Hadronic decays of charmed hadron and CP violation at Belle (II)

Longke LI (李龙科) On behalf of the Belle II Collaboration

Hunan Normal University

12th International Workshop on Charm Physics (CHARM 2025) May 14, 2025 at Shanghai

Charm sample	$\begin{array}{l} \textbf{CPV in } D^0 \rightarrow K^0_S K^0_S \\ \text{OOOOO} \end{array}$	CPV in $D^{0,+} o \pi^{0,+} \pi^0$	$\begin{array}{c} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOO} \end{array}$	Ξ_c^0 decays	Ξ_c^+ decays	Summary
Outling						
Outime						

1 Charm sample at Belle (II) $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$ $A_{CP}(D^{0,+} \rightarrow \pi^{0,+}\pi^0)$ $A_{CP}^X(D_{(s)}^+ \rightarrow K_S^0 K^- \pi^+ \pi^+)$ $\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 P^0)$ and $\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0)$ $\mathcal{B}(\Xi_c^+ \rightarrow BP)$ 7 Summary

• Charm sample at Belle (II) • $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$ • $A_{CP}(D^{0,+} \rightarrow \pi^{0,+}\pi^0)$ • $A_{CP}^*(D^+_{(s)} \rightarrow K_S^0 K^-\pi^+\pi^+)$ • $\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 P^0)$ and $\alpha(\Xi_c^0 \rightarrow \Xi^0\pi^0)$ • $\mathcal{B}(\Xi_c^+ \rightarrow BP)$ • Summary

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シッペ

- At Belle (II), e^+e^- mainly collide at 10.58 GeV to make Y(4S) resonance decaying into $B\bar{B}$ in 96% of the time.
- Meanwhile, continuum processes $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c) have large cross sections.
- Two ways to produce the charm sample: $e^+e^- \rightarrow c\bar{c}$ ($\sigma = 1.3$ nb), and $B \rightarrow$ charm decays.

-

 \mathcal{B}

In Dec. 2024, SuperKEKB made new W.R. $5.1 \times 10^{34} \ cm^{-2} s^{-1}$

CPV in $D^{0,+} \rightarrow \pi^{0,+} \pi^0$

CPV in $D \rightarrow PPI$ 0000000 Ξ_c^0 decays

 Ξ_c^+ decays

Summary

Detector: Belle II Vs. Belle

Charm lifetimes PRL 127, 211801 (2021); PRL 130, 071802 (2023); PRD 107, L031103 (2023); PRL 131, 171803 (2023)

- Hadron lifetimes are difficult to calculate theoretically, as they depend on nonperturbative arising from QCD.
- Comparing calculated values with measured values improves our understanding of QCD. [(FLAG) EPJC 82, 869 (2022)]
- Based on early datasets, Belle II reported the most precise charm lifetimes: $\tau(D^0) = 410.5 \pm 1.1 \pm 0.8$ fs, $\tau(D^+) = 1030.4 \pm 4.7 \pm 3.1$ fs, $\tau(D_s^+) = 499.5 \pm 1.7 \pm 0.9$ fs, and $\tau(\Lambda_c^+) = 203.20 \pm 0.89 \pm 0.77$ fs; and confirmed the new charmed baryon lifetime hierarchy found by LHCb $\tau(\Omega_c^0)$ result.

1 Charm sample at Belle (II) $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$ $A_{CP}(D^{0,+} \rightarrow \pi^{0,+}\pi^0)$ $A_{CP}^{\chi}(D_{(s)}^+ \rightarrow K_S^0 K^- \pi^+ \pi^+)$ $\mathcal{B}(\Xi_c^0 \rightarrow \Xi^0 P^0)$ and $\alpha(\Xi_c^0 \rightarrow \Xi^0 \pi^0)$ $\mathcal{B}(\Xi_c^+ \rightarrow BP)$ 7 Summary

- The time-integrated CP asymmetry $A_{CP}(D^0 \to K^0_S K^0_S) = \frac{\Gamma(D^0 \to K^0_S K^0_S) \Gamma(\overline{D}^0 \to K^0_S K^0_S)}{\Gamma(D^0 \to K^0_S K^0_S) + \Gamma(\overline{D}^0 \to K^0_S K^0_S)}.$
- It may be enhanced to be an observable level (the 1% level) within the Standard Model, due to the interference of $c \rightarrow us\overline{s}$ and $c \rightarrow ud\overline{d}$ amplitudes. [PRD 99, 113001 (2019), PRD 86, 014023 (2012), PRD 92, 054036 (2015)]

 \bullet World average: ${\cal A}_{C\!P}(D^0\to {\cal K}^0_{\rm S}{\cal K}^0_{\rm S})=(-1.9\pm1.0)\%$ is dominated by

- Belle (921 fb⁻¹): $A_{CP} = (-0.02 \pm 1.53 \pm 0.02 \pm 0.17)\%$ using $D^0 \rightarrow K_S^0 \pi^0$ as control mode [(Belle) PRL 119, 171801 (2017)]
- LHCb (6 fb⁻¹): $A_{CP} = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\%$ using $D^0 \rightarrow K^+K^-$ as control mode [(LHCb) PRD 104, L031102 (2021)]
- $A_{CP}(D^0 \rightarrow K^+K^-)$: recently improved by LHCb, uncertainty < 0.1% [(LHCb) PRL 131, 091802 (2023)]

