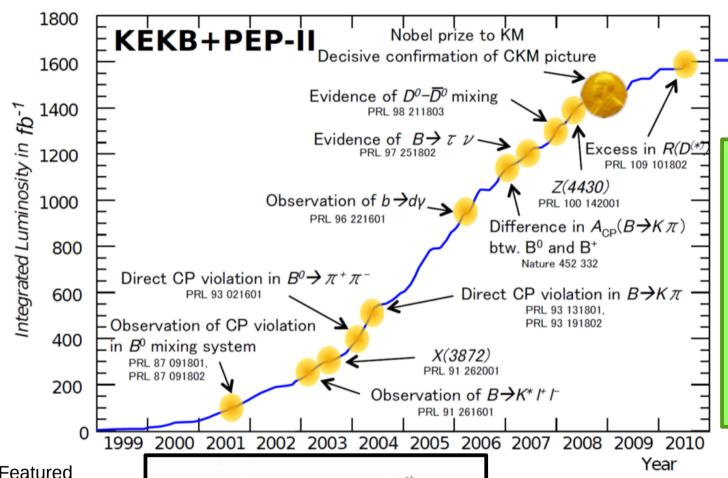
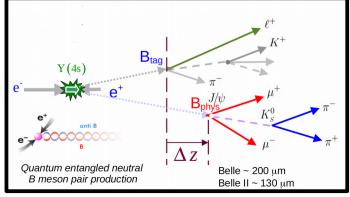

Belle II Status and Prospects

Tadeas Bilka Charles University, Prague


The hunt for New Physics

Rich legacy of B-Factories

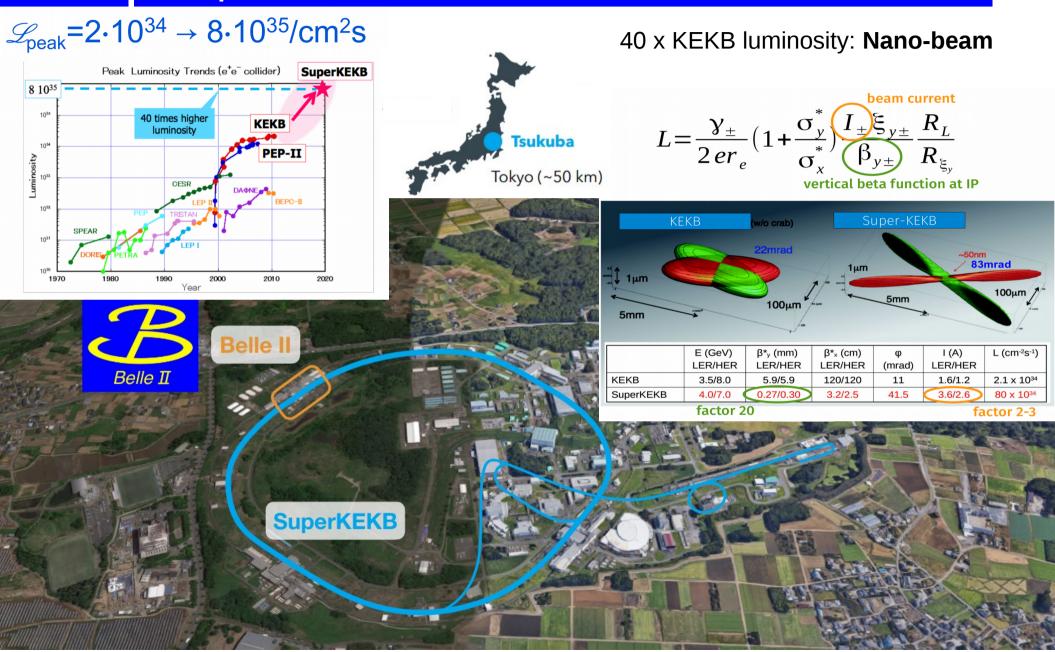

Analyses still continuing...

Belle talks on Tuesday:

- Measurement of time-dependent CP violation in B0 to KS KS KS decays at Belle by Kookhyun Kang
- New Results on D-Mixing and CP Violation from Belle
 by David Cinabro Cinabro

Featured physics goal:

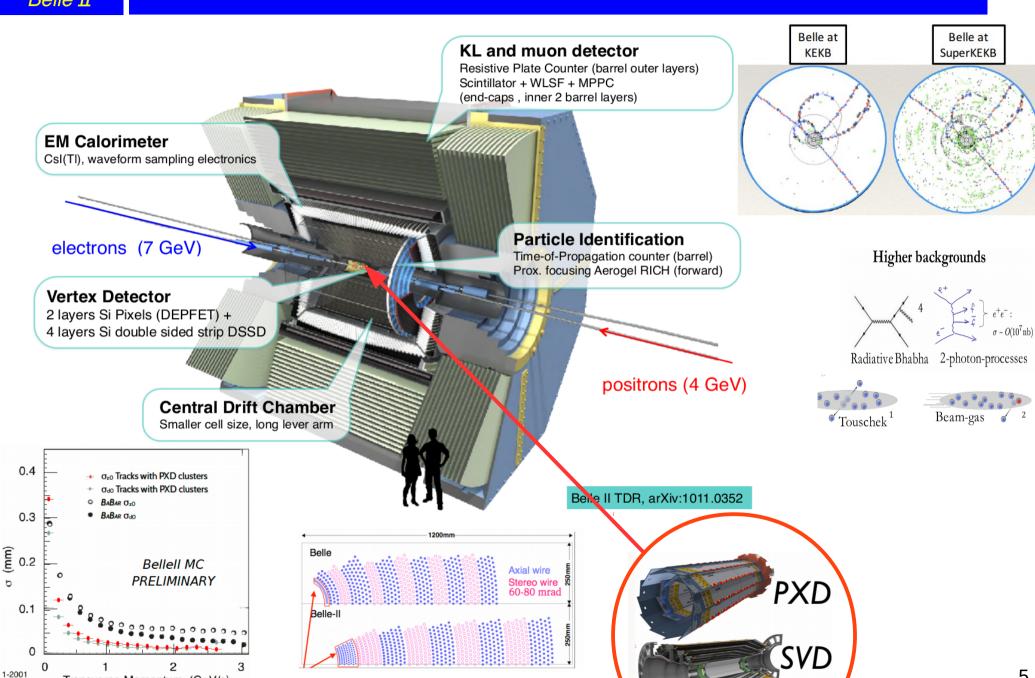
Precise timedependent CP-violation measurements



Collider requirements: extreme luminosity **Detector requirements** – need for excellent:

- particle ID
- vertex resolution (reduced boost)
- radiation hardness
- DAQ/software... (high data rates, backgrounds)

The next generation Super-B-Factory: SuperKEKB



Transverse Momentum (GeV/c)

8583A28

Belle → Belle II

Belle II Physics Prospects: Overview

Only selection of examples (Sorry if I did not include your favourite)

With 50 ab⁻¹ of e⁺e⁻ collisions at (or close to) Y(4S) we have/can:

- (Super) B-Factory (~ 1.1 x 10⁹ BB pairs / ab⁻¹)
- (Super) Charm-Factory ($\sim 1.3 \times 10^9 \text{ cc}$ pairs / ab⁻¹)
- (Super) Tau-Factory (~ 0.9 x 10⁹ tau pairs / ab⁻¹)
- Use Initial State Radiation (ISR) to effectively scan e⁺e⁻ → light hadrons cross-section in range [0.5 – 10] GeV
- Exploit the clean e⁺e⁻ environment to probe existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ...

Well defined initial state - Belle II can handle:

• neutral final states $\pi^0\pi^0$, $K_s\pi^0(\gamma)$, $K_sK_sK_s$

• final states with missing energy τv , $D^{(*)}\tau v$

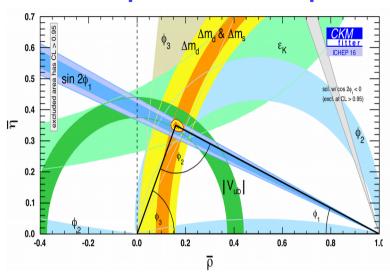
• inclusive modes, e.g.

 $B \rightarrow X_s \gamma$, $B \rightarrow X_s l^+ l^-$

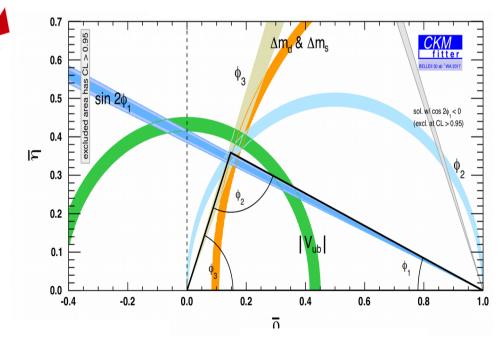
Next talk: Rare B decays at Belle II by MING-CHUAN CHANG

- CPV in B decays $(B \to J/\psi K^0,\, K^0\pi^0\gamma,\, K\pi)$
- (Semi)leptonic B decays (B \rightarrow D(*)lv, π lv, τ v, μ v)
- Rare B decays $(B \to K^{(*)}vv, K^{(*)}ll, X_s\gamma, X_sll, \gamma\gamma)$
- Charm physics $(D \rightarrow lv, mixing, CPV)$
- **LFV** tau decays $(\tau \rightarrow 31, 1\gamma)$
- Dark Sector, Spectroscopy (also early physics)

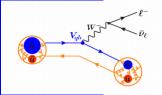
Thursday: First results on DM searches at Belle II by Michael De Nuccio


Tuesday: Semileptonic and leptonic B decays at Belle II by Andreas Warburton

Belle II complementary to LHCb on indirect searches, but also competitive in some studies

