Reinforcement of HLT with GPU

Belle 1l Trigger/DAQ Workshop 2025

Osaka Metropolitan University
Oct.24, 2025

Consideration on further HLT reinforcement strategy.

- HLT reinforcement should be considered from two separate aspects:

1) Mitigation for the higher trigger rate (by the luminosity/background

Increase) and the maintenance of existing HLT units until LS2.

2) Preparation for the new detector configuration after LS2.

- For 1), we have a baseline upgrade plan.
= adding more PC servers to the existing 15 HLT units.
-> |s this really enough?

- For 2), we need to consider the change in VTX readout
*We don’t need to manage Rol feedback any more.
* Possible increase in the event size. (VTX data go through EB1).

Proposal for 1) : Addition of GPU based Level 3 trigger

- Offload the Level3 trigger software (to be implementec
to GPU.

* GPU can provide tremendous number of cores at a much lower price.

* GPU can be programmed using a language CUDA which is mature and
compatible with C++. <= easy to keep compatibility with Belle2 soft.

* GPU works as a co-processor for CPU

-> mixed CPU+GPU processing is possible.

=> Integrate GPU processing in basf2 and build a seamless
software development environment for Level3 software.

Idea: Implement GPU as soon as possible
as an alternative to the baseline upgrade plan.

Y Tigger Belle Il DAQ System NG

FTSW oo : . 4.
: i PXD readout box > <—
| . (ONSEN) o
§ ' —DATCON > der T
. | copPER->PCIe4o0 | input
i ‘ *reco_»@
SV . [R/O ~_Server m rder
PC —> s g reco
CDCi.C —> os *rder*@
» I =
Belle2link i pc . 2 = '
ECLi.@ -~ B —» ™ reco
; —» C. > Sl
: . = rder
o RO__, @ Online
: X PC = o5 Storage
: Rocket | D
Express
Kwii@ . . o
Replace input servers with GPU servers A

1dAd

TdNd

7

=

o Full Recon.

QD

éh ! basf2 |

=R ¢ vent-by-eventparallelproce#sing fff ?

Kiscard 1/2 discard 1/3 gl ILEE) & i gEen
of L1 events of L3 events
I PXD R/O
’ * HLT processing unchanged. I

pel By e

Q ,

3 L

S = Full Recon. ﬁ

S

3 \ basf2

=F e

‘GPU Level 3 trigger

wWhy GPU? : Comparison with FPGA-based HLT reinforce

- Another candidate implementation for HLT reinforcement is
the use of FPGA-based co-processor (just like Xilinx Versal).

- FPGA is useful when a very short latency is required (O(usec)).
<-> Required HLT latency is O(sec).....

- The number of cores in one FPGA (Versal : Al engines, which is
essentially RISC processors) is much less than that of GPU.
GPU (CUDA cores) : > 10,000, Versal (Al cores) : up to 400.

- Programming of FPGA with HLS is much difficult compared to
that for GPU with CUDA. (CUDA is widely used and mature.)
| Assuming the porting of existing C++ code on CPU.]
* Vector cores and DSPs on FPGA are not usable for normal
C++ codes w/o special programming technique.

« GPU vs. Versal (FPGA) - Running Standard C++ Applications in Parallel

Number of Parallel Cores

Programming Model

Throughput

Latency

Performance per Dollar

Development Cost

Best Use Case

GPU (RTX 5000 Ada / 6000 Ada /
5090)

10,000+ CUDA cores (12,800 on RTX
5000 Ada, 18,176 on RTX 6000 Ada)

CUDA C/C++ (relatively easy to port

existing C++ code)

Tens of TFLOPS in FP32, strong FP64

performance

ms-hundreds of ms (can be hidden

with streams/pipelining)
© (very high for non-ML workloads)

Low (CUDA toolchain is mature, lots

of documentation)

Massively parallel SIMD, FP32/FP64
HPC, batch processing, DAQ event
analysis

Versal Al Core / Al Edge

Hundreds of scalar cores + vector units

Vitis + HLS or RTL (requires rewriting C++
into HLS/RTL)