(日) (周) (王) (王) (王)

Charm sample CPV in $D^{0,+} \rightarrow \pi^{0,+}\pi^{0}$ Ξ_c^0 decays Ξ_c^+ decays Summarv 00000 $A_{CP}(D^0 \to K_c^0 K_c^0)$ measurement using D^{*+} -tagged sample (B+B2) PRD 111, 012015 (2025)

- Measure $A_{CP}(D^0 \to K_s^0 K_s^0)$ based on $D^{*+} \to D^0 \pi_s^+$ sample at B+B2 (totally 1.4 ab⁻¹).
- Raw asymmetry of $D^0 \to K\overline{K}$: $A_{\text{raw}}^{K\overline{K}} = \frac{N(D^0) N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)} = A_{\text{FB}}^{D^{*+}} + A_{CP}^{K\overline{K}} + A_{\varepsilon}^{\pi_s}$
- Use $D^0 \rightarrow K^+ K^-$ as control mode, and $A_{CP}^{K^+ K^-} = A_{CP}^{\text{dir}} + \Delta Y = (6.7 \pm 5.4) \times 10^{-4}$:

 - $A_{CP}^{dir}(D^0 \to K^+K^-) = (7.7 \pm 5.7) \times 10^{-4}$: direct *CP* asymmetry [(LHCb) PRL 131, 091802 (2023)] $\Delta Y = (-1.0 \pm 1.1) \times 10^{-4}$: CPV in mixing and in the interference between mixing and decay [(LHCb) PRD 104, 072010 (2021)]
- $A_{CD}^{K_{S}^{0}K_{S}^{0}} = (A_{cow}^{K_{S}^{0}K_{S}^{0}} A_{cow}^{K^{+}K^{-}}) + A_{CD}^{K^{+}K^{-}}$ assuming that the nuisance asymmetries are identical between two decays, or that they can be made so by widthing the control sample.
- Unbinned fit to $(m(D^0\pi_s), S_{\min})$ of D^0 and \overline{D}^0 candidates for $D^0 \to K_s^0 K_s^0$ decays.
 - Flight significance variable $S_{\min} = \log(\min(L_i/\sigma_i))$: separate the peaking background $D^0 \to K_s^0 \pi^+ \pi^-$.

• Belle: $A_{CP}(D^0 \to K^0_S K^0_S) = (-1.1 \pm 1.6 \pm 0.1)\%$ Belle II: $A_{CP}(D^0 \to K^0_S K^0_S) = (-2.2 \pm 2.3 \pm 0.1)\%$

• Combined $A_{CP}(D^0 \rightarrow K_S^0 K_S^0) = (-1.4 \pm 1.3 \pm 0.1)\%$: comparable to the world-best result: $\sigma_{LHCb} = 1.3\%$

• Belle(II)+LHCb average: $(-2.3 \pm 0.9)\%$ vs. CMS: $(6.2 \pm 3.1)\%$: 2.6σ diff. \Rightarrow preciser result needed

$A_{CP}(D^0 \to K^0_{\rm s} K^0_{\rm s})$ measurement using an independent sample

(B+B2) arXiv:2504.15881 (preliminary)

 Ξ_{\pm}^{+} decays

Summarv

- Using an independent sample tagged by opposite-side flavor tagging for $e^+e^- \rightarrow c\overline{c}$ events [(B2) PRD 107, 112010 (2023)]
- Candidates that are also reconstructed in the D*+-tagged analysis in previous slide are removed.

CPV in $D^{0,+} \rightarrow \pi^{0,+}\pi^{0}$

• Belle sample (980 fb^{-1}): $N_{\rm sig} = 14\,490 \pm 340$ and $A_{CP} = (+2.5 \pm 2.7 \pm 0.4)\%$

0000

- Belle II sample (428 fb^{-1}): $N_{\rm sig} = 5\,180 \pm 120$ and $A_{CP} = (-0.1 \pm 3.0 \pm 0.3)\%$
- Their combined results based on such independent sample: $A_{CP}(D^0 \to K^0_{c} K^0_{c}) = (+1.3 \pm 2.0 \pm 0.2)\%$
- Combining it with previous result from D^{*+} -tagged sample: $A_{CP}(D^0 \to K_s^0 K_s^0) = (-0.6 \pm 1.1 \pm 0.1)\%$ most precise

 Ξ_{α}^{0} decays

J

Charm sample

Charm sample	$\begin{array}{l} \textbf{CPV in } D^0 \rightarrow K^0_S K^0_S \\ \text{OOOOO} \end{array}$	$\begin{array}{c} CPV \text{ in } D^{0,+} \to \pi^{0,+} \pi^{0} \\ \bullet \bullet \bullet \bullet \bullet \bullet \end{array}$	$\begin{array}{c} \textbf{CPV in } D \rightarrow PPPP \\ \texttt{OOOOOOO} \end{array}$	Ξ_c^0 decays	Ξ_c^+ decays	Summary
Outline						

