s
u ar{
u}$$

- at leading order the decay rate is given by the quark level decay rate.
- corrections are calculated using heavy quark expansion

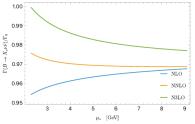
Inclusive vs Exclusive

inclusive:

$$B o X_{\rm S}
u ar{
u}$$

- at leading order the decay rate is given by the quark level decay rate.
- corrections are calculated using heavy quark expansion

exclusive:


$$B o K^{(*)} \nu \bar{\nu}$$
 $B_s o \phi \nu \bar{\nu}$
 $\Lambda_b o \Lambda \nu \bar{\nu}$
...

 hadronic physics is captured by local transition form factors.

The Inclusive Decay $B \to X_s \nu \bar{\nu}$

We take $m_s/m_b\sim 0$, then the structure of the QCD corrections is equivalent to $B\to X_u\ell\nu$

$$\Gamma(\bar{B} \to X_s \nu \bar{\nu}) = N_\nu \frac{G_F^2 m_b^5}{192 \pi^3} |V_{ts} V_{tb}|^2 |C_\nu|^2 \left\{ 1 + C_F \sum_{n=1} X_n \left(\frac{\alpha_s}{\pi} \right)^n - \frac{\mu_\pi^2}{2 m_b^2} - \frac{3 \mu_G^2}{2 m_b^2} + \frac{3 \rho_{LS}^3}{2 m_b^3} + \frac{77 \rho_D^3}{6 m_b^3} + \frac{\tau_0}{m_b^3} \right\}$$

PQCD: Kinetic scheme optimized for $b \to c$ decays, some indication of a divergent series for $b \to u(s)$ at the percent level

Matrix elements:
$$\langle ..
angle = \langle ar{B} | ... | ar{B}
angle \, / (2 M_B)$$

$$\begin{split} \mu_\pi^2 &= - \left\langle \bar{b}_v (iD)^2 b_v \right\rangle \,, \\ \mu_{\rm G}^2 &= \frac{1}{2} \left\langle \bar{b}_v (-i\sigma^{\mu\nu}) [iD_\mu, iD_\nu] b_v \right\rangle \,, \\ \rho_{\rm LS}^3 &= \frac{1}{2} \left\langle \bar{b}_v (-i\sigma^{\mu\nu}) \{iD_\mu, [iv \cdot D, iD_\nu]\} b_v \right\rangle \,, \\ \rho_{\rm D}^3 &= \frac{1}{2} \left\langle \bar{b}_v [iD_\mu, [iv \cdot D, iD^\mu] \bar{b}_v \right\rangle \,. \end{split}$$

Stability of HQE

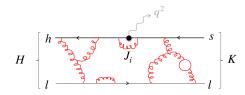
$$\begin{split} \frac{\Gamma}{\Gamma_0} &\simeq 1 - 0.0360_{\alpha_s} + (0.0216 - 0.00020_{n_c})_{\alpha_s^2} \\ &\quad + 0.0237_{\alpha_s^3} - 0.0097_{\mu_i,\rho_i} \end{split}$$

[Jack Jenkins]

The Inclusive Decay $B \to X_s \nu \bar{\nu}$

$$\begin{split} \text{Using } |V_{cb}|_{\text{inc}} &= 41.97(48) \times 10^{-3} \text{ and including correlation with } m_b \text{ (-0.428)} \\ & \text{Br}(B^+ \to X_s \nu \bar{\nu}) = 3.342(40)_{\mu_0} (40)_{\mu_b} (35)_{\mu_k} (27)_{\text{par}} (68)_{\text{HQE}} (58)_{\text{CKM}} \times 10^{-5} \\ &\qquad \qquad \hookrightarrow (76)_{\text{CKM}} \text{ without accounting for correlations with HQE} \\ & \text{Br}(\bar{B}^0 \to X_s \nu \bar{\nu}) = 3.609(121) \times 10^{-5} \\ & \text{Br}(\bar{B} \to X_s \nu \bar{\nu})_{\text{inc V}_{\text{Cb}}} = (3.48 \pm 0.12) \times 10^{-5} \quad (3.4\%) \end{split}$$

$$\text{Using } |V_{cb}|_{\text{excl}} = 39.46(53) \times 10^{-3} \text{ (uncorrelated with } m_b^5) \end{split}$$


