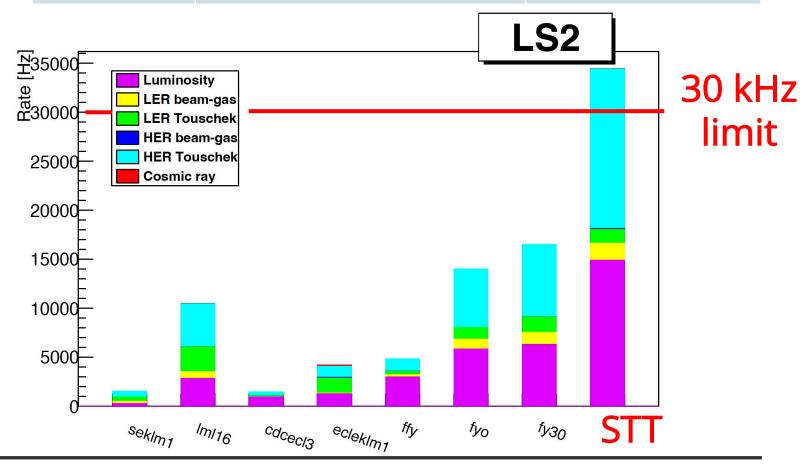


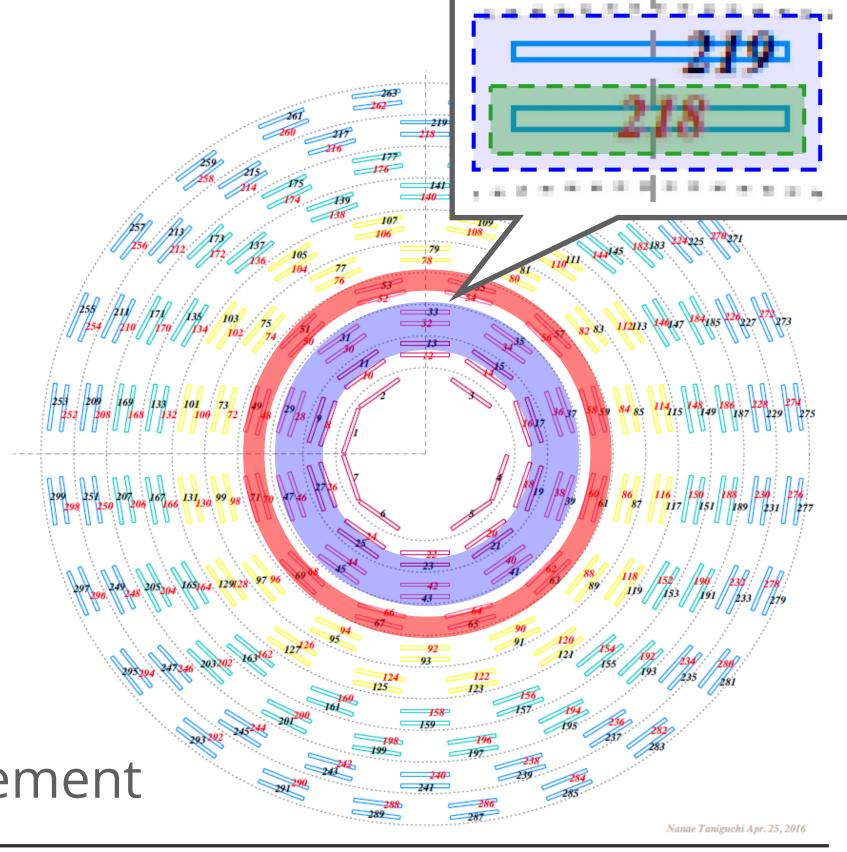
CDCTRG Dataflow Upgrade


Hanwook BAE | KEK, Institute of Particle and Nuclear Studies (IPNS)

Trigger Rate due to the Beam Background

- Currently, the trigger rate is under the DAQ limit
 - Trigger rate: 5-8 kHz in 2024c
- In the target luminosity ($\mathcal{L} \sim 6 \times 10^{35} \mathrm{cm}^{-1} \mathrm{sec}^{-1}$), some of trigger bit may exceed the limit
 - i.e., the single-track trigger may be prescaled, which affect the efficiency of Dark Matter or τ events
- A large portion of the beam background (BG) induced CDCTRG rate in the future (~50%?)
 - If we can upgrade the CDCTRG to reduce the BG rate, we may save possible lost in the future!