 $\begin{array}{c} \hline & \mbox{Charm sample at Belle (II)} \\ \hline & \mbox{$\mathcal{A}_{CP}(D^0 \to K^0_{\rm S}K^0_{\rm S})$} \\ \hline & \mbox{$\mathcal{A}_{CP}(D^{0,+} \to \pi^{0,+}\pi^0)$} \\ \hline & \mbox{$\mathcal{A}_{CP}^*(D^+_{(s)} \to K^0_{\rm S}K^-\pi^+\pi^+)$} \\ \hline & \mbox{$\mathcal{B}(\Xi^0_c \to \Xi^0P^0)$} \mbox{ and } \alpha(\Xi^0_c \to \Xi^0\pi^0)$ \\ \hline & \mbox{$\mathcal{B}(\Xi^+_c \to BP)$} \\ \hline & \mbox{Summary} \end{array}$

• The following sum-rule for CPV in $D \to \pi\pi$ decays; it helps to determine the source of CPV:

$$R = \frac{A_{CP}^{\rm dir}(D^0 \to \pi^+ \pi^-)}{1 + \frac{\tau_{D^0}}{B_{+-}} \left(\frac{B_{00}}{\tau_{D^0}} - \frac{2}{3}\frac{B_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\rm dir}(D^0 \to \pi^0 \pi^0)}{1 + \frac{\tau_{D^0}}{B_{00}} \left(\frac{B_{+-}}{\tau_{D^0}} - \frac{2}{3}\frac{B_{+0}}{\tau_{D^+}}\right)} + \frac{A_{CP}^{\rm dir}(D^+ \to \pi^+ \pi^0)}{1 - \frac{3}{2}\frac{\tau_{D^+}}{E_{+0}} \left(\frac{B_{00}}{\tau_{D^0}} + \frac{B_{+-}}{\tau_{D^0}}\right)}$$

- if $R \neq 0$, CPV from $\Delta I = 1/2$ amplitude; if R = 0 and at least one $A_{CP}^{CP} \neq 0$, CPV from a beyond-SM $\Delta I = 3/2$ amplitude.
- \bullet the ${\cal B}{}^{\prime}{\rm s}$ and τ have been well-measured (by BESIII/Belle II/etc.)
- $A_{CP}^{dir}(D^0 \rightarrow \pi^+\pi^-)$: precise; first evidence of direct CPV in a specific D decay (by LHCb).
- Raw asymmetry of $D^0 \to \pi^0 \pi^0$ from the $D^{*+} \to D^0 \pi_s^+$ sample:

$$\mathcal{A}_{
m raw}(D^0 o \pi^0 \pi^0) = \mathcal{A}_{CP}(D^0 o \pi^0 \pi^0) + \mathcal{A}_{
m prod}^{D^{*+}} + \mathcal{A}_{arepsilon}^{\pi_s}$$

- $A_{\text{prod}}^{D^{*+}}$: being an odd function of $\cos \theta^*$, i.e. the cosine of the charmed-meson polar angle in e^+e^- c.m.s
- $A^{\pi_s}_{\varepsilon}$: using tagged and untagged $D^0 o K^- \pi^+$ samples.
- Time-integrated *CP* asymmetry: $\boxed{A_{CP}(D^0 \rightarrow \pi^0 \pi^0) = A_{avg}^{\pi^0 \pi^0} A_{avg}^{K\pi} + A_{avg}^{K\pi,untag}}$

here
$$A_{\text{avg}}^f = \left(A^f(\cos\theta^* < 0) + A^f(\cos\theta^* > 0)\right)/2$$
 where $f = \pi^0\pi^0$; $K\pi$; untag.

A = A = A = A = A = A

- Utilizing data split in the forward and backward bins: $N_{\rm sig}=14\,100\pm130$ and $11\,550\pm110.$
- Result at Belle II (428 fb⁻¹) $A_{CP}(D^0 \to \pi^0 \pi^0) = (+0.30 \pm 0.72 \pm 0.20)\%$

consistent with CP symmetry and with Belle (980 fb⁻¹): $(-0.03\pm0.64\pm0.10)\%$ [PRL 112 (2014) 211601]

- It's 15% less precision than Belle result; an improved precision per luminosity which leverages Belle II's superior capabilities in the reconstruction of neutral pions.
- Using our result, $A_{CP}^{\pi^+\pi^-}$ and ΔY from LHCb, W.A. $A_{CP}^{\pi^+\pi^0}$ and \mathcal{B} 's and $\tau(D^{0,+})$, we have $R = (1.5 \pm 2.5) \times 10^{-3}$. It shows that this measurement improves the precision of the sum rule by $\sim 20\%$ compared to the current determination by HFLAV [PRD 107 (2023) 052008].

11/23

- Utilizing a sample of $e^+e^- \rightarrow c\overline{c}$ data collected by Belle II (with high momentum requirement).
- Using $D^+ \to K_8^0 \pi^+$ to eliminate common asymmetry sources: A_{prod}^D and $A_{\varepsilon}^{\pi^+}$, thus CP asymmetry of interest: $A_{CP}^{\pi^+\pi^0} = A_{\text{raw}}^{\pi^+\pi^0} - A_{\text{raw}}^{K_8^0\pi^+} + A^{\overline{K}^0}$
- Combined result at Belle II (428 fb⁻¹): $A_{CP}(D^+ \rightarrow \pi^+\pi^0) = (-1.8 \pm 0.9 \pm 0.1)\%$ (most precise)
- 30% improved precision compared to Belle (921 fb^-1): $(+2.31\pm1.24\pm0.23)\%$ [PRD 97 (2018) 011101]
- due to the substantially better purity achieved through an improved event selection, which exploits Belle II's superior performance in the reconstruction of neutral pions and displaced charged particles.

