

1

Reinforcement of HLT with GPU

Ryosuke Itoh, KEK

Belle II Trigger/DAQ Workshop 2025

Osaka Metropolitan University
Oct.24, 2025

2

 Consideration on further HLT reinforcement strategy

- HLT reinforcement should be considered from two separate aspects:

 1) Mitigation for the higher trigger rate (by the luminosity/background
 increase) and the maintenance of existing HLT units until LS2.

 2) Preparation for the new detector configuration after LS2.

- For 1), we have a baseline upgrade plan.
 = adding more PC servers to the existing 15 HLT units.
 -> Is this really enough?

- For 2), we need to consider the change in VTX readout
 * We don’t need to manage RoI feedback any more.
 * Possible increase in the event size. (VTX data go through EB1).

3

Proposal for 1) : Addition of GPU based Level 3 trigger

 Idea: Implement GPU as soon as possible
 as an alternative to the baseline upgrade plan.

* GPU can provide tremendous number of cores at a much lower price.
* GPU can be programmed using a language CUDA which is mature and
 compatible with C++. <= easy to keep compatibility with Belle2 soft.
* GPU works as a co-processor for CPU
 -> mixed CPU+GPU processing is possible.

=> Integrate GPU processing in basf2 and build a seamless
 software development environment for Level3 software.

- Offload the Level3 trigger software (to be implemented in current HLT)
 to GPU.

4

4

FE
dig
FE
dig
FE
dig
FE
dig

FE
dig

tx

tx

tx

tx

tx

rx

rx

rx

rx

R/O
PC

R/O
PC

R/O
PC

R/O
PC

E
vent B

uilder 1 HLT
(15 units[2025])Rocket IO

over fiber

CDC

SVD

PID

ECL

KLM

E
vent B

uilder 2

PXD
FE
dig

PXD readout box
(ONSEN)

RoI
Merger

reco
rder

reco
rder

reco
rder

reco
rder

....
..

.....

DATCON

Belle2link

Express
Reco

FTSW
Trigger

FTSWFTSW
Belle II DAQ System

QAS

Offline comp.

Online
Storage

COPPER->PCIe40

RoI

input
server

Replace input servers with GPU servers

5

L3
filter

Full Recon. RoI
Gen.

RoI
extract

hlt-input

discard 1/2
of L1 events

event-

R
aw

data from

E
V

B
1

discard 1/3
of L3 events

hlt-output

Full Recon. Soft
Trig.

RoI
Gen.

RoI
extract

hlt-input

discard 1/2
of L1 events

R
aw

data from

E
V

B
1

discard 1/3
of L3 events

PXD R/O

hlt-output

event-by-event parallel processing

Full Recon. RoI
Gen.

RoI
extract

hlt-input

event-

R
aw

data from

E
V

B
1

hlt-output

Full Recon. Soft
Trig.

RoI
Gen.

RoI
extract

hlt-inputR
aw

data from

E
V

B
1

PXD R/O

hlt-output

GPU

L3
filter

Original Level 3 trigger

GPU Level 3 trigger

* HLT processing unchanged.

event processes on workers
to be
implemented

basf2

basf2basf2

6

Why GPU? : Comparison with FPGA-based HLT reinforcement
- Another candidate implementation for HLT reinforcement is
 the use of FPGA-based co-processor (just like Xilinx Versal).

- FPGA is useful when a very short latency is required (O(msec)).
 <-> Required HLT latency is O(sec).....

- The number of cores in one FPGA (Versal : AI engines, which is
 essentially RISC processors) is much less than that of GPU.
 GPU (CUDA cores) : > 10,000, Versal (AI cores) : up to 400.

- Programming of FPGA with HLS is much difficult compared to
 that for GPU with CUDA. (CUDA is widely used and mature.)
 [Assuming the porting of existing C++ code on CPU.]
 * Vector cores and DSPs on FPGA are not usable for normal
 C++ codes w/o special programming technique.

7

ChatGPT

8

9

Rough Cost Comparison

- With the M&O budget per year allocated for HLT maintenance,

1) Baseline upgrade: we can buy up to 15 PC servers (Xeon 6548N).
 -> 64(cores/server) x 15 = 960 cores.
 => ~10% increase in processing power

2) GPU (RTX5000Ada) : we can buy up to 15 GPU units.
 -> 12,448 (cores/GPU) x 15 = 186,720 cores! => ~2,500%!!

3) FPGA (Versal VC1902) : we can buy up to 4 Versals(?)
 -> 400 (cores/AIengine) x 4 = 1,600 cores. => ~20%

10

Design Policy

- Keep existing HLT as is.
 Current HLT software processing is not touched at all.