Target	Trigger condition	Trigger rate $(\mathcal{L} \sim 4.0 \times 10^{34})$
$Bar{B}$	$N_{trk}^{2D} >= 2 \& N_{trk}^{3D} >= 1$	0.3 kHz
Events	$N_{trk}^{2D} >= 2 \& N_{trk}^{3D} >= 1$ $\& \Delta \phi_{2D} > 90^{\circ}$	0.75 kHz
τ or Dark Matter	3D Neuro track w/ $ \vec{p} > 0.7$ GeV	2 kHz

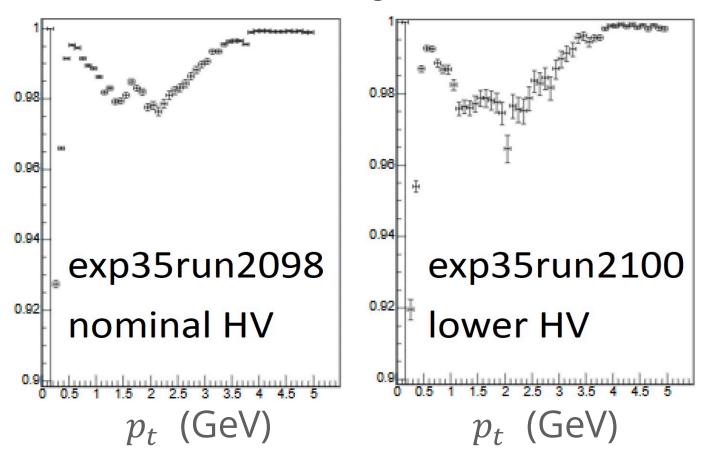


Radiation Damage of Optical Transceiver

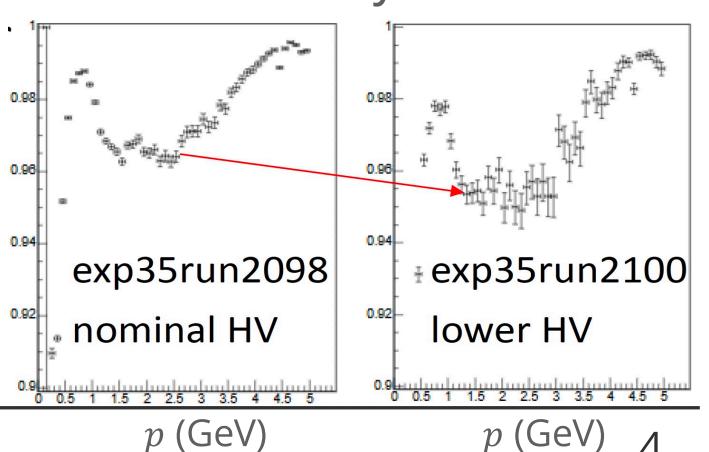
 Optical transceiver in the current CDCFE may dead around 2026-2027 due to the radiation

- We suppose three scenarios:
 - 1. One of FEs in the pairs for SL0/1 is dead
 - 2. Both of FEs in the pairs for SL0/1 are dead
 - 3. FEs after SL2 is dead
- Impact in CDCTRG efficiency:
 - 1. Mitigatable by channel masking (Koga's slide)
 - 2. Degradation about 1% per one pair
 - 3. Significant degradation may be present