• Split sample: D^+ from $D^{*+} o D^+ \pi^0$ decay or not.

Charm sample	$\begin{array}{c} \textbf{CPV in } D^0 \rightarrow K^0_S K^0_S \\ \text{OOOOO} \end{array}$	CPV in $D^{0,+} o \pi^{0,+} \pi^0$ 0000	CPV in $D \rightarrow PPPP$ $\bigcirc 0000000$	Ξ_c^0 decays	Ξ_c^+ decays	Summary 00
Outline						

• Charm sample at Belle (II) • $A_{CP}(D^0 \to K^0_S K^0_S)$ • $A_{CP}(D^{0,+} \to \pi^{0,+}\pi^0)$ • $A^*_{CP}(D^+_{(s)} \to K^0_S K^-\pi^+\pi^+)$ • $\mathcal{B}(\Xi^0_c \to \Xi^0 P^0)$ and $\alpha(\Xi^0_c \to \Xi^0\pi^0)$ • $\mathcal{B}(\Xi^+_c \to BP)$ • Summary

CPV searches in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ using triple-product correlations

CPV in $D^{0,+} \rightarrow \pi^{0,+}\pi^{0}$

• CPV searches in several four-body *D*-decays at FOCUS, BABAR, LHCb and Belle using the triple-product (TP): $C_{\rm TP} = \vec{p}_i \cdot (\vec{p}_i \times \vec{p}_k).$ $M \rightarrow P_i P_i P_k P_l$ $M \rightarrow P_i P_j P_k P_l$ $\vec{p}_{i\mathbb{N}}$ $\uparrow \vec{p}_i \times \vec{p}_k$ $\uparrow \vec{p}_i \times \vec{p}_k$ 2 M rost M rest $C_{\text{TP}} > 0$: up-side $C_{\rm TP}$ < 0: down-side

CPV in $D^0 \rightarrow K^0_0 K^0_0$

 C_{TP} asymmetry: so-called 'up-down asymmetry'

• CPV in $D^+_{(\epsilon)} \to K^0_S K^- \pi^+ \pi^+$: never been searched. They have large branching fractions $\mathcal{B} = 0.23\%(1.53\%)$ $\Rightarrow \mathcal{O}(10^5)$ signals expected, inspiring us to obtain their precise $a_{CP}^{T-\text{odd}}$ results for the first time.

Current world averages of all $a_{CP}^{T-\text{odd}}$ measurements:

 Ξ_{c}^{+} decays

Summarv

 Ξ_c^0 decays

< □ > < 円

Charm sample

000000

EL OQO

CPV searches in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$ using quadruple-product correlations

CPV in $D^{0,+} \rightarrow \pi^{0,+}\pi^{0}$

- We do the first CPV search with the quadruple-product (QP): in $D^+_{(s)} \rightarrow K^0_S K^- \pi^+ \pi^+$: $C_{\rm QP} = (\vec{p}_{K^-} \times \vec{p}_{\pi^+_h}) \cdot (\vec{p}_{K^0_S} \times \vec{p}_{\pi^+_l})$, where the subscripts ('h' and 'l') denote the π^+ with higher and lower momentum, respectively, of two identical π^+ in the final state.
- $\cos \theta_{K_{S}^{0}} \cos \theta_{K^{-}}$ is used for charm CPV searches; its asymmetry is the so-called 'two-fold forward-backward asymmetry'^a.
- $D o V_a V_b$ (e.g. $D^+_{(s)} o \overline{K}^{*0} K^{*+}$ is a dominant process) amplitude involves terms of
 - (1) $d_{1,0}^2(\theta_a) d_{1,0}^2(\theta_b) \sin \varphi \propto \sin(2\theta_a) \sin(2\theta_b) \sin \varphi$,
 - (2) $d_{1,0}^2(\theta_a) d_{1,0}^2(\theta_b) \cos \varphi \propto \sin(2\theta_a) \sin(2\theta_b) \cos \varphi$.
- two more observables for CPV searches^b:

<u>CPV</u> in $D^0 \rightarrow K_c^0 K_c^0$

- $\cos \theta_{K_{S}^{0}} \cos \theta_{K^{-}} C_{TP}$: same sign as $\cos \theta_{K_{S}^{0}} \cos \theta_{K^{-}} \sin \varphi$, • $\cos \theta_{K_{S}^{0}} \cos \theta_{K^{-}} C_{QP}$: same sign as $\cos \theta_{K_{S}^{0}} \cos \theta_{K^{-}} \cos \varphi$.
- ^aZ.-H. Zhang, Phys. Rev. D **107**, L011301 (2023) ^bG. Durieux and Y. Grossman, Phys. Rev. D **92**, 076013 (2015)

$$C_{\rm QP} > 0$$
: \vec{p}_{K^-} at left-side of $\vec{p}_{K^0_{\rm S}\pi^+}(\vec{p}_{K^0_{\rm S}} imes \vec{p}_{\pi^+})$ plane

 Ξ_c^+ decays

Summary

 Ξ_{c}^{0} decays

000000

$$C_{
m QP} <$$
 0: $ec{p}_{K^-}$ at right-side of $ec{p}_{K^0_c\pi^+}(ec{p}_{K^0_c} imesec{p}_{\pi^+})$ plane

C_{QP} asymmetry: so-called 'left-right asymmetry'.

