Inclusive V_{us} with au decays

Michele Mantovano DESY

Decay channels

Decay	Contribution	BR [%]
$\tau^+ \to \pi^+ K_S X$	Vus, Vud	~1.7
$ au^+ o \pi^+ K_S K_S X$	Vud	~0.02-0.05
$ au^+ o \pi^+ K_S K_L X$	Vud	~0.1-0.2

Strategy

• To extract V_{us} inclusively from $\tau^+ \to \pi^+ K_s X$ we need to subtract the V_{ud} contributions of $\tau^+ \to \pi^+ K_S K_S X$ and $\tau^+ \to \pi^+ K_S K_L X$.

$$\frac{N(\tau^+ \to \pi^+ K_S X)}{\epsilon_1} - \frac{N(\tau^+ \to \pi^+ K_S K_S X)}{\epsilon_2} - \frac{N(\tau^+ \to \pi^+ K_S K_S X)}{\epsilon_3} - \frac{N(\tau^+ \to \pi^+ K_S K_L X)}{\epsilon_3}$$

Focus on these decays.

• ϵ_1, ϵ_2 and ϵ_3 are the efficiencies for each channel.

Selection

- Applied the latest correction on MC:
 - 1. photon energy bias: PhotonEnergyBiasCorrection_MC15rd_June2023
 - 2. Lepton ID correction: leptonid_official_rel6_mc15rd
- Selection
 - 1. Tag side: $\tau^+ \to \ell \nu \nu$
 - 2. Signal side: $\tau^+ \to \pi^+ K_s X$, $\tau^+ \to \pi^+ K_s K_s X$ with nAllTracks<7
 - 3. Reconstruct only $K_s \to \pi^+\pi^-$.
 - 4. Applied loose selection on the K_s flight distance (>3 mm).
 - 5. Applied a lepton ID cut on electron (0.5) and muon (0.5) for the tag side.
 - 6. Applied standard cut on photons (thetaInCDCacceptance, clusterNHits>1.5 ...)
- Need to apply a PID cut on pions.

First check

- Reconstruct exclusively both $\tau^+ \to \pi^+ K_s X$ and $\tau^+ \to \pi^+ K_s K_s X$ decays requiring a total number of tracks < 7 (max 5 for the signal side + 1 for the tag side).
- Reconstruct only MC with a most file corresponding to $0.4 {\rm fb}^{-1}$.
- Using Tauola to check the number of signal candidates.

$$N(\tau^+ \to \pi^+ K_s X)$$
 with nAllTracks<7 = 1317 events

$$N(\tau^+ \to \pi^+ K_s K_s X)$$
 with nAllTracks<7 = 20 events

 $N(\tau^+ \to \pi^+ K_s K_s X) \sim 1/66$ of $N(\tau^+ \to \pi^+ K_s X)$ comparable with the ratio of BRs in slide 2.

Signal efficiency

Signal efficiencies are estimated using:

$$\epsilon_{sig} = \frac{N_{sig}}{2 \cdot BR_{sig} \cdot BR_{tag} \cdot N_{\tau\tau}}$$

- N_{sig} are the number of signal events.
- BR_{sig} are the branching fractions of the two signal decays (~1.7% and ~0.03%).
- BR_{tag} is the branching fraction of the tag side $BR(\tau \to \ell \nu \nu) \sim 35\%$.
- $N_{\tau\tau}$ are the number of tau pairs evaluated using the lumi (0.4fb⁻¹ and the $\sigma(\tau\tau)$).

$$\epsilon_{sig}(\tau^{+} \to \pi^{+}K_{S}K_{S}X) = \frac{N_{sig}}{2 \cdot BR_{sig} \cdot BR_{tag} \cdot N_{\tau\tau}} \sim 26 \%$$

$$\epsilon_{sig}(\tau^{+} \to \pi^{+}K_{S}X) = \frac{N_{sig}}{2 \cdot BR_{sig} \cdot BR_{tag} \cdot N_{\tau\tau}} \sim 30 \%$$

Next steps

- Check the multiplicity in the events and optimize the selection.
- Try to filter the $\tau^+ \to \pi^+ K_S K_S X$ contribution from the $\tau^+ \to \pi^+ K_S X$ decays.

• Run on data and check data/MC agreement for $au^+ o \pi^+ K_S K_S X$.