First priority plan to implement

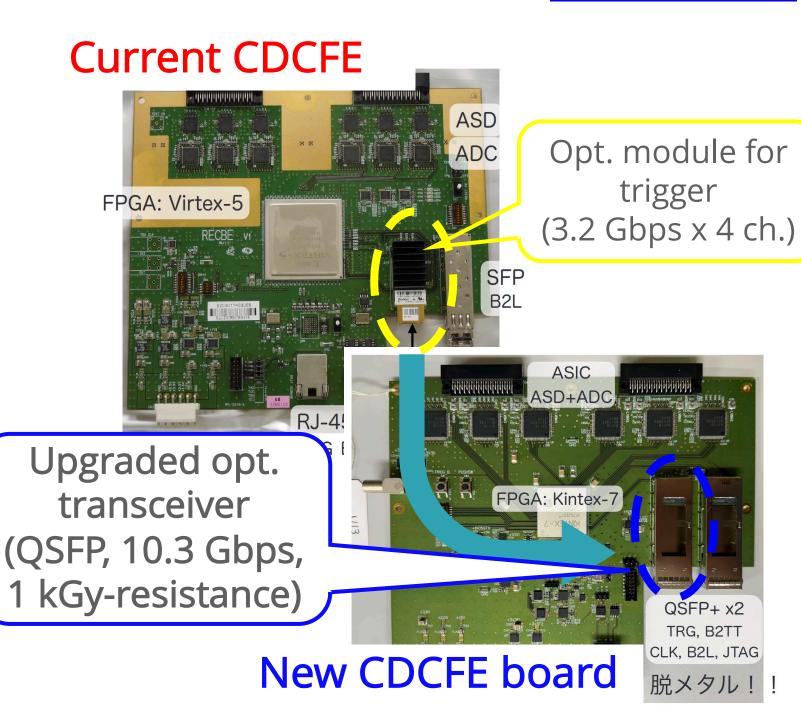


A pair of FEs in SL


Trigger Efficiency with Lower CDC HV

- The CDC team tested the lower voltage for the CDC HV in 2024c (Y. Nakazawa's Slide)
- The rate of Track Segment detection from SL0 decreased by 30%
- No significant degradation (< 1%) in the 2D efficiency
- The 3D efficiency degraded by ~2%
- There are no critical effects of radiation damages for now, but the countermeasure may be needed

2D Track Efficiency

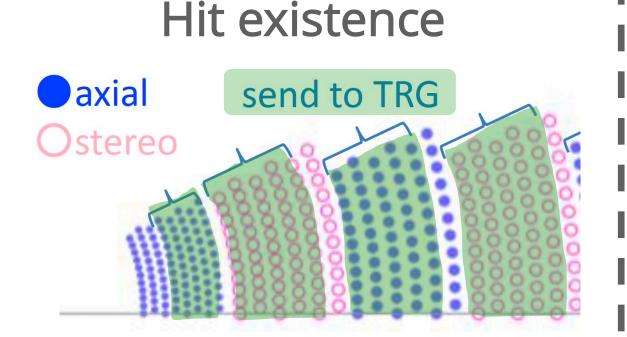

3D Track Efficiency

Upgrade of CDC Frontend Electronics

- RECBE-2 will have improved components
 - Optical transceivers and ASICs for ADC
- Improvements of the new QSFP modules:
 - Bandwidth for CDCTRG: 3.2 → 10.3 Gbps
 - Discontinued product → Common modules
 - 1-kGy radiation hardness: 10-year operation (Tested with gamma and neutron rays)
- Improved ASIC will provide ADC counts with shorter latency (300 ns reduced)
 - Latency budget for CDCTRG loosen
 - Double-threshold functionality: Reduce noise and time-walk jitters

Upgrade on Datapath of CDCTRG

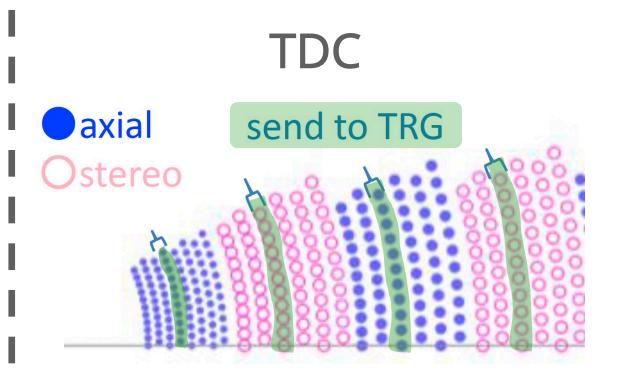
- We will upgrade CDCTRG with the new datapath to utilize the high speed of new FE
 - Main plan: Remove Mergers (MGR) and connect FE ↔ Track Segment Finder (TSF) module directly