Charm sample

- We search for CPV with a set of six kinematic observables (X) linked to various decay amplitude terms.
- For $D^+_{(s)}$ decays: 1) $X = C_{\text{TP}} = \vec{p}_{K^-} \cdot (\vec{p}_{K_c^0} \times \vec{p}_{\pi_t^+})$: same sign as sin φ . 2) $X = C_{\text{QP}} = (\vec{p}_{K^-} \times \vec{p}_{\pi^+}) \cdot (\vec{p}_{K^0} \times \vec{p}_{\pi^+})$: same sign as $\cos \varphi$. 3) $X = C_{\text{TP}} C_{\text{OP}}$: same sign as $\sin(2\varphi)$. 4) $X = \cos \theta_{K_c^0} \cos \theta_{K^-}$. 5) $X = \cos \theta_{K_0^0} \cos \theta_{K^-} C_{\text{TP}}$: same sign as $\cos \theta_{K_0^0} \cos \theta_{K^-} \sin \varphi$, 6) $X = \cos \theta_{K^0} \cos \theta_{K^-} C_{QP}$: same sign as $\cos \theta_{K^0} \cos \theta_{K^-} \cos \varphi$. • For $D_{(e)}^-$ decays: $\overline{X} = \eta_{C}^{CP} X$, where $\eta_{X}^{CP} = -1$ for $(C_{TP}, C_{TP}C_{QP} \text{ and } \cos\theta_{K^0}\cos\theta_{K^-}C_{TP})$; while $\eta_{X}^{CP} = +1$ for others. • The kinematic asymmetries for $D_{(s)}^+$ and $D_{(s)}^-$ decays: $A_{X}(D_{(s)}^{+}) = \frac{N(X > 0) - N(X < 0)}{N(X > 0) + N(X < 0)} \qquad \qquad \overline{A}_{\overline{X}}(D_{(s)}^{-}) = \frac{N(X > 0) - N(X < 0)}{\overline{N(\overline{X} > 0) + \overline{N(\overline{X} < 0)}}}$
- *CP*-violating parameter: $a_{CP}^{X} = \frac{1}{2}(A_X \overline{A}_{\overline{X}})$ (the factor 1/2 is required for normalization) to avoid a fake signal of CPV arising from the final state interaction (FSI) effects.

Charm sample **CPV in** $D^0 \rightarrow K^0_S K^0_S$ **CPV** in $D^{0,+} \to \pi^{0,+} \pi^{0}$

0000000

 Ξ_c^0 decays

 Ξ_c^+ decays

Summarv

(B+B2) JHEP 04 (2025) 036

Table: Fitted signal and background yields in a window $\pm 10 \text{ MeV}/c^2$ around the nominal $D^+_{(\epsilon)}$ mass.

Component	$D^+ ightarrow {\cal K}^0_{ m S} {\cal K}^- \pi^+ \pi^+$			
component	Belle	Belle II		
Signal $(N_{\rm sig})$	44048 ± 288	26738 ± 199		
Background $(N_{\rm bkg})$	24844 ± 88	8964 ± 53		
Ratio $(N_{\rm sig}/N_{\rm bkg})$	1.8	3.0		
Component	$D_s^+ ightarrow K_{ m S}^0 K^- \pi^+ \pi^+$			
Component	Belle	Belle II		
Signal (N_{1})	210743 ± 780	02000 ± 202		
	210745 ± 700	92000 ± 393		
Background (N_{bkg})	245285 ± 280	$\begin{array}{c} 92000 \pm 393 \\ 39997 \pm 114 \end{array}$		

< □ > < 同

Longke LI (李龙科), Hunan Normal Univ.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () CHARM 2025, May 14 at Shanghai 16/23

315

► C_{TP} and C_{OP} at Belle II ($\int \mathcal{L} dt = 428 \text{ fb}^{-1}$): $D^{\pm} \rightarrow K^0_{\rm S} K^{\mp} \pi^{\pm} \pi^{\pm}$ $D_s^{\pm} \rightarrow K_s^0 K^{\mp} \pi^{\pm} \pi^{\pm}$ C₁₀, M(D) S.R. - C₁₀, M(D) S.R. - C₁₀, M(D) S.B. - C₁₀, M(D) S.B. i QP C₁₀ M(D) S.R. -C₁₀ M(D) S.R. -C₁₀ M(D) S.R. -C₁₀ M(D) S.R. TΡ QP + C M(D) S.R. + C M(D) S.R. - C M(D) S.B. - C M(D) S.B. TP Corr M(D) S.R. Corr M(D) S.R. Corr M(D) S.B. 5.000 C. MDISB -0.01 0 0.01 C_{1p}, -C_{1p} [GeV²/c²] -0.005 0 0.005 C_{OP}, C_{OP} [GeV⁴/c⁴] $C_{\text{TP}}^{2} - \overline{C}_{\text{TP}}^{0} [\text{GeV}^{2}/c^{2}]$ C_{OP}, C_{OP} [GeV⁴/c⁴]

CPV in $D^{0,+} \rightarrow \pi^{0,+}\pi^0$

Table 2: Results for \mathcal{A}_{CP}^{CP} in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$ decays, where $X = C_{TP}$ (1), C_{QP} (2), $C_{TP}C_{QP}$ (3), $\cos \theta_{K_S^0} \cos \theta_{K^-}$ (4), $C_{TP} \cos \theta_{K_S^0} \cos \theta_{K^-}$ (5), and $C_{QP} \cos \theta_{K_S^0} \cos \theta_{K^-}$ (6). The significance of the combined \mathcal{A}_{CP}^{XP} result from $\mathcal{A}_{CP}^{XP} = 0$ is listed in the last column.