- Add GPU processing before the existing HLT framework
 as a part of the HLT system.
 * Level 3 trigger software incorporated from existing C++
 codes is implemented in GPU.
 * Filter out background events before the actual HLT processing.

- Build GPU software development environment fully compatible
 with the Belle II software library.
 “Seamless software environment between CPU and GPU”

GPU-L3 project

11

1. Seamless Software Development Environment

- The software on GPU is desired to be compatible with the existing
 Belle2 software coded mostly in C++.

- GPU has to be programmed using a different language, CUDA.

- The Belle2 software is developed using “scons” and runs on
 a framework called “basf2” as a set of dynamically-linked modules.

- CUDA compiler (nvcc) is added to scons.
- Development environment is built so that mixed C++ and CUDA
 codes can co-exist in Belle2 library and dynamically loaded in basf2.

=> Seamless execution of GPU-modules and existng C++ modules
 on basf2 becomes possible.
 * Applicable in the offline use.

12

GPU package in Belle2 library

13

input
module

tx

rx CPU
module

GPU
module tx

output
module

rx

input path output path

input
process

event processes

output
process

input data output data

basf2 framework
with GPU

CPU

GPU threads

Mixed module

rx CPU
module

GPU
module tx

CPU

GPU threads

Mixed module

parallel processing utilizing multi-core CPU

14

2. GPU implementation in HLT framework

- Currently we have ~7200 Xeon cores in ~200 worker nodes in HLT.
 Baseline upgrade :
 addition of 1 worker(~70 cores) for 15 HLT units per year.

- One GPU has O(10,000) cores although the processing power
 per core is not so much compared to that of a multi-core CPU.

Place GPUs in the input servers of 15 HLT units and
use them for Level 3 filtering.

* Having GPUs in all worker servers is too much.

15

current hltin

N
I
C

eb
1rx

dist
rib
uto
r

N
I
C

eb1tx
workers

 hltin with GPU

N
I
C

eb
1rx

N
I
C

basf2

GPU/
FPGA
cards

GPU/
FPGA
cards

GPU
cards

PCIe

CPU

CPU

Software framework
similar to that used
in HLT worker nodes.

16

3. Test bench system

CPU : AMD EPYC 7643
 (48 cores/96 threads)

GPU : NVIDIA A2 Tensor
 (1280 CUDA cores;
 10 RT cores;
 40 Tensor cores)

recycled from
another purpose

17

Input
Module Output

module

basf2: input path

Rawdata output data

raw event
buffer

GPU

“thread” : SIMD parallel processing / event
L3 processing is performed on each thread

L3 decision
(no event data return)

multiple events

selectedevents

discarded
events

basf2:event process

basf2:output pathLevel 3 module

Multi-core

basf2

monitor modules

4. Data Flow for GPU and Level 3 selection

18

Parallelized data flow

- Batch processing nature of GPU <- SIMD processing
 * event-by-event processing is not efficient.
 * batch processing of a bunch of events is required.

- Processing of one “batch”
 1. buffer a bunch of events in the host memory.
 2. copy them to GPU memory
 3. start GPU parallel processing and wait for the completion
 4. transfer back results and compare with events in host memory
 5. send chosen events to next basf2 module

- Pipelining is required to ensure smooth, uninterrupted event
 data flow.

Pipelining is required to ensure smooth, uninterrupted event processing.

19

Actual Implementation

- Pipelining of the batch processing is implemented with
 “CUDA Stream”.
 * CUDA has a function to run a set of GPU processing in parallel
 asynchronously by assigning the “batch” to different stream.

- Using the CUDA Stream, the multi-buffering is implemented
 in the input module of basf2.

- The Level 3 selection is implemented in the stream as a part of
 the “batch”.

 -> First test module utilizing SeqRootInput was just implemented
 and the debugging is started.

20

5. Implementation of Level 3 trigger code

- Level 3 trigger software is now being implemented in normal HLT
 processing by Seokhee Park(KEK). The code was originally developed
 by Kakuno-san (TMU) in C++ as a module of basf2.

- It consists of the fast CDC tracking, ECL clustering and TRG handling.

- The porting of the code to CUDA (nvcc) is being tried.

- Geometry/constants access from GPU to Database is one of the
 challenges in the porting.
 * C++ object initialization in host and copy the initialized object to GPU
 over shared memory -> Seems working and being tested.

- Conversion from “fp64” to “fp32” is also an issue to ensure the
 performance advantage of GPU.

21

Current status of GPU-L3 project

Item Status Remark

Seamless software
environment

Done and working Still some problem

Data transport from host
to GPU (and reverse)

Done and working Parallelized data flow is
under development

Raw data unpacking
(CDC/ECL/TRG)

CDC -> done
ECL/TRG -> not yet

channel->wire conv. with
DB access is working

Geometry database
access

In progress Generalized GPU->DB
access method....