- Number of the TSF modules: $9 \rightarrow 18 \sim 20$ modules (UT4 modules for those are ready)
- Lane conf.: 4 lanes for CDCTRG \rightarrow 2 lanes for CDCTRG and 1 lane for B2L (1 lane for spare)
- Expected improvements:
 - The number of bits from one CDCFE per a 32-MHz clock: <u>320 bits → 512 bits</u>
 - Latency reduction: 600 ns expected

Current Inputs for CDCTRG

Currently, only part of CDC hit information is sent to TSF

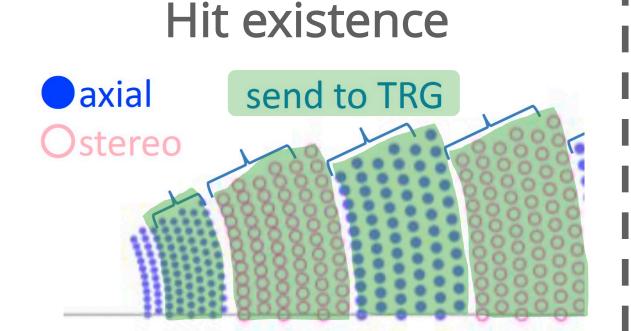


- Indicates hits in a wire
- Accounts 5 layers from 1 SL (covers only ~80%)

ADC

$$\sum_{i}^{i+3} ADC(i) > threshold?$$

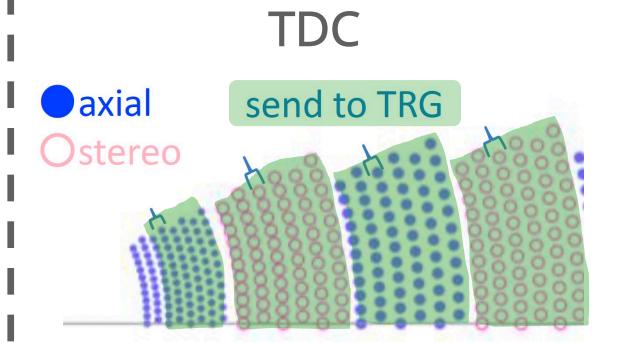
- Indicates exceeding the thresholds in frontend
- Summation of ADC of ~3 points for part of wires



 Receives TDC with 2ns resolution from 2 layer (covers only ~30%)

Inputs with Improved Bandwidth

• If the bandwidth from CDCFE is doubled, we can upgrade the information as follows:

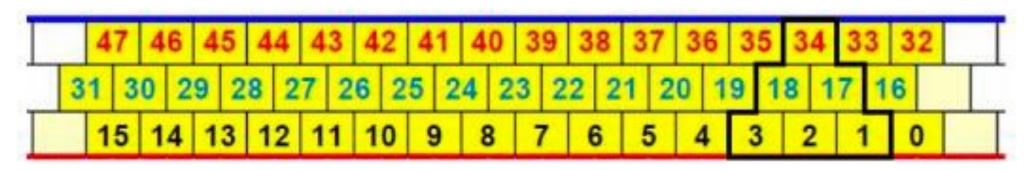


- Coverage: $5 \rightarrow 6$ layers
- Some innermost wires in SL0 is unclear

ADC

$$\sum_{i}^{i+n} ADC(i) = \begin{cases} 16\text{-step} \\ \text{values} \end{cases}$$

- Summation over all wires
- Window for summations may be enlarged
- Resolution: 4 bits