[Jack Jenkins]

 $Br(\bar{B} \to X_s \nu \bar{\nu})_{\text{excl V}_{\text{ch}}} = (3.07 \pm 0.12) \times 10^{-5}$

(4.0%)

Formfactors for Exclusive $b \rightarrow s$ Decays

Calculating form factors: hadronic matrix elements

 $\langle K|J_i|H\rangle$

hadronic matrix elements have:

- momentum transfer dependence, $0 \le q^2 \le q_{\text{max}}^2 = (M_H M_K)^2$
- effects from short distance weak interactions: $M_W \sim \mathcal{O}(100\,\mathrm{GeV})$
- long distance QCD interactions: $\Lambda_{OCD} \sim 0.5\,GeV$

[Chris Bouchart]

Form Factor Parameterizations Including Unitarity

Boyd-Grinstein-Lebed Parametrization

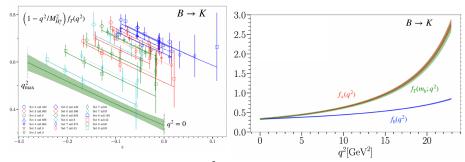
11/14

lacktriangle absorb χ , weight factor ω , and kernel $1/(t-Q^2)$ into "outer function" ϕ

$$1 \geq \frac{1}{\chi(0)} \int_{-\pi}^{+\pi} \frac{d\vartheta}{2\pi} Z J_{Z \to f}(Z) \left[\frac{d^n}{d(Q^2)^n} \frac{\omega(t) |F(t(z))|^2}{t - Q^2} \right]_{z = e^{i\vartheta}, Q^2 = 0} \equiv \int_{-\pi}^{+\pi} \frac{d\vartheta}{2\pi} |\phi(z)F(t(z))|^2 \Big|_{z = e^{i\vartheta}}$$

▶ use an orthonormal basis of analytic functions on the unit circle

$$\int_{-\pi}^{+\pi} \frac{d\vartheta}{2\pi} z^k z^{*,l} = \delta_{mn} \quad \text{for } k,l \ge 0$$


• expand $\phi(z)F(t(z))$ into a series around z=0

$$F(t) = \frac{1}{\phi(z(t))} \sum_{k=0}^{\infty} a_k [z(t)]^k \qquad \Rightarrow \qquad \sum_{k=0}^{\infty} |a_k|^2 \le 1$$

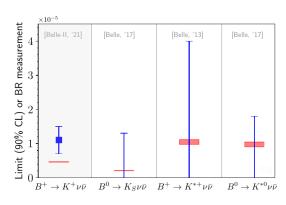
lacktriangle each expansion coefficient is absolutely bounded to the interval [-1,+1]

[Danny van Dyk]

Lattice Calculations of Form Factors

- improved precision, especially at low q^2 , where it is needed
- errors statistics dominated, so improvement straightforward

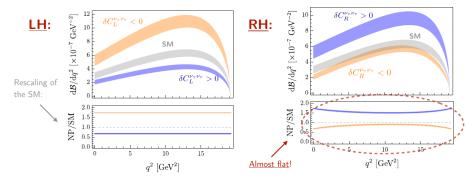
[Chris Bouchart]


SM Predictions for the Branching Ratios

Decay	Branching ratio
$B^+ \to K^+ \nu \bar{\nu}$	$(4.44 \pm 0.14 \pm 0.27) \times 10^{-6}$
$B^0 o K_S u ar{ u}$	$(2.05 \pm 0.07 \pm 0.12) \times 10^{-6}$
$B^+ \to K^{*+} \nu \bar{\nu}$	$(9.79 \pm 1.30 \pm 0.60) \times 10^{-6}$
$B^0 \to K^{*0} \nu \bar{\nu}$	$(9.05 \pm 1.25 \pm 0.55) \times 10^{-6}$