Dec	Decay $X = A_{CP}^X (10^{-3})$ at Be		\mathcal{A}_{CP}^{X} (10 ⁻³) at Belle	\mathcal{A}_{CP}^{X} (10 ⁻³) at Belle II	Combined \mathcal{A}_{CP}^{X} (10 ⁻³)	Significance
(1)		(1)	$-4.0 \pm 5.9 \pm 3.0$	$-0.2 \pm 7.0 \pm 1.8$	$-2.3 \pm 4.5 \pm 1.5$	0.5σ
		(2)	$-1.0 \pm 5.9 \pm 2.5$	$-0.4 \pm 7.0 \pm 2.4$	$-0.7 \pm 4.5 \pm 1.7$	0.2σ
D	+	(3)	$+6.4 \pm 5.9 \pm 2.2$	$+0.6 \pm 7.0 \pm 1.3$	$+3.9 \pm 4.5 \pm 1.1$	0.8σ
D		(4)	$-4.7 \pm 5.9 \pm 3.0$	$-0.6 \pm 6.9 \pm 3.0$	$-2.9 \pm 4.5 \pm 2.1$	0.6σ
		(5)	$+1.9 \pm 5.9 \pm 2.0$	$-0.2 \pm 7.0 \pm 1.9$	$+1.0 \pm 4.5 \pm 1.4$	0.2σ
		(6)	$+14.9 \pm 5.9 \pm 1.4$	$+7.0 \pm 7.0 \pm 1.6$	$+11.6 \pm 4.5 \pm 1.1$	2.5σ
		(1)	$-0.3 \pm 3.1 \pm 1.3$	$+1.0 \pm 3.9 \pm 1.1$	$+0.2 \pm 2.4 \pm 0.8$	0.1σ
		(2)	$+0.6 \pm 3.1 \pm 1.2$	$+2.0 \pm 3.9 \pm 1.4$	$+1.1 \pm 2.4 \pm 0.9$	0.4σ
D	+	(3)	$+1.5 \pm 3.2 \pm 1.4$	$-2.7 \pm 3.9 \pm 1.7$	$-0.2 \pm 2.5 \pm 1.1$	0.1σ
D_{i}	8	(4)	$-3.7 \pm 3.1 \pm 1.1$	$-6.3 \pm 3.9 \pm 1.2$	$-4.7\pm2.4\pm0.8$	1.8σ
		(5)	$-4.4\pm3.2\pm1.4$	$+0.8\pm3.9\pm1.4$	$-2.2 \pm 2.5 \pm 1.0$	0.8σ
		(6)	$-1.6 \pm 3.1 \pm 1.3$	$-0.0 \pm 3.9 \pm 1.7$	$-1.0 \pm 2.4 \pm 1.0$	0.4σ

(B+B2) JHEP 04 (2025) 036

 Ξ_c^0 decays

0000000

Charm sample

 Ξ_c^+ decays

Summarv

17/23

Summary: charm CPV searches at Belle (II)

• $A_{CP}(D^0 \rightarrow K_c^0 K_c^0)$ using D^{*+} and non- D^{*+} tagged samples at Belle (II):

•
$$A_{CP}(D^{0,+} \to \pi^{+,0}\pi^0)$$
 at Belle II (428 fb⁻¹):
 $A_{CP}^{\pi^0\pi^0} = (+0.30 \pm 0.72 \pm 0.20)\%$ (vs. $\sigma_{B1} = 0.65\%$)
 $A_{CP}^{\pi^+\pi^0} = (-1.9 \pm 0.9 \pm 0.1)\%$ (vs. $\sigma_{B1} = 1.3\%$)

An improved precision per luminosity at Belle II, because of superior performance in the reconstruction of neutral pions and displaced charged particles.

• Working on more charm decays. Please stay tuned.

- $A_{CP}^{X}(D_{(s)}^{+} \to K_{S}^{0}K^{-}\pi^{+}\pi^{+})$: first search for this mode.
 - $X = C_{\text{TP}/\text{QP}}$, $C_{\text{TP}}C_{\text{QP}}$, $\cos \theta_{K_c^0} \cos \theta_{K^-}(C_{\text{TP}/\text{QP}})$.
 - most precise $a_{CP}^{T-\text{odd}}$ for D^+ SCS decays and D_s^+ decays; and the other A_{CP}^{X} results: the first such measurements.

315

• Charm sample at Belle (II) • $A_{CP}(D^0 \to K_S^0 K_S^0)$ • $A_{CP}(D^{0,+} \to \pi^{0,+}\pi^0)$ • $A_{CP}^*(D^+_{(s)} \to K_S^0 K^-\pi^+\pi^+)$ • $\mathcal{B}(\Xi_c^0 \to \Xi^0 P^0)$ and $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ • $\mathcal{B}(\Xi_c^+ \to BP)$ • Summary

- In hadronic weak decays of charmed baryons, nonfactorizable contributions from *W*-emission and *W*-exchange diagrams play an essential role and cannot be neglected; leading to difficulties for theoretical predictions.
- For $\Xi_c^0 \rightarrow \Xi^0 h^0$ decays, only the nonfactorizable amplitude contributes to the internal *W*-emission and *W*-exchange amplitudes.

