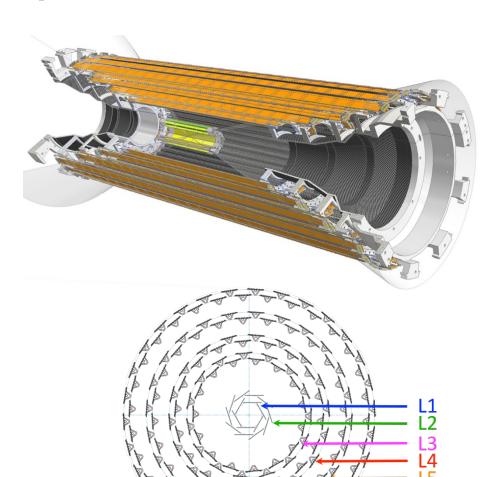


The Belle II VTX Readout

presented at the Belle II Trigger/DAQ Workshop 2025


Markus Friedl, Christian Irmler

The VTX upgrade proposal

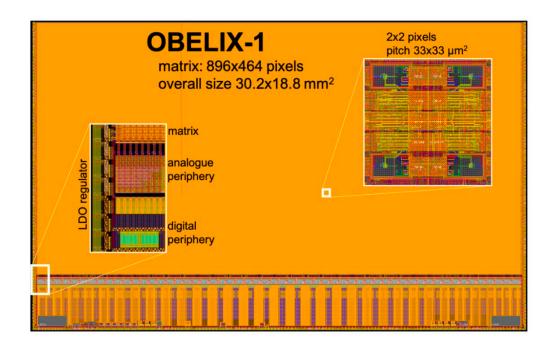
Planned for LS2 ~2032

- Baseline: 6 straight layers using the same DMAPS sensor
- Optimized BELIe II pIXel sensor (OBELIX)
- iVTX: L1, L2 \rightarrow 0.3% X0
 - All silicon ladders, self-supported
 - Exploring different cooling options: air and passive cooling utilizing heat-drain material as well as liquid cooling with thin pipes
- oVTX: L3, L4, L5, L6 → 0.8% X0
 - Carbon fiber support frame
 - Cold plate with liquid cooling

VTX Organisation

Publications and Project Coordination Institutional Board Speakers J. Baudot J. Serrano + WG Leaders WG3: WG1: WG2: WG4: WG5: WG6: Characterization Layer development System integration Performance Sensor design **Demonstrator** and system tests V. Vobbilisetti H. Pham S. Bettarini C. Irmler C. Marinas G. Rizzo Software **Analog** Irradiations iVTX Electrical Readout oVTX Electrical Tracking Digital Test beam Track trigger Verification iVTX Thermomech Benchmarking **Lab Testing** Powering, GND oVTX Thermomech **Cooling services** Monitoring Run / slow control

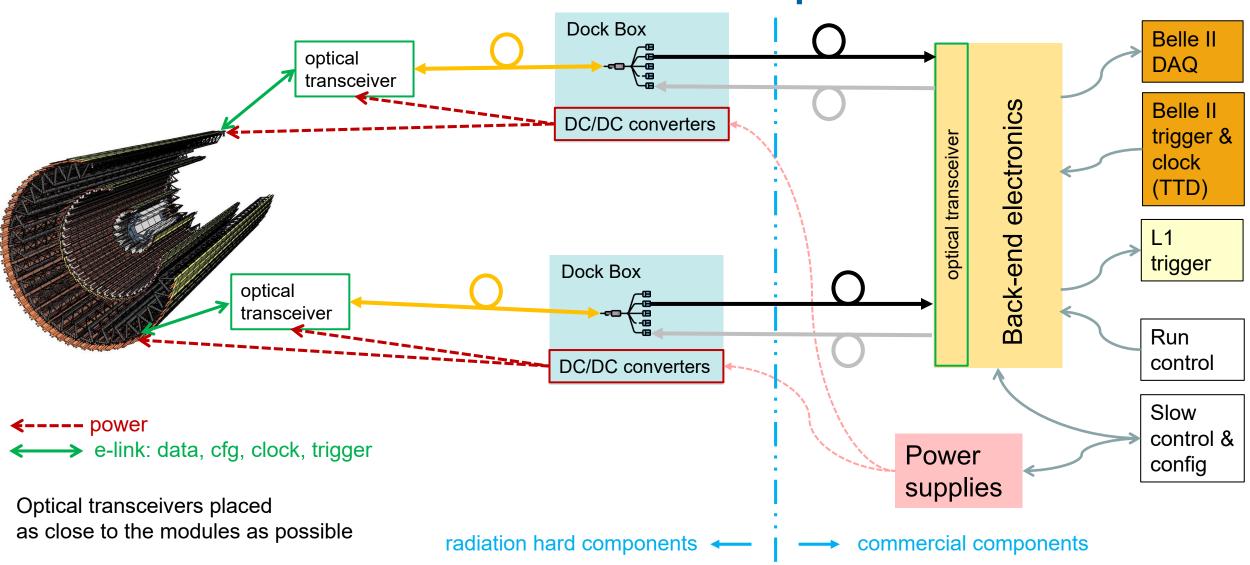
MBI (Vienna)
IHEP (Beijing)
University of Jilin
CPPM (Marseille)
IJCLab (Orsay)
IPHC (Strasbourg)