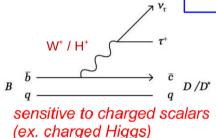

Unitarity Triangle in the precision era

Enhanced precision of UT parameters (sides, angles)


UT angles with ~ 1% uncertainity for 50 ab⁻¹

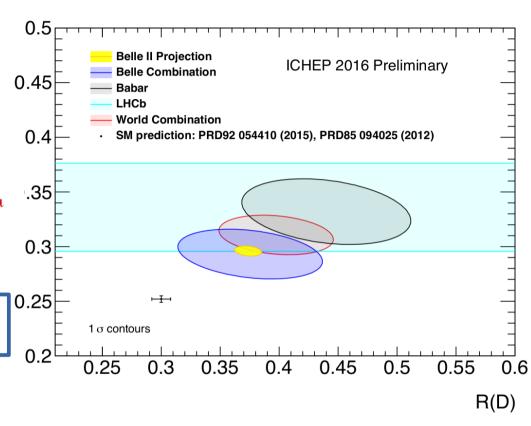
Inconsistency between angles or/and sites → New Physics

Semileptonic B decays



$B \to D^{(*)} \, \tau \, \nu$

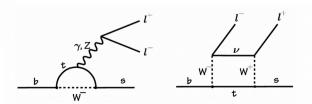
Hot topic: Ratios R(D(*))

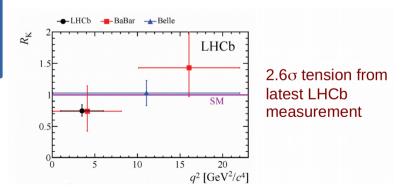

- · Lepton universality test
- Very clean theory prediction
- World average 4 sigma away from SM

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_\tau)}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_\ell)} \qquad l = \mathbf{e}, \, \mathbf{p}$$

→ BF modification

Belle II can reach 3% sensitivity for $R(D(*)) \rightarrow NP$?

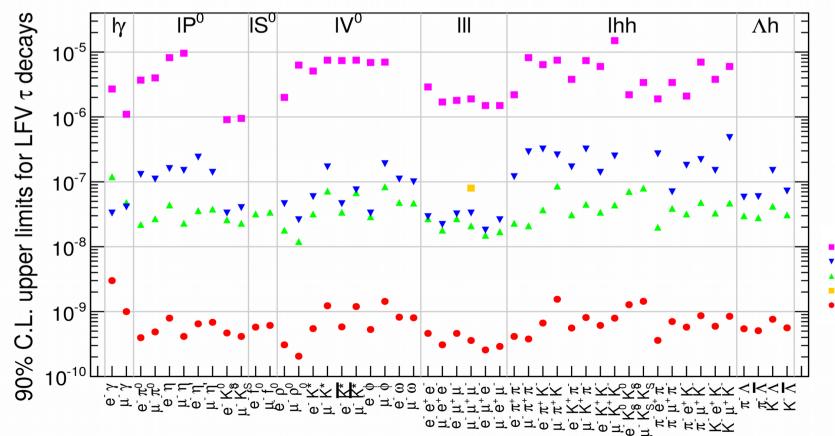


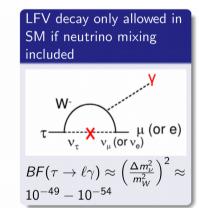

Electroweak Penguins

Lepton Flavor Universality violation in $B^+ \rightarrow K^+l^+l^-$?

$$R_K = rac{\int_{q_{
m min}}^{2} rac{d\Gamma[B^+ o K^+ \mu^+ \mu^-]}{dq^2} dq^2}{\int_{q_{
m min}}^{2} rac{d\Gamma[B^+ o K^+ e^+ e^-]}{dq^2} dq^2} pprox 1$$

Confirmation from Belle II will be crucial (good efficiency for electrons and muons in wide q² range)