• Various approaches describe the nonfactorizable effects: the covariant confined quark model, the pole model (Pole), current algebra (CA), and SU(3)_F flavor symmetry, etc.

• Parity violation study in charmed baryon decays via $1/2^+ \rightarrow 1/2^+ + 0^-$: decay asymmetry parameter α is related to interference between parity-violating *S*-wave and parity-conserving *P*-wave amplitudes.

$$\alpha \equiv 2 \cdot \operatorname{Re}(S^*P) / (|S|^2 + |P|^2)$$

- It leads to an asymmetry in the angular decay distribution: $\frac{dN}{d\cos\theta_{\Xi_c^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$ where $\theta_{\Xi^0} = \left\langle \vec{p}_{\Lambda}, -\vec{p}_{\Xi_c^0} \right\rangle$ in the Ξ^0 rest frame.
- Measurements of ${\cal B}$ and $\alpha :$ clarify the theoretical picture.

$\mathcal{B}(\Xi_c^0 \to \Xi^0 P^0) \left(P^0 = \pi^0 / \eta / \eta' \right) \text{ and } \alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ (B)

(B+B2) JHEP 10 (2024) 045

- Based on 1.4 ab^{-1} dataset from Belle and Belle II.
- Using $\Xi_c^0 \rightarrow \Xi^- \pi^+$ as reference mode (obtained yields $N = 5.0 \times 10^4$)
- Combining $\mathcal{B}\text{-results}$ from Belle/Belle II samples: $\begin{array}{l} \mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)/\mathcal{B}_{ref} = 0.48 \pm 0.02 \pm 0.03 \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)/\mathcal{B}_{ref} = 0.11 \pm 0.01 \pm 0.01 \\ \mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')/\mathcal{B}_{ref} = 0.08 \pm 0.02 \pm 0.01 \end{array}$
- Simultaneous fit on efficiency-corrected yields in helicity angle bins for Belle and Belle II samples:
 α(Ξ⁰₂ → Ξ⁰π⁰) = -0.90 ± 0.15 ± 0.23

 \mathcal{B}

• Charm sample at Belle (II) • $A_{CP}(D^0 \to K^0_S K^0_S)$ • $A_{CP}(D^{0,+} \to \pi^{0,+}\pi^0)$ • $A^*_{CP}(D^+_{(s)} \to K^0_S K^-\pi^+\pi^+)$ • $\mathcal{B}(\Xi^0_c \to \Xi^0 P^0)$ and $\alpha(\Xi^0_c \to \Xi^0\pi^0)$ • $\mathcal{B}(\Xi^+_c \to BP)$ • Summary

CPV in $D \rightarrow PP$ 0000000 *∃*⁰ decays 000 *E*⁺_c decays 0●0 Summary

Measurement of $\mathcal{B}(\Xi_c^+ \to BP)$

(B+B2) arXiv:2503.17643, JHEP 03 (2025) 061

- $\mathcal B\text{-measurement}$ for six hadronic weak decays of $\mathcal \Xi_c^+$ baryon
- Using $\varXi_c^+ \to \varXi^- \pi^+ \pi^+$ as reference mode
- $$\begin{split} \bullet & \text{Two CF decays:} \\ \mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) / \mathcal{B}_{ref} = (6.7 \pm 0.7 \pm 0.3) \% \\ \mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) / \mathcal{B}_{ref} = (24.8 \pm 0.5 \pm 0.9) \% \\ \text{Four SCS decays:} \\ \mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) / \mathcal{B}_{ref} = (1.7 \pm 0.3 \pm 0.1) \% \\ \mathcal{B}(\Xi_c^+ \to \rho K_S^0) / \mathcal{B}_{ref} = (2.47 \pm 0.16 \pm 0.07) \% \\ \mathcal{B}(\Xi_c^+ \to \Lambda \pi^+) / \mathcal{B}_{ref} = (1.56 \pm 0.14 \pm 0.09) \% \\ \mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+) / \mathcal{B}_{ref} = (4.13 \pm 0.26 \pm 0.22) \% \end{split}$$
- Belle II has better resolution and mostly has higher significance than Belle.
- These SCS decays: first observed, and may provide samples for CPV searches in charmed baryon sector in the future.

 \mathcal{B}

글 🖌 🖂 🔁

< □ > < 同

• Based on B+B2 (1.4 ab^{-1}), we reported studies of 5 CF and 4 SCS decays of $\Xi_c^{0,+}$ baryons:

- These relative B's are almost the first or most precise results, providing important inputs for theoretical studies.
- Top priority for Ξ_c physics: precise measurement of absolute $\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$ and $\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)$.