University of Bergamo INFN Pavia INFN & University of Pisa University of Bonn University of Dortmund University of Goettingen KEK (Tsukuba)
University of Tokyo
IPMU (Kashiwa)
IFCA (CSIC-UC, Santander)
IGFAE (Santiago de Compostella)
IFIC (CSIC-UV) (Valencia)

ITAINNOVA (Zaragoza)
Queen Mary University (London)
RAL (UK)

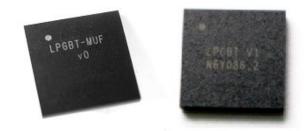
The OBELIX Chip

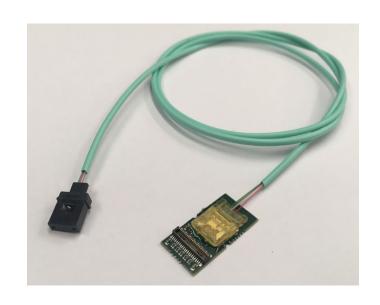
- Matrix inherited from TJ-Monopix2 developed for ATLAS
 - Tower 180 nm modified imaging technology
- Dimensions adjusted to VTX geometry
 - 464 rows and 896 columns,
 - 29.60×15.33 mm² active area
- Low dropout regulators (LDOs)
 - to allow input supply voltage range of 2 to 3V
- Completely revised digital periphery
 - Trigger unit with up to 10µs latency
 - Precision timing measurement
 - Low latency output for trigger contribution
- Submission planned by December 2025



- Clock frequencies:
 - Derived from SuperKEKB RF: 508.9 MHz
 - Main clock frequency 169.6 MHz
 - 2 LVDS data links operated at 339.2 MHz
 (169.6 MHz DDR) for hit and trigger data

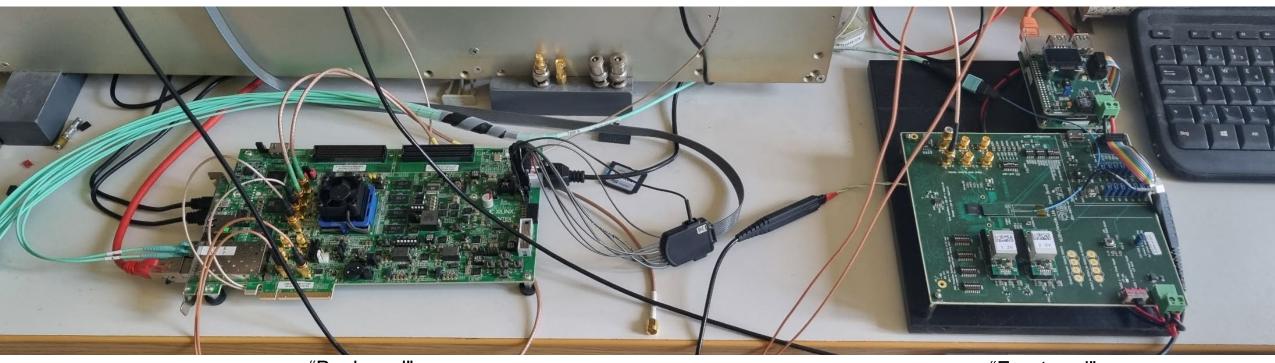
VTX Readout Concept





Transceiver and optical transmitter

- Need fast and radiation hard transceiver and optical driver
- CERN developed a common solution for LHC upgrades
 - IpGBT (low power Gigabit Transceiver)
 - Collects/distributes data/clock from/to several electrical links and aggregates them on a single pair of serial high-speed data stream
 - https://cern.ch/lpgbt
 - VTRx+
 - Bi-directional optical link module
 - 1 Rx channel, 2.56 Gb/s
 - Up to 4 Tx channels, 10.24 Gb/s
 - VTRx+ Application Note
- Promising device, but we need to operate it out of specs
 - Specified system frequency range: 39 MHz 41 MHz
 - For VTX we need RF/12 = 42.4 MHz