 Sending all wires with 2ns resolution

Tentative Bitmap Design

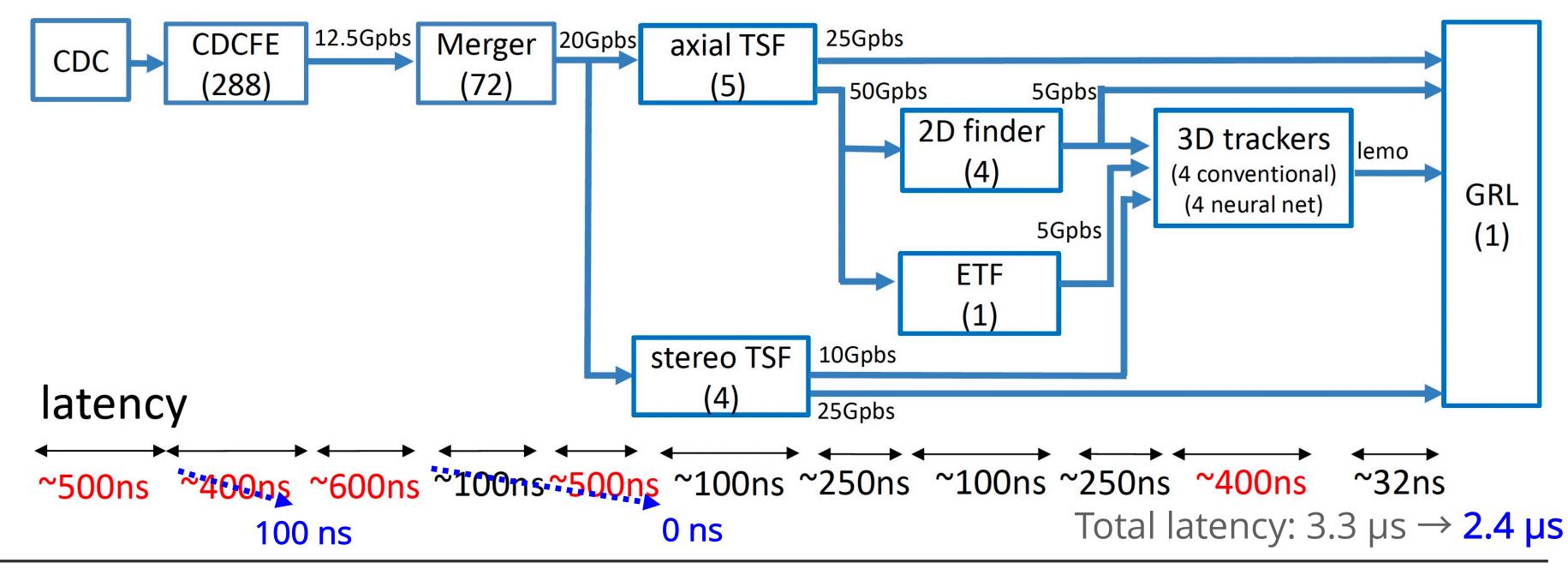
The upgraded optical link can contain all the upgraded inputs

Current

Figure 10: Part of CDC outer SL inside wire cell configuration [6].

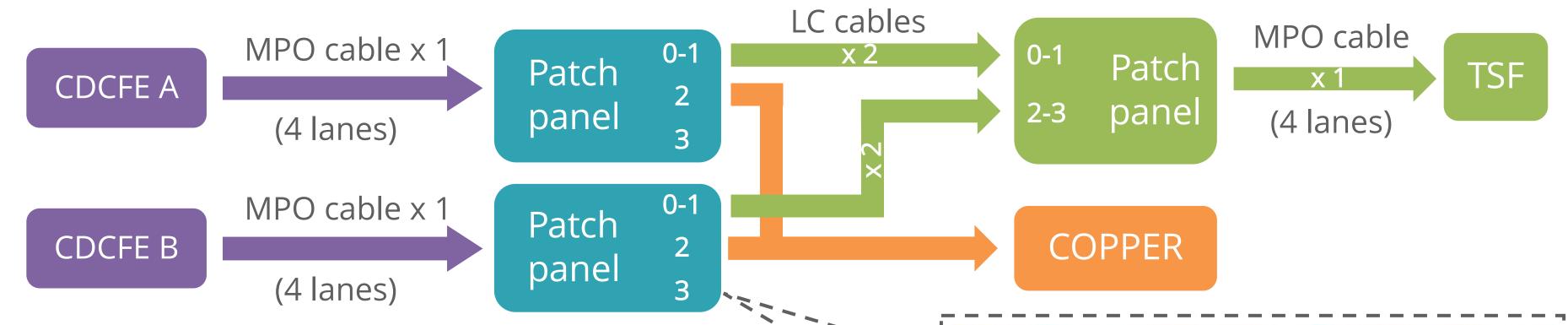
Upgraded

Input data	Bits from one CDCFE per 32-MHz clk.
Hit existence map (5 lyr.)	48 bits
ADC threshold flag	1 bit x 48 wires
TDC count of 1 layer	5 bits x 16 wires = 80
The fastest TDC count in the track segments	5 bits x 16 segments = 80
Edge information	10 bits
Clock counter	9 bits
Total number of bits	275 bits (< 320 bits)