ELE DOG

イロト 不得 ト イヨト イヨト

 $\begin{array}{l} \hline & \mbox{Charm sample at Belle (II)} \\ \hline & \mbox{2} & A_{CP}(D^0 \to K^0_{\rm S} K^0_{\rm S}) \\ \hline & \mbox{3} & A_{CP}(D^{0,+} \to \pi^{0,+}\pi^0) \\ \hline & \mbox{4} & A_{CP}^*(D^+_{(s)} \to K^0_{\rm S} K^-\pi^+\pi^+) \\ \hline & \mbox{5} & \mbox{5} & \mathcal{B}(\Xi^0_c \to \Xi^0 P^0) \mbox{ and } \alpha(\Xi^0_c \to \Xi^0\pi^0) \\ \hline & \mbox{6} & \mathcal{B}(\Xi^+_c \to BP) \\ \hline & \mbox{5} & \mbox{Summary} \end{array}$

- Belle II has collected dataset of 575 fb $^{-1}$ and SuperKEKB made a W.R. luminosity: 5.1×10^{34} cm $^{-2}$ s $^{-1}$
- After the first charm wave: precise charm lifetimes based on early dataset, we welcome new charm waves at Belle (II):
 - Charm CPV in charmed meson decays: $D^0 \rightarrow K_S^0 K_S^0$, $D^{0,+} \rightarrow \pi^{0,+} \pi^0$, and $D_{(s)}^+ \rightarrow K_S^0 K^- \pi^+ \pi^+$. new flavor-tagging method; new reference mode; new variables (C_{OP}); etc.
 - Study of hadronic decays of charmed baryons: $\mathcal{B}(\Xi_c^0 \to \Xi^0 P^0)$ and $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$, six Ξ_c^+ decays. Belle II has better purity/resolution and higher signal-noise-ratio than Belle.
 - More studies on hadronic decays of charmed hadron and CPV searches based on current available datasets at Belle (II), and the final dataset (Belle II target luminosity 50 ab⁻¹) in the future. Please stay tuned.

A = A = A = A = A = A = A

23/23

Thanks for your attention.

谢谢!

Dr. Longke LI (李龙科) School of Physics and Electronics Hunan Normal University 36 LuShan Road, YueLu District Changsha, Hunan, 410081, P. R. China ⑨ (+86)-159-5693-4447 酏 lilongke_ustc ᅠ lilongke@hunnu.educn

from KEKB to SuperKEKB

- ▶ As 1st and 2nd generation B-factories, KEKB and SuperKEKB have many similarities, and more differences:
 - Damping ring added to have low emittance positrons / use 'Nano-beam' scheme by squeezing the beta function at the IP.
 - beam energy: admit lower asymmetry to mitigate Touschek effects / beam current: ×2 to contribute to higher luminosity.
 - SuperKEKB achieved the luminosity record of $5.1 \times 10^{34} \ cm^{-2} s^{-1}$.

Comparison of available charm samples

Experiment	Machine	C.M.	Luminosity(fb^{-1})	N _{prod}	Efficiency	Characters
₿€SⅢ	$\frac{BEPC-II}{(e^+e^-)}$	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	20 7.3 4.5	$D^{0,+:} 10^8 \ D_s^{+:} 5 imes 10^6 \ \Lambda_c^{+:} 0.8 imes 10^6 \ \star \hat{\kappa}$	~ 10-30%	 extremely clean environment quantum coherence no boost, no time-dept analysis
	${f SuperKEKB}\ (e^+e^-)$	10.58 GeV	600 (→ 50000)	$D^0: 10^9 (ightarrow 10^{11}) \ D^+_{(s)}: 10^8 (ightarrow 10^{10}) \ A^+: 10^7 (ightarrow 10^9)$		 bigh-efficiency detection of neutrals good trigger efficiency time dependent applysis
	$\frac{KEKB}{(e^+e^-)}$	10.58 GeV	1000	$\frac{A_c \cdot 10}{D^{0,+}, D_s^{+} \cdot 10^9}$ $A_c^{+} \cdot 10^8$ $\bigstar \bigstar$	⊘(1-10%) ★★	© smaller cross-section than LHCb
<u>Lнср</u> Гн <mark>ср</mark>	LHC (<i>pp</i>)	7+8 TeV 13 TeV	$\begin{array}{c} 1+2\\ 6+9\\ (\rightarrow 23\rightarrow 50)\end{array}$	5×10^{12} 10^{13}	Ø(0.1%)	 very large production cross-section large boost, excellent time resolution dedicated trigger required

Here uses $\sigma(D^0 \overline{D}^0 @ 3.77 \text{ GeV}) = 3.61 \text{ nb}, \sigma(D^+ D^- @ 3.77 \text{ GeV}) = 2.88 \text{ nb}, \sigma(D_S^* D_S @ 4.17 \text{ GeV}) = 0.967 \text{ nb}; \sigma(cc@ 10.58 \text{ GeV}) = 1.3 \text{ nb} \text{ where each } cc \text{ event averagely has } 1.1/0.6/0.3 \ D^0/D^+/D_S^+ yields; \sigma(D^0 @ CDF) = 13.3 \ \mu\text{, and } \sigma(D^0 @ LHCb) = 1661 \ \mu\text{, mainly from } Int. J. Mod. Phys. A$ **29**(2014)24,14300518.

- BESIII, Belle II, and LHCb experiments, with their advantages, are all ideal platforms for charm studies.
- They all are continuously collecting more datasets with increased luminosity in the foreseeable future.

Equalization of kinematic-parameter distributions of $D^0 \rightarrow K^0_s K^0_s$, $K^+ K^-$

315

X-dependent efficiency in $D^+_{(s)} \to K^0_S K^- \pi^+ \pi^+$

 \mathcal{B}

ъ ъ

< □ > < 同