FF CKM

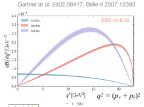
Using V_{cb} $[B o D\ell \bar{\nu}]$ for illustration — the central value changes by -7 % or +10 % if we use $B o D^\ell \bar{\nu}$ or $B o X_*\ell \bar{\nu}$, respectively.

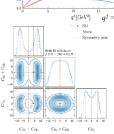

[Becirevic, Piazza, OS. 2301.06990]

[Olcyr Sumensary]

Predictions for Differential Rates

• The q^2 -shapes of $B \to K^* \nu \nu$ can be <u>mildly modified</u> by the EFT (with LH neutrinos):


 \Rightarrow The differential q^2 -distribution is mostly sensitive to the $B \to K^*$ form-factors.


NB. They could be modified by operators with light NP — cf. back-up.

[Olcyr Sumensary]

Scalar and Tensor Operators

Reinterpretation framework of $B \rightarrow K^+ \nu \nu$, generalising the EFT beyond the d=6 SMEFT:

$$\mathcal{L}^{\mathrm{WET}} = -\frac{4G_{\mathrm{F}}}{\sqrt{2}}\,\frac{\alpha}{2\pi}V_{ts}^*V_{tb}\sum_i C_i(\mu_b)O_i + \mathrm{h.c.}$$

$$\begin{array}{c} \mathcal{O}_{\mathrm{VL}} = (\overline{\nu_L} \gamma_\mu \nu_L) \, (\overline{s_L} \gamma^\mu b_L) \\ \mathcal{O}_{\mathrm{VR}} = (\overline{\nu_L} \gamma_\mu \nu_L) \, (\overline{s_R} \gamma^\mu b_R) \\ \mathcal{O}_{\mathrm{SL}} = (\overline{\nu_L^\nu} \nu_L) \, (\overline{s_R} b_L) \\ \mathcal{O}_{\mathrm{SR}} = (\overline{\nu_L^\nu} \nu_L) \, (\overline{s_L} b_R) \\ \end{array} \right) \begin{array}{c} \mathrm{d} = 6 \colon O_{lq}(1,3), \ O_{ld} \\ \\ \mathrm{d} \\ \mathrm{Lepton \ number}. \end{array}$$

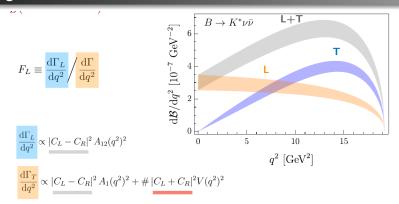
 $O_{TL} = (\overline{\nu_L^c} \sigma_{\mu\nu} \nu_L) (\overline{s_R} \sigma^{\mu\nu} b_L)$

ΔL = 2

Lepton number-violating operators

Generated at d=7 in SMEFT

Fridell et al. 2306.08709


$$\frac{C^{(3)}}{\Lambda^3} (\widetilde{d}_{R} L_{L}) (\widetilde{\mathcal{Q}}_{L}^{c} L_{L}) H$$

If at d=6 the EFT scale required was $\Lambda^{(6)} \sim 7 \text{ TeV}$, at d=7 it becomes $\Lambda^{(7)} \sim 2 \text{ TeV}$.

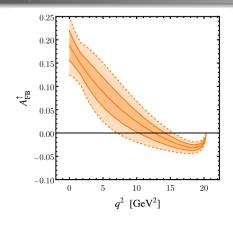
Bounds from $0\nu\beta\beta$ decay ~ 100 TeV (for down quarks). 2306.08709 Why should flavour-conserving couplings be more suppressed than violating ones?