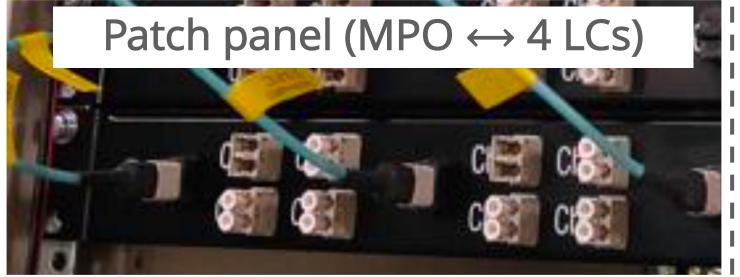


Input data	Bits from one CDCFE per 32-MHz clk.
Hit existence map (all lyr.)	48 bits
TDC count of all layers	5 bits x 48 wires = 240
ADC sum. of all layers	4 bits x 48 wires = 192
Clock counter	9 bits
Total number of bits	489 bits (< 512 bits)

Latency Improvements


- We expect we can reduce CDCTRG latency by ~1 μs by the CDCFE upgrade
 - More accurate CDCTRG logic will be available (e.g., more complex NN or Hit cleaning w/ GNN)

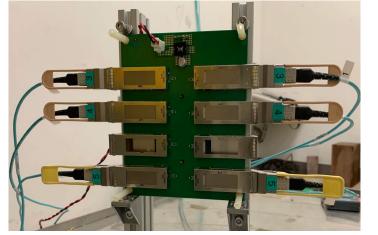
Cabling Design and Material Demands

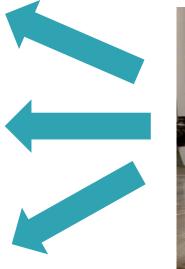


• Example design for the cabling configuration for the upgraded CDCFE ↔ CDCTRG

Cable and patch panel demends

	CDCFE (MTP cables)	Patch panel (MTP to 4 LCs)	LC cables	Patch panel (4 LCs to MTP)	TSF modules (QSFP trans.)
Total #	288	288 ch.	864	288 ch.	~20
Remark	Length: $O(10)$ m			4 MTP ch. in 1 panel	5-12 QSFPs in 1 module

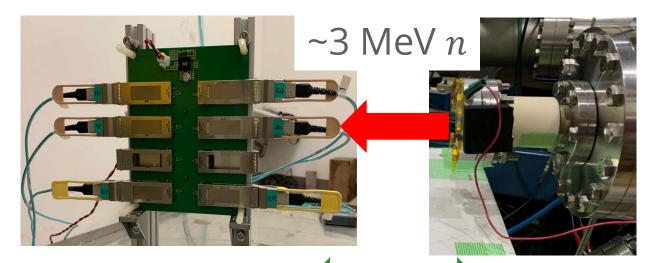

Radiation Hardness for New FE


- We tested the radiation resistance of the QSFP modules for the new CDCFE
- Target radiation: γ -rays from 60 Co, n-rays from 9 Be(d,n) from a deuteron accelerator
- Test items: Radiation tolerance of products and the lot-number dependencies
- Selected item: Dell-compat. QSFP-SR4-40G
 - Dose: 1.2-1.5 kGy for γ and 10^{12} for 1 MeVeq.-n (equivalent for the 10-year operation)
 - 714 transceivers have been purchased (Goal stock: 700)