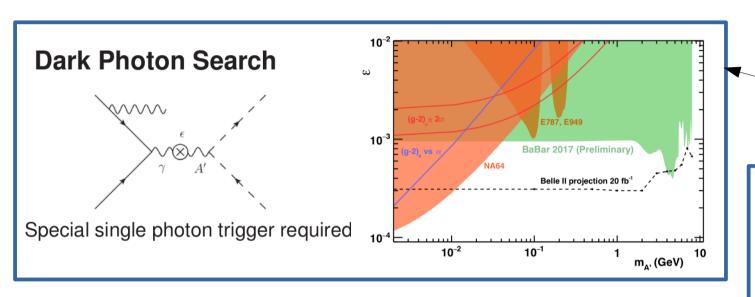


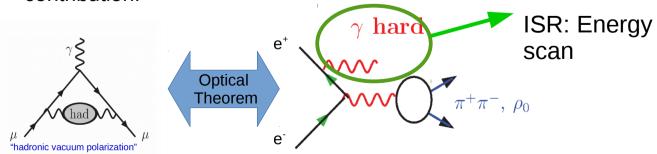

Tau Physics

Lepton Flavour Violation in τ **decays**

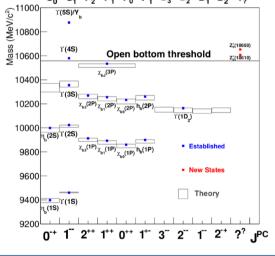
- In the SM, lepton flavour violating decays, like $\tau \to \mu \gamma$, are forbidden/highly supressed, while NP could enhance their BF's significantly
- Belle II can access final states with neutrals $(\gamma, \pi^0, \eta^{(i)}, ...)$
- · Control of beam backgrounds crucial

Sizable enhancement of BF by new physics models for LFV tau decays			
model	reference	$\tau \to \mu \gamma$	$ au o \mu\mu\mu$
$\overline{SM}+ u$ oscillations	EPJ C8 (1999) 513	10^{-40}	10^{-14}
$SM + heavy \; Maj \; \nu_{R}$	PRD 66(2002)034008	10^{-9}	10^{-10}
Non-universal Z'	PLB 547(2002)252	10^{-9}	10^{-8}
SUSY SO(10)	PRD 68(2003)033012	10^{-8}	10^{-10}
mSUGRA+seesaw	PRD 66(2002)115013	10^{-7}	10^{-9}
SUSY Higgs	PLB 566(2003)217	10^{-10}	10^{-7}



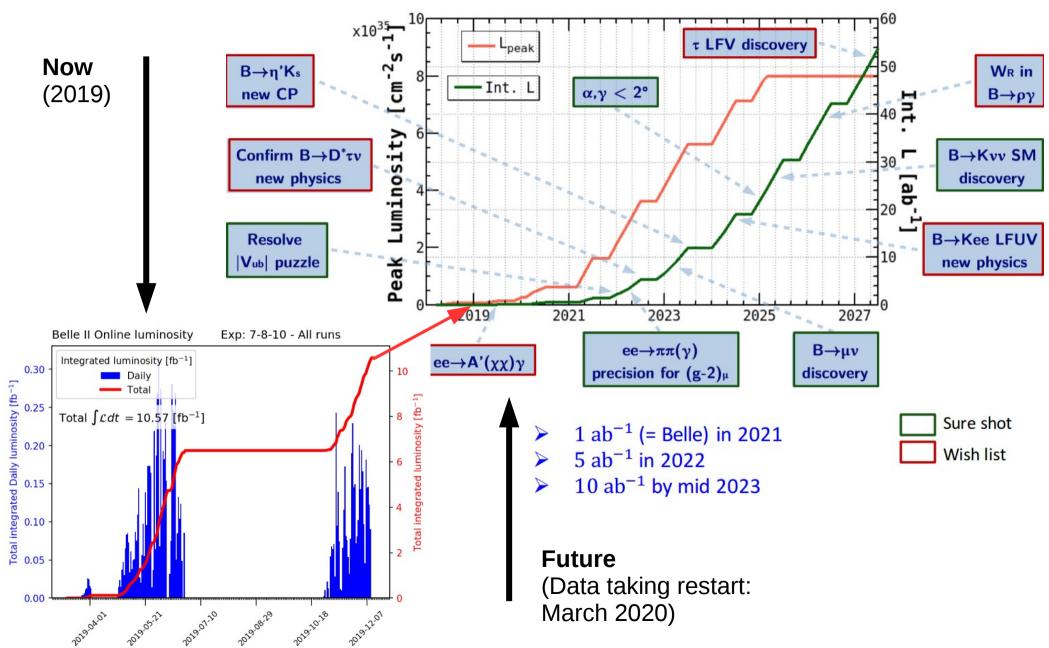


e+e- → light hadrons, dark things, spectroscopy, exotic states...