[David Marzocca]

Longitudinal Polarization Fraction in $B \to K^* \nu \bar{\nu}$

Contributions from **LH operators** ($\delta C_L \neq 0$) cancel out in F_L .

This observable is **sensitive** to **right-handed currents** $(\delta C_R \neq 0)!$


[Olcyr Sumensary]

Forward Backward Asymmetry in $\Lambda_b \to \Lambda \nu \bar{\nu}$

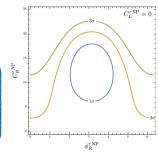
 All observables in the meson decays depend on two combinations of Wilson coefficients

$$|C_L + C_R|$$
 and $|C_L - C_R|$

- A_{FB}^{\uparrow} in $\Lambda_b \to \Lambda \nu \bar{\nu}$ depends on an independent combination $|C_L|^2 |C_R|^2$ \to complementary information
- To measure this, need polarized Λ_b from Z decays at FCC-ee ...

WA, Gadam, Toner 2501.10652

$$\frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d E_{\Lambda} d \cos \theta_{\Lambda}} = \frac{d \text{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})}{d E_{\Lambda}} \left(\frac{1}{2} + A_{\text{FB}}^{\uparrow} \cos \theta_{\Lambda} \right)$$


 $(\theta_{\Lambda}$ is the angle between the Λ_b spin and the Λ momentum)

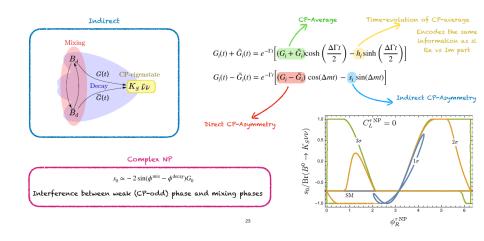
CP Violation in $b \rightarrow s \nu \bar{\nu}$

What about CP phases?

Limits of Current observables

- Br and FL cannot fully disentangle RHC from relative CL/CR phase
- · Only partial control over the relative phase
- Thanks to the maximal value for eta relative phase is partially constrained

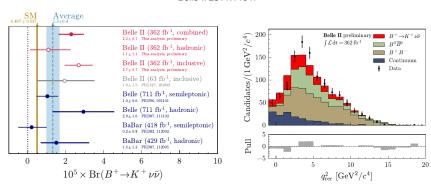
What about $\Lambda_b \to \Lambda \nu \bar{\nu}$?


Direct CP-Asymmetries

Due to lack of strong phases $\mathscr{A}_{\mathrm{CP}}^{\mathrm{dir}}=0$ (Neutrinos couple to Z, only short distance)

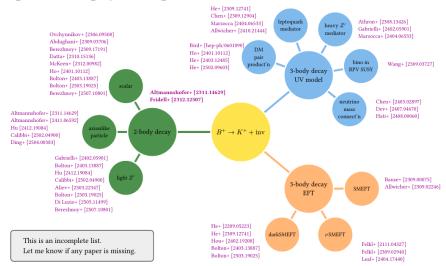
Polarized $Br(\Lambda_b \to \Lambda \nu \bar{\nu})$ @ FCCee help disentangle $A_{FB} \propto P_{\Lambda_b} |\mathscr{C}_R|^2 - |\mathscr{C}_L|^2$ Breakes the degeneracy of Meson decays $(\varepsilon_{\nu},\,\eta_{\nu})$ (See Wolfgang Altmannshofer Talk)

[Martin Novoa-Brunet]


CP Violation in $b \rightarrow s \nu \bar{\nu}$

[Martin Novoa-Brunet]

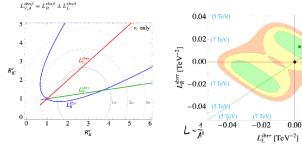
Evidence for $B \to K \nu \bar{\nu}$


Belle II 2311.14647

- ▶ Evidence for $B \to K \nu \bar{\nu}$ at 3.5σ above background and 2.7σ above the SM prediction.
- ▶ Excess of events is particularly pronounced around $q^2 \simeq 4 \text{ GeV}^2$.