Gamma-ray tests

QSFP+ modules

1.17 / 1.33 MeV γ ⁶⁰Co Source



Distance: ~20 cm

Neutron-ray tests

QSFP+ modules

⁹Be Target

Distance: 1-2 cm

Long-term Schedule

- 2024 Early 2025: Trigger rate analysis with the latest dataset
 - What does make Beam BG-induced trigger rates? fake tracks? off-IP tracks?
 - We use the result from this analysis to decide upgrade items for CDCTRG
- Mid 2025-2026: Preparation of the TSF firmware for new scheme
 - Confirming the bitmap from CDCFEs and upgrading TSFs
 - Goal: Make TRG ready against the optical transceiver breaking
 (If Belle II decided to change CDCFE to the new one, we should be able to deal with it)
- 2025-: Upgrading the CDCTRG logic (Adding Hit-filtering using GNN, DNN, etc...)
 - Based on the beam background study result, we will devise new logic or upgrades for CDCTRG
 - The design for the new TSF should be flexible for upgrades of later modules (Original author left Belle II, poor FW design for the high-speed transmission, etc...)

Summary

Motivation:

- The rate of some CDC trigger condition may exceed the 30 kHz limit in the future
- The CDC will upgrade front-end electronics w/ improved opt. transceivers and ADC chips
- Performance degradation due to the radiation damages must be considered

Upgrade contents:

- FE and dataflow upgrade will enable CDCTRG to utilize more large bits per clock (320 → 512 bits)
- The inputs for CDCTRG can be improved a lot: Covering all layers, sending ADC sum, and so on...
- Radiation hardness is enough to operate for 10 years with the Belle II radiation condition

Plan:

- I will investigate the source of CDC trigger rate, and upgrade TSF firmware to the new version
- CDC Hit-filtering using GNN, Neural Network 3D-Trackers, and so on is ongoing
- Retaining the efficiency in the future is the most important item, we will do our best for this

Backup Slides

Gamma Irradiation Test: Results by Models

- We tested various models for the modules. Two modules meet our requirements
 - Considering the selling agencies, we selected the Dell-compatible model from FS.com

Model & Manufacture	Sample pair number / Lethal dose				Resistance	
	#1	#2	#3	#4	#5	at least
FiberJapan 8515	500 (PC)	650	1400 (PC)	1300 (PC)	1500 (PC)	> 400 Gy
FiberJapan 85-015	1400 (PC)	1300 (PC)	1100 (PC)	1256 (PC)	1200 (PC)	> 1000 Gy
FS.com FS compatible QSFP-SR4-40G	500 (PC)	400 (PC)	500 (PC)	400 (PC)	400 (PC)	> 300 Gy
FS.com Dell compatible QSFP-SR4-40G	1300 (PC)	1400 (PC)	1300 (PC)	1200 (PC)	1200 (PC)	> 1100 Gy
FS.com Cisco compatible QSFP-SR4-40G	1000 (PC)	1190 Survived	Not tested		> 900 Gy	
FS.com Avago compatible QSFP-SR4-40G互換	1000 (PC)	1156 Survived	1300 (PC)	1200 (PC)	1300 (PC)	> 900 Gy

- Color of figures indicates the dose rate (100 Gy/h and 200 Gy/h)
- (PC) means the corresponding sample dead after the power-cycle
- In the (PC) case, we consider the dose in the previous successful power-cycle as the final resistance as a conservative approach

Gamma Irradiation Test: Results per Lot-Numbers

- We performed another test to check the dependency of the lot numbers.
 - The module model is "Dell compatible QSFP-SR4-40G" from FS.com
- Three module pairs from two different lot number has been tested
 - Dose rate and total dose: 40 Gy/hour for 32 hours: 1280 Gy
- Result: No significant variations and all pairs from the both lot numbers can meet our requirements.
 - Some pairs showed unstable link status during the test, but after power-cycling at the end of test, all modules established the stable link!

Lot. No. of Dell-compatible	Sample pai	Resistance		
QSFP-SR4-40G modules	#1	#2	#3	at least
CG2409245468	> 1280 Gy	1200 Gy	1200 Gy	1200 Gy
CG2408268338	1200 Gy	1100 Gy	1200 Gy	1100 Gy

Neutron Irradiation Test: Results

- As we considered the optical transceiver is not affected much by the neutrons, we tested two pairs of the optical transceiver
 - The module model is "Dell compatible QSFP-SR4-40G" from FS.com
- We irradiated 10^{12} neutrons to the module, and there were no optical link instability during the test.
 - The module was normal after the irradiation test.
- The both modules meet our requirements for the resistance against the neutron rays