Lower overall FP32/FP64 throughput

(limited number of Al Engines/tiles)

us-tens of us (excellent for ultra-low

latency)
X (flexible but more expensive per FLOP)

High (RTL/HLS design and verification

required)

Ultra-low latency, deterministic

pipelines, custom logic

4

Rtk

70ty 47 AT LOKEE
VC1502 VC1702 VC1802 VC1902 VC2602 V(2802

FFVr=oay 7oty Fa7JL 37 Arm® Cortex®-A72, 48 KB/32KBL1 F¥v v a (N T4 HE LTV ECCHHEF). 1TMBL2 Fv v a (ECCHHE)
»J 1=y bk

YPNELL TOty vy T2 7))L 37 Arm Cortex-R5F, 32KB/32KB L1 4> 2. H&U 256 KB TCM (ECC)
az=vhk
XEY 256 KB AV Fv 7 XEVY (ECCFE)
B A —H 2wk (x2). USB 2.0 (x1)., UART (x2), SPI(x2). 12C (x2). CAN-FD (x2)
AITYTVE DSP ISV DI&EE

VC1502 VC1702 VC1802 VC1902 VC2602 VC2802
AIIOTY 198 304 300 400 0 0
AlT>Y-ML 0 0 0 0 152 304

DSPI>D Y 1,032 1,312 1,600 984 1,312

Rough Cost Comparison

- With the M&O budget per year allocated for HLT main

1) Baseline upgrade: we can buy up to 15 PC servers (Xeon 6548N).
-> 64(cores/server) x 15 = 960 cores.
=> ~10% Increase in processing power

2) GPU (RTX5000Ada) : we can buy up to 15 GPU units.
-> 12,448 (cores/GPU) x 15 = 186,720 cores! => ~2,500%!!

3) FPGA (Versal VC1902) : we can buy up to 4 Versals(?)
-> 400 (cores/Alengine) x 4 = 1,600 cores. => ~20%

Design Policy

- Keep existing HLT as is.
Current HLT software processing is not touched at all.

- Add GPU processing before the existing HLT framework
as a part of the HLT system.
* Level 3 trigger software incorporated from existing C++
codes is implemented in GPU.
* Filter out background events before the actual HLT processing.

- Build GPU software development environment fully compatible
with the Belle Il software library.
“Seamless software environment between CPU and GPU”

GPU-L3 project

10

1. Seamless Software Development Environment

- The software on GPU is desired to be compatible with the existing
Belle2 software coded mostly in C++.

- GPU has to be programmed using a different language, CUDA.

- The Belle2 software is developed using “scons” and runs on
a framework called “basf2” as a set of dynamically-linked modules.

- CUDA compiler (nvcce) is added to scons.
- Development environment is built so that mixed C++ and CUDA
codes can co-exist in Belle2 library and dynamically loaded in basf2.

=> Seamless execution of GPU-modules and existng C++ modules
on basf2 becomes possible.
* Applicable in the offline use.

itohepyc% scons -j 1 gpu
scons: Reading SConscript files ...

GPU package in Belle2 library pupiti> Targets (Detailed):