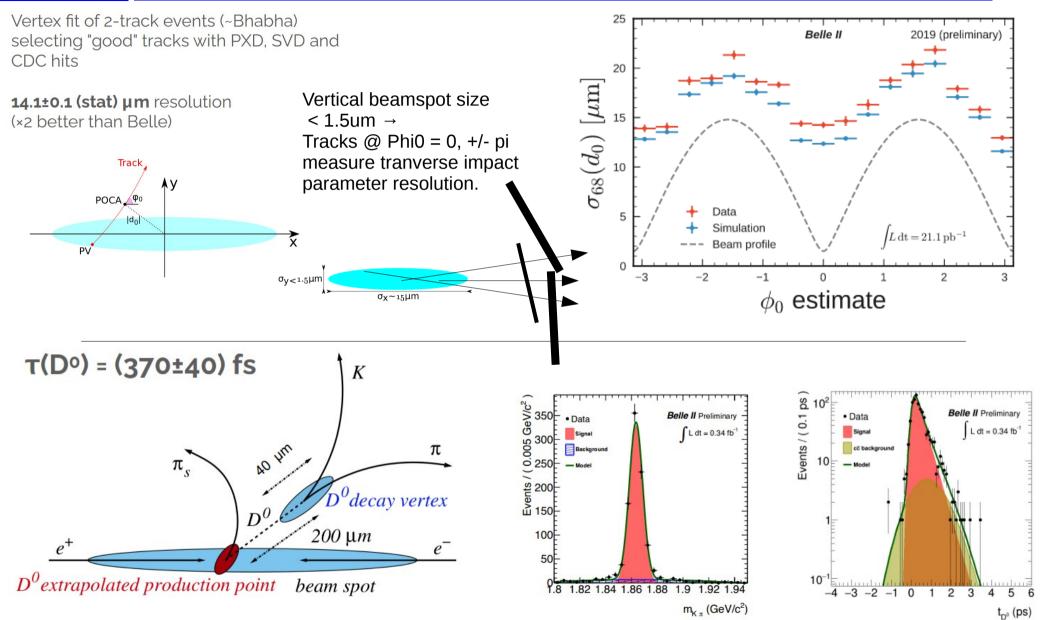


e⁺e⁻ → light hadrons

- Long standing discrepancy between theory and experiment in the $(g-2)_{\mu}$ (3.5 sigma)
- Most of the uncertainity in the theory comes from the hadronic contribution:



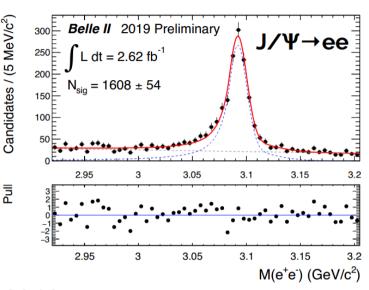
Early Physics (2018/2019) Bottomonium States (2S+1)L_J 1_{S0} 3_{S1} 3_{P2} 3_{P1} 3_{P0} 1_{P1} 3_{D3} 3_{D2} 3_{D1} 1_{D2} 2_{??} (2S+1)L_J 1_{S0} 3_{S1} 3_{P2} 3_{P1} 3_{P0} 1_{P1} 3_{D3} 3_{D2} 3_{D1} 1_{D2} 2_{??}

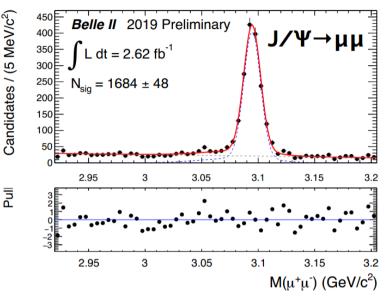


SuperKEKB/Belle II Status and Vistas

Belle II Performance: Vertex Resolution & D0 Lifetime

Powerful test of vertex fitting performance. Using global decay-chain fit (TreeFitter). Shortlived D* constrained to beamspot region.

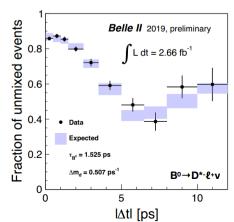



First physics @ $o(10 \text{ fb}^{-1})$

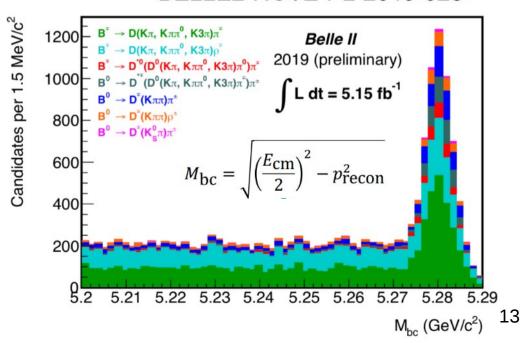
Lepton identification:

Muons & electrons

(Mostly calorimeter + muon system)

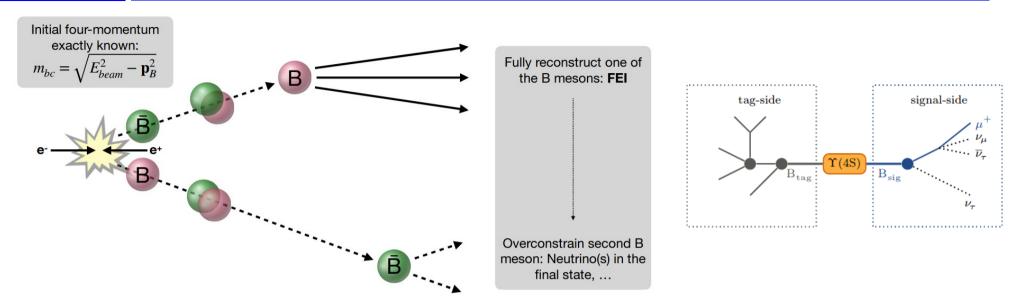

Rediscovery of B-mesons:

Modes with neutrals efficiently reconstructed along with all-charged final states with kaons and pions

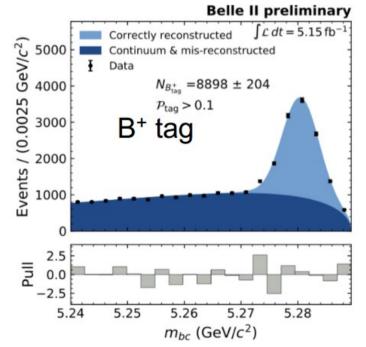

(Demonstration of Belle II capabilities – neutrals in final

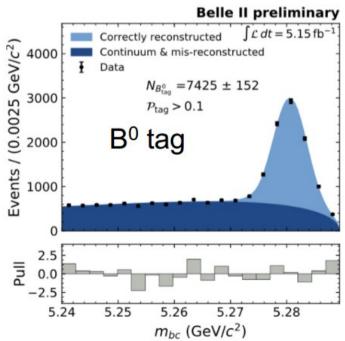
states, K/pi separation)

Rediscovery of B-Bbar mixing:



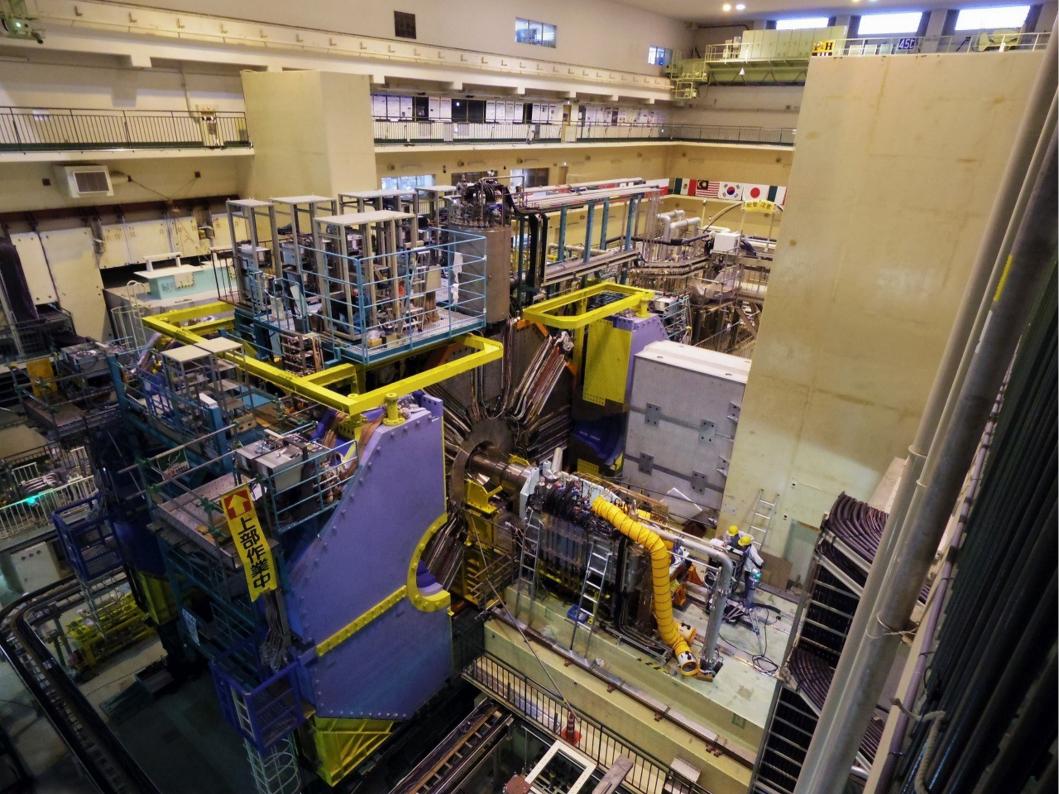
BELLE2-NOTE-PL-2019-028




Full Event Interpretation (new @ Belle II)

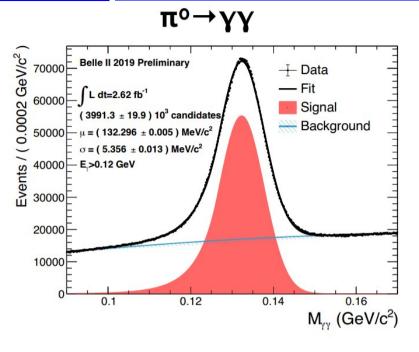
O(100) channels reconstructed

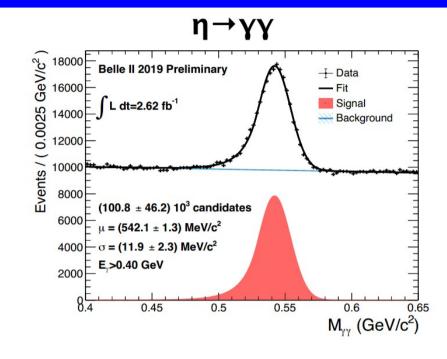
- Initial state known
- Fully reconstructed event
- Access to missing energy/momentum final states with neutrinos