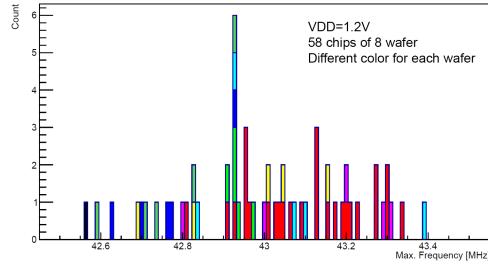
Tests at MBI Vienna

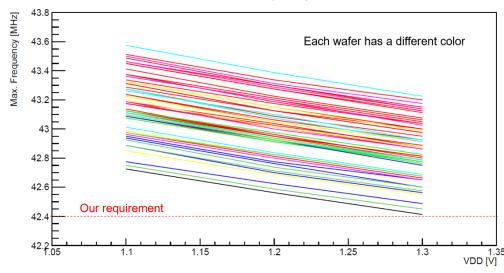
- Verification if chip can be operated with a clock frequency of 42.4 MHz
- So far ~60 chips from 8 different wafers tested in Vienna with IpGBT test kit
- Performed full loopback test with simulated OBELIX data frames

"Back-end"

Optical Fiber

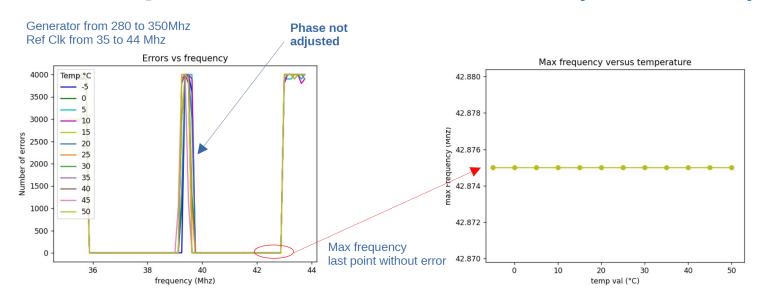
"Front-end"

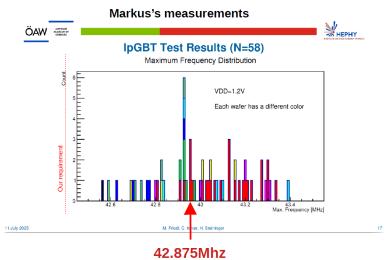



IpGBT Test results

- Tested 61 lpGBT chips from 8 different wafers.
- IpGBT operation frequency: 338MHz-350MHz
- Corresponds to a IpGBT base frequency range of 42.25MHz – 43.75MHz.
- VDD: 1.1 V, 1.2 V and 1.3 V
- Test results:
 - All chips achieved a maximum frequency of >42.55 MHz at nominal VDD, which is above the required value.
 - Three chips did not work properly at 1.1 V and/or 1.3 V, resulting in bit errors.
 - Maximum frequency improves with decreasing VDD
- So far only non-irradiated samples tested

Maximum Frequency Distribution


Maximum Frequency vs. VDD



Temperature Tests at CPPM (Marseille)