Theorists Having Fun

Proposed new physics explanations



[Michael Schmidt]

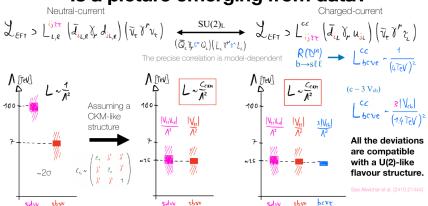
Heavy New Physics Interpretation

The limits from R(K) and $B_s \rightarrow \mu\mu$ disfavour interpretations with electron or muon neutrinos

 $\Lambda_{\rm bsvv} \sim 7~{
m TeV}$

99%CI

95%CL 68%CL

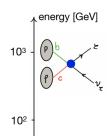

0.02

Future Belle II results (in particular from the K* mode) will help to clarify the preferred chiral structure.

[David Marzocca]

$B \to K \nu \bar{\nu}$, $K \to \pi \nu \bar{\nu}$, and $R_{D(*)}$

Is a picture emerging from data?


The physics scales become compatible!

[David Marzocca]

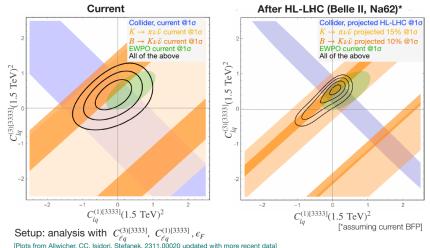
Sdvv

bevz

Complementarity with Collider Searches

LHC searches [& Autor talks by T.Vazquez & M. Martinez]

- largest effects in 3rd-family processes:
 - lepton sector: $pp \to t\bar{t}, pp \to b\bar{b}...$
 - quark sector: pp o au au, pp o au au
 - also LFU, e.g. comparing $pp \to \tau \tau$ to $pp \to \mu \mu$
- energy enhancement in tails helps overcome pdf suppression of heavy flavours in the proton


Status and prospects

- ° currently, LHC probes scales ~ 1 TeV
- HL-LHC: improvement in WCs bounds range from 20% to 4 x for semileptonic operators (factor 2x in the scale)

[Claudia Cornella]

Complementarity with Electroweak Precision

Combining $\nu \bar{\nu}$ data with EW precision and collider:

[Claudia Cornella]

Light New Physics

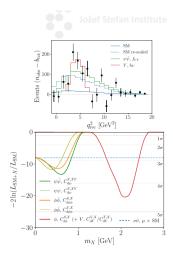
Favoured Scenarios

Viable scenarios (better fit w.r.t to the re-scaled SM):

Two-body:

$$B \to K\phi$$
 or $B \to KV$ with $m_{\phi/V} = (2.1 \pm 0.1) \text{ GeV}$

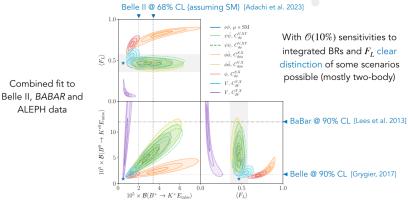
Three-body:


$$\begin{split} B \to K \psi \bar{\psi} \text{ for vector couplings with } & \ m_{\psi} = 0.60^{+0.11}_{-0.14} \ \text{GeV} \\ B \to K \phi \bar{\phi} \text{ for vector couplings with } & \ m_{\phi} = 0.38^{+0.13}_{-0.15} \ \text{GeV} \\ & \text{scalar couplings with } & \ m_{\phi} = 0.52^{+0.11}_{-0.14} \ \text{GeV} \end{split}$$

Non-viable scenarios (worse fit w.r.t to the re-scaled SM:

- $B \to K \psi \bar{\psi}$ for scalar and tensor couplings
- $B \to KVV/\Psi\bar{\Psi}$ for all couplings
- \Rightarrow Kinetics cannot accommodate excess at $q_{\rm rec}^2 \sim 4~{\rm GeV}^2$