arget: gpuf
scons: Building targets ...
gpu/cdctracker vce -o build/Linux_x86_64/debug/gpu/modules/13decision/src/GPUSRootInput.o -c \
|-- gpu/cdctracker/include --compiler-options -fPIC -arch sm 86 -rdc=true -Xcompiler -Wno-unused-parameter\
‘.- gpu/cdctracker/src -Xcompiler -std=c++17 TXcompller -Wa¥l -Xcompller -1system(home/usr/1toh/be11¢\
gpu/cdcunpack ?/externals/v02-00-02b/include -Xcompiler -Iinclude/ -Xcompiler -Wextra -Xcompi\
|-- gpu/cdcunpack/include er -Wshadow -Xcompiler -Wstack-usage=200000 -Xcompiler -g -Xcompiler -isystem/\
*__ gpu/cdcunpack/src ome/usr/itoh/belle2/externals/v02-00-02b/Linux x86 64/common/include/python3.8\
gpu/eclunpack -Xcompiler -isystem/home/usr/itoh/belle2/externals/v02-00-02b/include/CLHEP -X\
gpu/modules ompiler -isystem/home/usr/itoh/belle2/externals/v02-00-02b/Linux x86 64/common\
I-- gpu/modules/cudatest include/Geant4 -Xcompiler -isystem/home/usr/itoh/belle2/externals/v02-00-02b/L\
gp : inux x86 64/common/include -Xcompiler -isystem/home/usr/itoh/belle2/externals/v\
| J" gpu/modules/cudatest/include 02-00-02b/include/root -Xcompiler -isystem/home/usr/itoh/belle2/externals/v02-0\
| -- gpu/modules/cudatest/src p-02b/include/belle legacy -D PACKAGE ='"gpu"' -DG4UI USE TCSH -DRaveDULExport=\
|-- gpu/modules/eventhandle , -DHAS SQLITE -DHAS CALLGRIND -DHAS OPENMP -I include -I /home/usr/itoh/belle2/\
I |-- gpu/modules/eventhandle/include externals/v02-00-02b/Linux x86 64/common/include/1libxml2 gpu/modules/13decision\
|
|
|

-- gpu/modules/gpuunpacker

| -- gpu/modules/gpuunpacker/include vce -shared -arch sm_86 -o modules/Linux_x86_64/debug/libl3decision.so build/L\
-- gpu/modules/gpuunpacker/src inux x86 64/debug/gpu/modules/13decision/src/GPUSRootInput.o build/Linux x86 64\
" -- gpu/modules/13unpack debug/gpu/rawdata/src/GPURawCOPPER.0 build/Linux x86 64/debug/gpu/rawdata/src/\
| -- gpu/modules/13unpack/include PURawHeader.o build/Linux x86 64/debug/gpu/rawdata/src/GPURawTrailer.o build/L\
*-- gpu/modules/13unpack/src inux x86 64/debug/gpu/cdcunpack/src/GPUCDCHit.o build/Linux x86 64/debug/gpu/cd\
gpu/rawdata unpack/src/GPUCDCUnpack.o build/Linux_ x86 64/debug/gpu/cdcunpack/src/GPUW1reID\
| -- gpu/rawdata/include .0 -Llib/Linux x86 64/debug -L/home/usr/itoh/belle2/externals/v02-00-02b/Linux \
"-- gpu/rawdata/src x86 64/opt/lib -L/home/usr/itoh/belle2/externals/v02-00-02b/Linux x86 64/common\
gpu/tools root/lib -L/usr/local/cuda/usr/local/cuda/targets/x86 64- linux/lib/stubs -L/us\
gpu/utils r/local/cuda/targets/x86_64-1linux/lib -L/home/usr/itoh/belle2/externals/v02-00-\
*-- gpu/utils/include 02b/Linux x86 64/common/lib -lcdc -ldaq -1framework -lrawdata dataobjects -lcud\
adevrt -lcudart static
FEE map : modules/Linux x86 64/debug/libl3decision.b2modmap
scons: done building targets.

basf2 framework event processes
with GPU -

. 3Py threads o
Input) outpu
pProcess Process

input path output path

thread

Mixed module

- I

input data output data

parallel processing utilizing multi-core CPU

13

2. GPU implementation in HLT framework

- Currently we have ~7200 Xeon cores in ~200 worker nodes in HLT.
Baseline upgrade :
addition of 1 worker(~70 cores) for 15 HLT units per year.

- One GPU has 0O(10,000) cores although the processing power
per core Is not so much compared to that of a multi-core CPU.

Place GPUs in the input servers of 15 HLT units and
use them for Level 3 filtering.

* Having GPUs in all worker servers is too much.

14

current hltin

- CPU

dist
o o

hitin with GPU

orkers

Software framework
similar to that used
in HLT worker nodes.