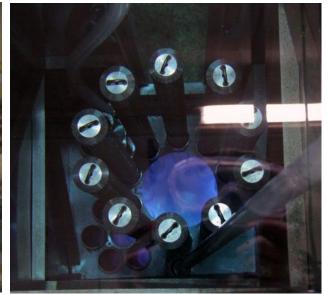
Patrick Breugnon (CPPM) 20 August 2025

We want to operate at RF / 12 = 508.887 MHz / 12 => RefClk = **42.40725 MHz**

Max frequency of lpGBT, CPPM chip 42.875 Mhz

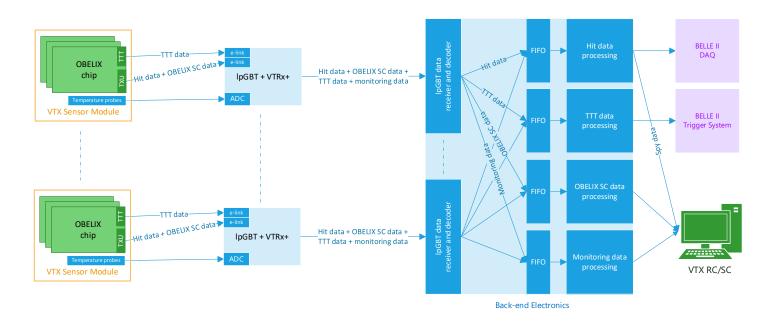
Temperature has no influence on the max frequency

We have at CPPM an operational lpGBT test setup



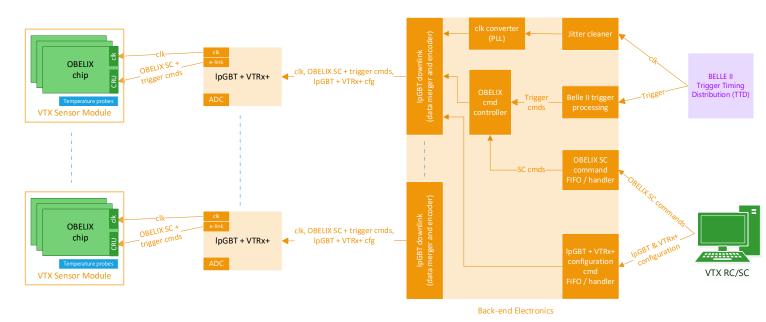
Irradiation @ SCK-CEN (Mol, Belgium)

- Irradiation under bias; we aim for (up to) 100 Mrad
- Underwater Cobalt-60 source:
 - BRIGITTE with ~600 krad/h (1 week to 100 Mrad) still under commissioning, more info soon
 - Irradiation planned for early 2026



Back-End Electronics - IpGBT data uplink

- IpGBT data frame contains 4 types of data:
 - Hit data: particle hits = physics data
 - Trigger data from TTT: input for L1 trigger, need low latency readout
 - OBELIX register values: read on demand and sent via hit data path
 - Monitoring data from IpGBT ADCs,
 e.g. temperature probes, voltages, etc.
- Back-end data handling
 - Unpack, decode and split lpGBT data into individual data streams
 - Discard OBELIX IDLE patterns
 - Forward data streams to
 - DAQ: hit data
 - Trigger system: TTT data with low latency
 - · Slow control SW: monitoring data

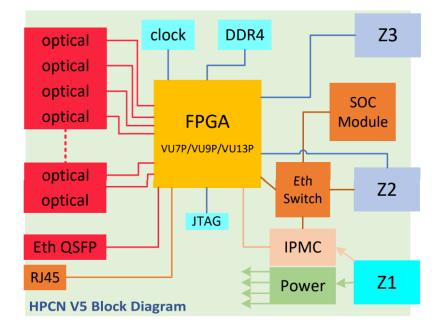

OBELIX SC data = OBELIX slow control data: configuration read-back, temperature values, voltages, etc

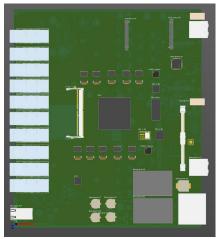
Back-End Electronics - IpGBT data downlink

- Data from several sources to be sent to IpGBT via optical downlink
 - From Belle II TTD
 - Clock
 - Trigger
 - From VTX run and slow control
 - OBELIX slow control commands:
 - Configuration
 - Reset and local run commands
 - Register read-back
 - IpGBT and VTRx+ configuration
 - Belle trigger need to be converted into OBELIX trigger commands (RD53 style)

OBELIX SC commands = OBELIX configuration, reset and local run commands, etc.