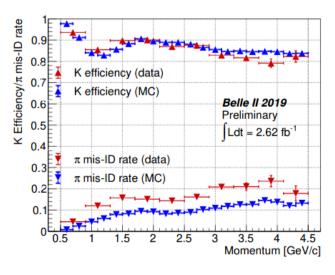


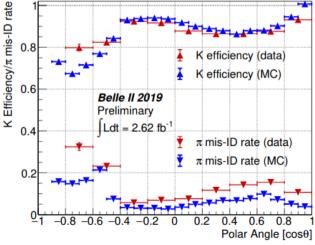
Summary

- First data from new generation Super-B-factory!
- Belle II will join LHCb in the hunt for New Physics just in time – competitive but also complementary
- Several tensions in SM known, Belle II can give definitive resolution
- If NP found at LHC, Belle II could reveal its flavour structure and/or weak phases. If not, precision measurements at Belle II even more important
- Physics run continues from March 2020 goal of 200fb-1 for summer conferences



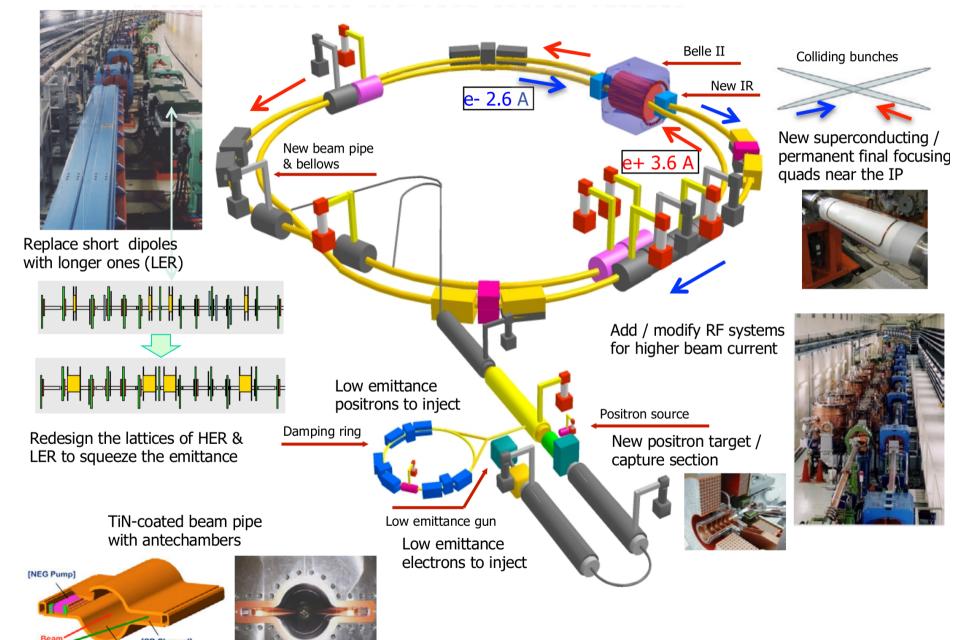

Thank you for your attention!





Belle II Performance: Reconstruction of neutrals, hadron PID (K/p

CDC, TOP (barrel) and ARICH (endcap)


Select $D^* \rightarrow D^{\circ}(K\pi) \pi_s$

Tag $(K\pi)$ charge via slow pion charge

[Beam Channel]