3. Test bench system

itohepyc% lscpu
Architecture:

CPU op-mode(s):
Address sizes:

x86 64
32-bit, 64-bit
48 bits physical, 48 bits virtual

Byte Order: Little Endian
CPU(s): 96
On-1line CPU(s) list: 0-95
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7643 48-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 1
Stepping: 1

Frequency boost: enabled
CPU(s) scaling MHz: 63%

CPU max MHz: 3640.9170
CPU min MHz: 1500.0000
BogoMIPS: 4599.87

CPU : AMD EPYC 7643
(48 cores/96 threads)

itohepyc% cat /etc/redhat-release
Rocky Linux release 9.5 (Blue Onyx)

recycled from

another purpose

onepycs Nvidld

Thu Jan 30 13:59:22 2025

| NVIDIA-SMI 565.57.01 Driver Version: 565.57.01 CUDA Version: 12.7 |

IR L L LT LR P PP e R +

| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.

|

| |

I | | MIG M.I

| © NVIDIA A2 0ff | 0000000:81:00.0 OFf | 0 |

| o% 33 P8 5W/ 60w | IMiB / 15356MiB | 0% Default |

| | | N/A |
+

GPU : NVIDIA A2 Tensor
(1280 CUDA cores;
10 RT cores;
40 Tensor cores)

4. Data Flow for GPU and Leve

Level 3 module

events |3 decision
/ (no event data return)

Multi-core

“thread” : SIMD parallel processing / event
L3 processing Is performed on each thread

Parallelized data flow

- Batch processing nature of GPU <- SIMD processing
* event-by-event processing is not efficient.
* pbatch processing of a bunch of events is required.

- Processing of one “batch”
1. buffer a bunch of events in the host memory.
2. copy them to GPU memory

3. start GPU parallel processing and wait for the completion
4. transfer back results and compare with events in host memory
5. send chosen events to next basf2 module

- Pipelining is required to ensure smooth, uninterrupted event
data flow.

18

Actual Implementation

- Pipelining of the batch processing is implemented with
“CUDA Stream”.
* CUDA has a function to run a set of GPU processing in parallel
asynchronously by assigning the “batch” to different stream.

- Using the CUDA Stream, the multi-buffering is implemented
In the input module of basf2.

- The Level 3 selection is implemented in the stream as a part of
the “batch”.

-> First test module utilizing SegRootlnput was just implemented
and the debugging is started.

19

5. Implementation of Level 3 trigger code

- Level 3 trigger software is now being implemented in normal HLT
processing by Seokhee Park(KEK). The code was originally developed
by Kakuno-san (TMU) in C++ as a module of basf2.

- It consists of the fast CDC tracking, ECL clustering and TRG handling.
- The porting of the code to CUDA (nvcc) Is being tried.

- Geometry/constants access from GPU to Database is one of the
challenges in the porting.

* C++ object initialization in host and copy the initialized object to GPU
over shared memory -> Seems working and being tested.

- Conversion from “fp64” to “fp32” is also an issue to ensure the
performance advantage of GPU.

Current status of GPU-L3 project

Seamless software Done and working Still some problem
environment
Data transport from host Done and working Parallelized data flow is
to GPU (and reverse) under development
Raw data unpacking CDC ->done channel->wire conv. with
(CDC/ECL/TRG) ECL/TRG ->notyet DB access is working
Geometry database In progress Generalized GPU->DB
access access method....
CDC Track Next step
Finding/Fitting
ECL clustering not yet
TRG processing not yet

Level 3 decision not yet
21

Machine learning approach for Level 3 trigger

- Current design of Level 3 code is based on the conventional
CDC tracking + ECL clustering approach (reference design).

- But new algorithm can be developed using the machine
learning technique.

- The GPU-capable Belle Il software environment can be utilized
for the development.

- Possibllity to utilize Tensor cores in GPU In this case.

However, the development and validation of new code will

take significantly longer time and the deployment is not realistic
before LS2.

22

6. Test in Belle 1| DAQ

- Realistic test of GPU processing in Belle [I DAQ system Is
being prepared.
* Implement GPU card in “hltin” of one of HLT units.
* Test the reference GPU-L3 processing in beam run
(Preparing a set-up not to interrupt the actual data flow)

- Implementation is now in progress and the test will be done
In coming beam run (2025c-2026ab runs).