Back-End Electronics HW


- Will be placed in e-hut → does not need to be radiation hard
- FPGA based system with sufficient amount of optical links
 - Current 6 layer VTX design requires up to 334 bi-directional optical links
 - Uplink: 10.2 Gb/s, downlink: 2.5 gb/s
- In the process of identifying appropriate boards and systems
 - Future-proof choice of FPGA: mid- and long-term availability, adequate performance, sufficient contingency, reasonable price
 - PCle40: currently used in Belle II, uses Intel Aria 10, released 2013, need to verify if it fulfils our requirement regarding performance, moreover the FPGA might be outdated when VTX is installed
 - PCle400 under development: Intel Agilex 7, first boards expected 2026/2027, to be checked if we can use them for VTX
 - CEPC TDAQ board currently under development by IHEP China: based on ATCA, but ATCA might fade out soon…



TDAQ Board for CEPC: Details

(proposed by Jingzhou Zhao, IHEP China)

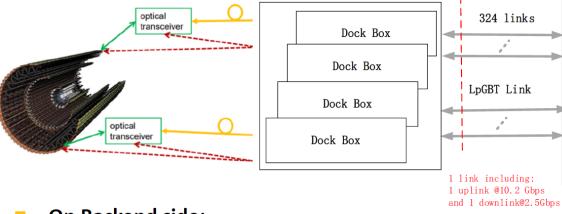
- Common Trigger board function list
 - ATCA standard
 - Virtex Ultrascale Plus FPGA (VU9P, VU13P pin compatible)
 - 44 channels for optical, 11 QSFP+
 - Optical channel: 10-25 Gbps/ch
 - 40 channels for links to FEE and Trigger
 - 4 channels for DAQ readout
 - Optical Ethernet or RDMA: 40-100GbE
 - RDMA IP core is under developing
 - DDR4 for mass data buffering:16GB
 - Front 1 GbE and Z2 GbE fabric port for parameter configuration and control
 - SoC module for board management
 - IPMC module for Power management
- Progress
 - Preliminary finished schematics, PCB layout is next step
 - First version is expected mid-2026

BelleII Trigger

Online software

15

IHEP Proposal for VTX Backend (1)


DAQ

ATCA board

ATCA crate

(proposed by Jingzhou Zhao, IHEP China)

- VTX track trigger layers will be added if Belle II need receive the VTX track information
- VTX and VTX trigger will be based on ATCA trigger and electronic board

On Backend side:

- Receive and decode TTC signals from FTSW and feedback BUSY and Error signal to FTSW
- Separate the hit data and trigger data;
- Generate the cluster Trigger Primitive(TP)
- Send TP data to VTX tracker in pipeline way
- Package the hit data and TP data based on L1
- Send data package to DAQ via TPC/RDMA
- ATCA Switch board as a 1GbE Ethernet switch for Online connection with ATCA board for Slow control

On Track trigger side:

1 GbE

ATCA Switch

VTX Backend

Receive and decode TTC signals from FTSW and feedback BUSY and Error signal to FTSW

ATCA

board

1 GbE

VTX Track Trigger

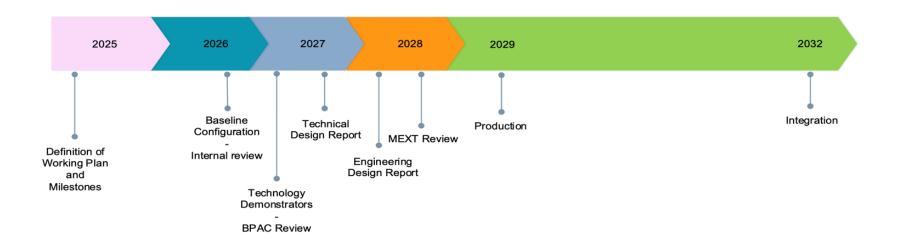
ATCA Switch

- Receive Cluster TP data and do track finding in section;
- Send track data to Belle II trigger based on BelleII trigger transmission Protocol
- Package the TP data and Track data based on L1

ATCA crate

- Send data package to DAQ via TPC/RDMA
- ATCA Switch board as a 1GbE Ethernet switch for Online connection with ATCA board for Slow control

FTSW/TTD


IHEP Proposal for VTX Backend (2)

- Scale estimation:
 - Back-end: One ATCA board deals with 36 lpGBT links → 9 boards needed
 - VTX Track Finding: one ATCA board deals with 60 degrees or 120 degrees → 6 or 12 boards needed
- More information needed for further discussion
 - What does Belle-II trigger need from VTX?
 - What is the maximum latency allowed for VTX backend?
 - Data transmission protocol with Belle-II trigger?
- Need to verify and ensure long-term availability of ATCA platform

Roadmap Towards L2 (2032)

Milestones

- Technology decision 2026
- TDR mid-2027
- Prototype system for demonstrator and module testing ~2029
- Production of final system 2030+