Patrick Bolton, Jožef Stefan Institute (IJS), 08.10.25

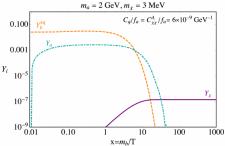


Light New Physics

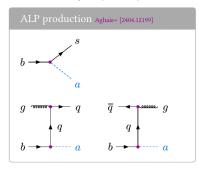
Implications for Future Measurements

[PDB, Faifer, Kamenik, Novoa-Brunet 2025]

[Patrick Bolton]


19

Patrick Bolton, Jožef Stefan Institute (IJS), 08.10.25


Dark Matter and Axion Mediator

DM freeze-in production - ALP mediator

Calibbi, Li, Mukherjee, MS [2502.04900] 2-body

- ALP reaches thermal equilibrium through decay and scattering processes
- χ DM frozen in through ALP decays

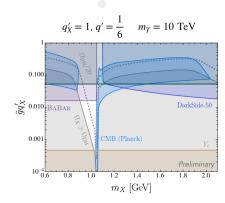
[Michael Schmidt]

Dark Matter and Z' Mediator

GeV Scale DM

For the allowed window, is correct DM relic abundance ($\Omega_{\rm Y}$) possible? Yes!

Resonant enhancement of $\langle \sigma v \rangle$ for $2m_X \sim M_{Z'}$


$$X$$
 SM $X \stackrel{q'_X}{\longrightarrow} X$ $Q'_X \stackrel{Z'}{\longrightarrow} Q'$ $Q'_X \stackrel{Z'}{\longrightarrow} Q'$

Mass range $0.9~{\rm GeV} \lesssim m_\chi \lesssim 1~{\rm GeV}$ gives correct Ω_χ and evades bounds from direct (DarkSide-50) and indirect (CMB) detection

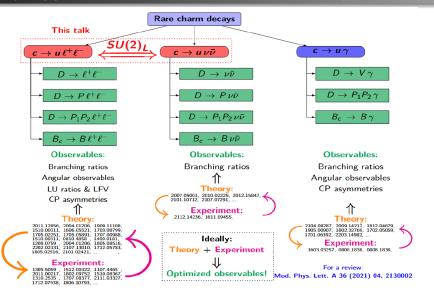
Patrick Bolton, Jožef Stefan Institute (IJS), 08.10.25

[PDB, Kamenik, Novoa-Brunet, 2025]

[Patrick Bolton]

Don't Forget $c \rightarrow u \nu \bar{\nu}!$

$$\mathcal{B}(c o u
uar
u)\sim 10^{-19}\,pprox\,0$$


This is almost zero!

Thanks to the GIM mechanism!

Experimentally, this means that any signal is NP!

[Hector Gisbert]

Many Opportunities with Rare Charm Decays

[Hector Gisbert]

Final Remark

One of my first papers as a graduate student, 16 years ago:

New strategies for New Physics search in $B \to K^* \nu \bar{\nu}$, $B \to K \nu \bar{\nu}$ and $B \to X_s \nu \bar{\nu}$ decays

Wolfgang Altmannshofer^a, Andrzej J. Buras^{ab}, David M. Straub^a and Michael Wick^a

```
^a\ Physik-Department,\ Technische\ Universit\"{a}t\ M\"{u}nchen,
```

b TUM Institute for Advanced Study, Technische Universität München,

Arcisstr. 21, 80333 München, Germany

 $E\text{-}\textit{Mail}: \verb|wolfgang.altmannshofer@ph.tum.de|, and rzej.buras@ph.tum.de|,$

 ${\tt david.straub@ph.tum.de,\,michael.wick@ph.tum.de}$

It is happening!

I look very much forward to more $b \to s \nu \bar{\nu}$ results from Belle II!

James-Franck-Str., 85748 Garching, Germany

Thank You!