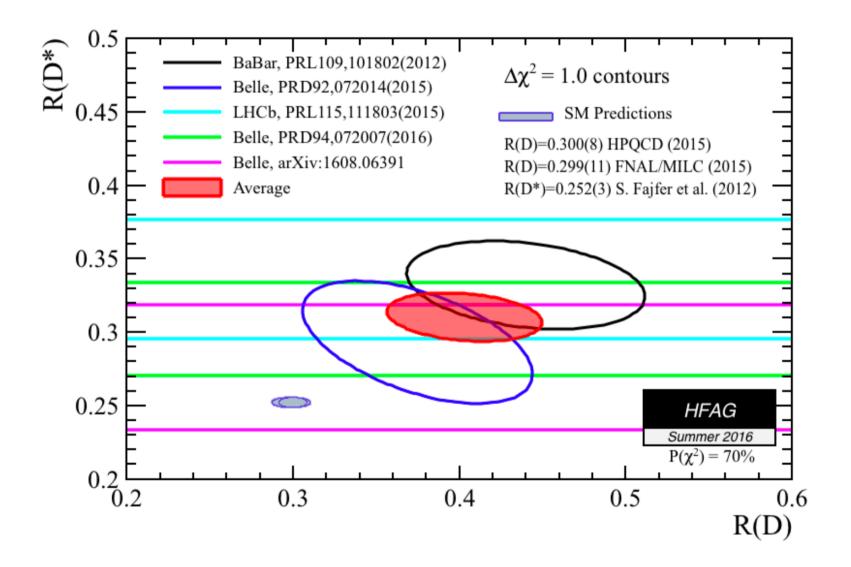
KEKB → SuperKEKB

Belle II & LHCb

Observables	Expected th. accuracy	Expected exp. uncer-	Facility (2025)
		tainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	Belle II/LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CPV			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	***	0.01	Belle II
$S(B \to \phi K^0)$ $S(B \to \eta' K^0)$ $A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			-
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$ $\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Belle II
$R(B \to D au u)$	***	3%	Belle II
$R(B \to D^* au u)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			-
$\mathcal{B}(B o X_s\gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \to K^*\ell\ell)$	**	0.03	Belle II/LHCb
			,

	01 11	D. II. T. T.CO. *	D		_	HCO
	Observables	Belle or LHCb*		lle II		HCb
		(2014)	5 ab^{-1}	50 ab^{-1}	2018	$50 \; {\rm fb^{-1}}$
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		
	$\mathcal{B}(D_s o au u)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
	$\mathcal{B}(D^0 o \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%		
Charm CP	$A_{CP}(D^0 \to K^+K^-)$ [10 ⁻⁴]	$-32\pm21\pm9$	11	6		
	$\Delta A_{CP}(D^0 \to K^+K^-) [10^{-3}]$	3.4*			0.5	0.1
	A_{Γ} $[10^{-2}]$	0.22	0.1	0.03	0.02	0.005
	$A_{CP}(D^0 \to \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
	$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03		
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13}$	0.14	0.11		
	$y(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	0.08	0.05		
		$0.90 \pm {0.16 \atop 0.15} \pm {0.08 \atop 0.06}$	0.10	0.07		
	$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$		6	4		
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
	$ au ightarrow e \gamma \ [10^{-9}]$	< 120	< 39	< 12		
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3		

Phase 2 Physics


WG	Mode	Description	Benchmark study or Unique measurement?
Semileptonic	B→XIV	Benchmark analysis in Y(4S)	Benchmark
Semileptonic	$B(s) \rightarrow X I v in Y(6S)$, Dileptons	B and B_s counting in Y(6S)	Unique
EWP	В→К*ү	Benchmark analysis in Y(4S)	Benchmark
BtoCharm	$\begin{split} B &\to D\pi. \ D^*\pi, \\ D &\to hh, \ K_S \ X \end{split}$	Benchmark analysis in Y(4S)	Benchmark
Bottomonium	$Y(6S) \rightarrow \pi\pi + Y(nS)/hb$	Zb substructure	Unique
Bottomonium	Y(6S) cross section, R_b	Cross section measurement and Rb decomposition at Y(6S)	Unique
Bottomonium	π π Y(pS)	ECM 10.75 GeV decay $\rightarrow \pi \pi$ Y(pS)	Unique
Low-multiplicity	ee \rightarrow γ A', A' \rightarrow missing	Dark matter via dark photon	Unique
Low-multiplicity	$ee \to \gamma \ A' \to \gamma \ \gamma$	Axion like dark sector for large A' masses (tri- photon final state)	Unique

Expected data sample @ full luminosity

Channel	Belle	BaBar	Belle II (per year
$B\bar{B}$ Y(4S)	7.7×10^{8}	4.8×10^{8}	1.1×10^{10}
$B_s^{(*)}\bar{B}_s^{(*)}$	7.0×10^6	_	6.0×10^{8}
$\Upsilon(1S)$	1.0×10^{8}		1.8×10^{11}
$\Upsilon(2S)$	1.7×10^{8}	0.9×10^7	7.0×10^{10}
$\Upsilon(3S)$	1.0×10^{7}	1.0×10^8	3.7×10^{10}
$\Upsilon(5S)$	3.6×10^7	_	3.0×10^{9}
au au	1.0×10^{9}	0.6×10^{9}	1.0×10^{10}

assuming 100% running at each energy

Expected SuperKEKB Backgrounds

Phase I (no collisions)

Touschek scattering:

- intra-bunch scattering process
- dominant with highly compressed beams
- · 20 times higher

Beam-gas scattering:

 Bremsstrahlung (negligible) & Coulomb interactions (up to 100 times higher) with residual gas atoms & molecules

Synchrotron radiation:

 emission of photons by charged particles (e⁺e⁻) when deflected in B-field

Phase 2 (collisions)

Radiative Bhabha process:

photon emission prior or after

Bhabha scattering
interaction with iron in the magnets
leads to neutron background

Two photon process:

- very low momentum e⁺e⁻
 pairs via e⁺e⁻ -> e⁺e⁻e⁺e⁻
- increased hit occupancy in inner detectors

Injection Background:

covered later in the talk