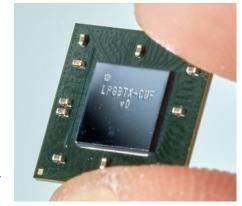
Outlook

- Will continue evaluation of IpGBT
- Continue the search for possible HW solutions for the back-end electronics.
 - The proposal from IHEP is promising, but we are open for suggestions, especially from Belle II (T)DAQ groups, and new collaborators.
- Have to intensify discussion on
 - Powering (power supplies, DC/DC converters, etc.)
 - Currently preparing requirements
 - Monitoring (temperatures, humidity, etc.)
 - Run and slow control software: so far not started, which framework, etc.
- Have monthly WG5 meetings
 - Next meeting Nov. 30th partially combined with WG4
- New collaborators are always welcome

Summary

- The Belle II Upgrade proposal includes the replacement of the innermost detector by a fully pixelated vertex detector (VTX) made of DMAPS
- Evaluation IpGBT and VTRx+ for optical link ongoing
 - So far very promising results
 - Will conduct an irradiation campaign in early 2026
- Currently identifying appropriate platform for back-end electronics

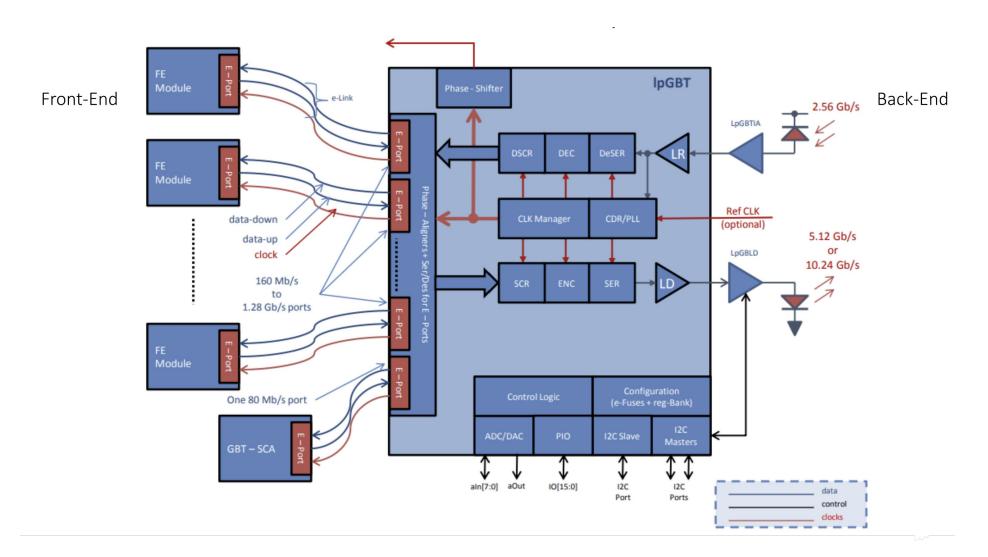
BACKUP



Overview IpGBT

Low power Giga Bit Transeiver chip

- Uplink:
 - 5.12 Gbps: 128b@40MHz
 - 10.24 Gbps: 256b@40MHz
- Downlink: 2.56 Gbps: 64b@40MHz
- Up to 28 e-links
- Further features
 - 4 programmable clocks with 50 ps resolution
 - 3 x I2C masters
 - 16-bit GPIO, 10-bit ADC, 8-bit DACs
 - Programmable current sources for PT100/1000


- Design specifications
 - 65 nm CMOS technology
 - ~200 Mrad TID / SEU robust
 - 0.75W @ 10.24Gbps / 0.5W @ 5.12Gbps
- Link qualitymonitoring
 - Eye Opening Monitor
 - Bit Error Monitoring
- Small Footprint:
 - 9 mm x 9 mm with 0.5 mm pitch

General architecture of the IpGBT ASIC

LpGBTdata transmission

Uplink		e-link	
Speed	Encoding	Bandwitdh [Mbps]	#
5.12 Gbps	FEC5	160	28
		320	14
		640	7
	FEC12	160	24
		320	12
		640	6
	FEC5	320	28
10.24 Gbps		640	14
		1280	7
	FEC12	320	24
		640	12
		1280	6

- Different configuration possible
- Number of available e-links depends on BW of e-link as well as speed and mode of uplink.

Downplink		e-link	
Speed	Encoding	Bandwitdh [Mbps]	#
2.56 Gbps	FEC12	80	16
		160	8
		320	4