23

GPU Implementation in existing HLT unit (unit 15)

- Place GPU in an external rack-mount 4U unit (eGPU).
- Connect it to existing hltin via a special PCle link.

ne

Hos! Systom

hltwk01

SCEE]
PCle box
with GPU

hltwk02

* GPU and GPU box have kb

Choice of GPU for Belle Il
(for data flow up to 50kHz with 200kB/ev, before LS2
* 1 GPU for each of 15 HLT units.
* Each GPU houses ~10,000 CUDA cores

-> |n total of 150,000 cores

* GPU with better performance in fp64 but hopefully less depenc
* Vector cores are supposed to be not used for the planned

- RTX5000Ada was chosen for the test benc

RTX 5090 : 21,760 cores, 32GB, ~100TFLOPS(fp32) : 50 A -
RTX 5000Ada : 12,448 cores, 32GB, 61TFLOPS(fp32) : 70 A5

RTX 6000Ada : 18,176 cores, 48GB, 91.1TFLOPS(fp32) : 150 5

H100 : 14,592 cores, 80GB, 30TFLOPS(fp32) : 500 /3
A2 : 1,280 cores, 16GB, 4.5TFLOPS(fp32) : (used in test bench)

Versal VC1902 : 400 Al cores : 630 A4

—

/. Summary

- A significant shortage in the processing power of Belle [l HLT
IS forseen because of the unexpected high background.

- The addtion of GPU in HLT framework is being considered
for the mitigation before LS2.

- R&D on the GPU based Level 3 trigger is in progress.

- Planning to propose a new HLT upgrade strategy with GPU
to replace the baseline upgrade plan after the test in beam run
-> Will be at the B2GM next summer.

Acknowledge:
Development of GPU based basf2 framework is supported by Kakenhi grant (Kiban C).

- Database access
- CDC [board,channel] mapping to wire number using DB.

* Currently implemented using simple memory copy o
mapping table.

// Initialize wire map |NOSt]
// GPUCDCUnpack cdcunpack;
unsigned short* local wire map = (unsigned short*) std::malloc (301*48*sizeof(unsigned short));
GPUCDCUnpack: : Instance().loadMap (local wire map);

cudaMemcpy (m wire map, local wire map, 301*48*sizeof(unsigned short), cudaMemcpyHostToDevice);

ost [host] B

\{roid GPUCDCUnpack: : loadMap (unsigned short* wiremap) _hOS‘t_ _device_ [GPU]

// if (m map initialized) return; void GPUCDCUnpack::setupMap (unsigned short* wiremap)

printf ("[Host] loadMap called\n");

int minib = 1000; printf ("[Kernel] setupMap called\n");

int maxib = -1;

// for (const auto& cm : (*m channelMapFromDB)) { . . .

for (const auto& cm : (m_channelMapFromDB)) { for (1nt.1b=(§|; 1b<$01: 1b'f'+) {
const int isl = cm.getISuperLayer(); for (int ic=0; ic<48; ic++) {
COHS:E }H:E il = Cm-geg\béyer(): // m map[ib][ic] = wiremap[ib][ic];
Egﬂ:t izt ;gogrc‘;"‘;gﬁm.g;{;‘,;'rdm(,. m map[ib][ic] = (unsigned short)wiremap[ib*48+ic];
const int iCh = cm.getBoardChannel(); // 1f.(ib==7) o .)) .
const WireID wireId(isl, il, iw): // printf ("setupMap : board=%d, channel=%d : wireid = %d\n", ib, ic, m map[ib][ic]);
1/ wiremap[iBoard] [iCh] = wireld;
1/ wiremap[iBoard*48+iCh] = wireld; }
int ib = iBoard; ..
int ic = ich; m_map_initialized = true;
if (ib < minib) minib = ib; }
if (ib > maxib) maxib ib;

wiremap[ib*48+ic] = wireld;
1/ if (ib=7)
1/ printf ("Loading map : board=%d, channel=%d : wireid = %d\n", ib, ic, wiremap[ib*48+ic]);

}
printf ("LoadMap : minimum boardId = %d, maximum boardId = %d\n", minib, maxib);

Choice of GPU : from LHCb experience

- In the current test bench, NVIDIA A2 is being used. No. of
CUDA cores is only 1024 and not enough for Level 3.