CDC Track
Finding/Fitting

Next step

ECL clustering not yet

TRG processing not yet

Level 3 decision not yet

22

Machine learning approach for Level 3 trigger

- Current design of Level 3 code is based on the conventional
 CDC tracking + ECL clustering approach (reference design).

- But new algorithm can be developed using the machine
 learning technique.

- The GPU-capable Belle II software environment can be utilized
 for the development.

- Possibility to utilize Tensor cores in GPU in this case.

However, the development and validation of new code will
take significantly longer time and the deployment is not realistic
before LS2.

23

6. Test in Belle II DAQ

- Realistic test of GPU processing in Belle II DAQ system is
 being prepared.
 * Implement GPU card in “hltin” of one of HLT units.
 * Test the reference GPU-L3 processing in beam run
 (Preparing a set-up not to interrupt the actual data flow)

- Implementation is now in progress and the test will be done
 in coming beam run (2025c-2026ab runs).

24

GPU Implementation in existing HLT unit (unit 15)

- Place GPU in an external rack-mount 4U unit (eGPU).
- Connect it to existing hltin via a special PCIe link.

hltin
hltwk01

Exernal
 PCIe box
with GPU

hltwk02

hltwkxx

PCIe link

GPU
box

netstor NA256-G4

hltin

GPU box

PCIe-link

* GPU and GPU box have been delivered.

25

Choice of GPU for Belle II
 (for data flow up to 50kHz with 200kB/ev, before LS2)
 * 1 GPU for each of 15 HLT units.
 * Each GPU houses ~10,000 CUDA cores
 -> in total of 150,000 cores
 * GPU with better performance in fp64 but hopefully less dependent.
 * Vector cores are supposed to be not used for the planned L3 processing.

 RTX 5090 : 21,760 cores, 32GB, ~100TFLOPS(fp32) : 50 万円
 RTX 5000Ada : 12,448 cores, 32GB, 61TFLOPS(fp32) : 70万円
 RTX 6000Ada : 18,176 cores, 48GB, 91.1TFLOPS(fp32) : 150万円
 H100 : 14,592 cores, 80GB, 30TFLOPS(fp32) : 500 万円
 A2 : 1,280 cores, 16GB, 4.5TFLOPS(fp32) : (used in test bench)
　 Versal VC1902 : 400 AI cores : 630 万円

- RTX5000Ada was chosen for the test bench

26

7. Summary

- A significant shortage in the processing power of Belle II HLT
 is forseen because of the unexpected high background.

- The addtion of GPU in HLT framework is being considered
 for the mitigation before LS2.

- R&D on the GPU based Level 3 trigger is in progress.

- Planning to propose a new HLT upgrade strategy with GPU
 to replace the baseline upgrade plan after the test in beam run
 -> Will be at the B2GM next summer.

Acknowledge:
 Development of GPU based basf2 framework is supported by Kakenhi grant (Kiban C).

27

Backup Slides

28

- Database access

- CDC [board,channel] mapping to wire number using DB.
 * Currently implemented using simple memory copy of
 mapping table.

[host]

[host] [GPU]

29

Choice of GPU : from LHCb experience

- In the current test bench, NVIDIA A2 is being used. No. of
 CUDA cores is only 1024 and not enough for Level 3.

- In the 1st level HLT in LHCb, they use ~500 GPUs of
 NVIDIA Tesla V100, Quadro RTX 6000, and GeForce RTX 2080 Ti.
 Each GPU houses ~5000 CUDA cores.

- LHCb GPU-HLT handles the input data flow of 5TBytes/sec and
 reduces the flow down to 120GB/sec (1/60 reduction).

- Belle II case : input data flow = 200kB/ev*50kHz=10GB/sec
 scaling factor to LHCb = 10GB/5TB =0.002
 -> only 1-2 GPUs are enough for Belle II ????

30

- Current CPU based HLT design is already old-fashioned.

- The maintenance cost of the current HLT is very high.
 * We need to replace out-of-support servers year by year.
 * CPU based servers are expensive.

- Machine-learning based HLT software is recently spot-lighted.
 * Background suppression by “pattern recognition” without
 event reconstruction.
 * Event classification by DNN.

- For such new HLT algorithm, the use of GPU/FPGA is
 much suited.

LS2 is a good chance to implement new HLT design.

31

CUDA kernel code

In CudaTestModule::event()daq/gpu/modules/cudatest/src/
 CudaTestModule.cu

A basf module for GPU test written in CUDA.
 * CUDA coding is mostly compatible with
 standard C++ and easily adopted in existing
 C++ code.
 <- “nvcc” works just as a frontend to g++.

32

basf2 script

Execution result

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