- In the 15 level HLT in LHCDb, they use ~500 GPUs of
NVIDIA Tesla V100, Quadro RTX 6000, and GeForce RTX 2080 Ti.
Each GPU houses ~5000 CUDA cores.

- LHCb GPU-HLT handles the input data flow of 5TBytes/sec and
reduces the flow down to 120GB/sec (1/60 reduction).

- Belle Il case : input data flow = 200kB/ev*50kHz=10GB/sec
scaling factor to LHCb = 10GB/5TB =0.002
-> only 1-2 GPUs are enough for Belle [l ??7??

29

LS2 is a good chance to implement new HLT design.

- Current CPU based HLT design is already old-fashioned.

- The maintenance cost of the current HLT is very high.
*We need to replace out-of-support servers year by year.
* CPU based servers are expensive.

* Background suppression by “pattern recognition” without
event reconstruction.
* Event classification by DNN.

- For such new HLT algorithm, the use of GPU/FPGA is
much suited.

- Machine-learning based HLT software is recently spot-lighted.

30

daqg/gpu/modules/cudatest/src/
CudaTestModule

CUDA kernel code

/**
* CUDA Kernel Device code
*
* Computes the vector addition of A and B into C. The 3 vectors have the same
* number of elements numElements.
)k)k/
__global void vectorAdd(const float *A, const float *B, float *C,
int numElements) {
blockDim.x * blockIdx.x + threadIdx.x;

int i =

if (i < numElements) {

In CudaTestModule::event()

// Copy the host input vectors A and B in host memory to the device input
// vectors in

// device memory

printf("Copy input data from the host memory to the CUDA device\n");

err = cudaMemcpy(d A, h A, size, cudaMemcpyHostToDevice);

if (err '= cudaSuccess) {
fprintf(stderr,
"Failed to copy vector A from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}

err = cudaMemcpy(d B, h B, size, cudaMemcpyHostToDevice);

if (err '= cudaSuccess) {
fprintf(stderr,
"Failed to copy vector B from host to device (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT_FAILURE);
}

C[i] = A[i] + B[i] + 0.0f;
}

}

// Launch the Vector Add CUDA Kernel

int threadsPerBlock = 256;

int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;

printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid,
threadsPerBlock) ;

vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, numElements);

err = cudaGetLastError();

A basf module for GPU test written in
* CUDA coding is mostly compatible with
standard C++ and easily adopted in existing

C++ code.

<-“ ” works just as a frontend to g++.

if (err != cudaSuccess) {
fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT FAILURE);
}

// Copy the device result vector in device memory to the host result vector
// in host memory.

printf("Copy output data from the CUDA device to the host memory\n");

err = cudaMemcpy(h_C, d C, size, cudaMemcpyDeviceToHost);

if (err !'= cudaSuccess) {
fprintf(stderr,
"Failed to copy vector C from device to host (error code %s)!\n",
cudaGetErrorString(err));
exit(EXIT FAILURE);
}
31

basf2 script

Create Path
main = basf2.create path()

Dummy event generator
main.add module("EventInfoSetter", evtNumList=[1], runList=[1], expList=[0])

CudaTestModule
main.add module ('CudaTest')

basf2.process(main)

Execution result

itohepyc% basf2 cudatest.py
[INFO] Steering file: cudatest.py

[INFO] CudaTest: Constructor done.

[INFO] Starting event processing, random seed is set to '5dfc8bd7a91ldaae8f5cc6f2c79fla73f0alac3c4296bc7badf200e523030ea5’
[INFO] CudaTest: started to measure elapsed time.

[Vector addition of 50000 elements]

Copy input data from the host memory to the CUDA device

CUDA kernel launch with 196 blocks of 256 threads

Copy output data from the CUDA device to the host memory

Test PASSED

Done

[INFO] CudaTest: terminate called

[INFO] CudaTest: Destructor.

SEEE—— 32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

