First results on Dark Matter searches at Belle II.

13th February 2020 Lake Louise Winter Institute 2020 Michael De Nuccio (<u>michael.de.nuccio@desy.de</u>)

Outline

- 1. SuperKEKB & Belle II Not just a B-factory: also a "Dark Searcher"
- 2. Dark photon
- 3. Axion-Like Particles (ALPs)

4 7'

Michael De Nuccio

SuperKEKB and Belle II.

Michael De Nuccio

SuperKEKB

- Asymmetric e⁺e⁻ collider @ $\Upsilon(4S)$ energy = 10.58 GeV
- Second generation **B-factory** (optimized to produce a lot of B mesons)
- 40 times increase in instantaneous luminosity with respect to predecessor KEKB: $\approx 8 \times 10^{35}$ cm⁻² s⁻¹, highest in the world
 - 2x from higher beam current
 - 20x from final focus magnets

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Michael De Nuccio

Belle II

Electromagnetic Calorimeter

(Csl(Tl) crystals)

electrons e-

(silicon pixels & strips)

Tracking Detector

(drift chamber)

Hermetic detector

• Dedicated triggers for low multiplicity

Michael De Nuccio

Data collection schedule

- 2018: 500 pb⁻¹ • Commissioning run But still, physics results can be extracted (and are being extracted) • 2019: 10.5 fb⁻¹
- Schedule lifetime dataset: 50 ab⁻¹

Michael De Nuccio

Adapted from <u>SuperKEKB Page</u>

Dark Sector perspective

- High luminosity
- Hermetic detector
- Specialized triggers for low multiplicity events
- Clean environment (e⁺e⁻ collider)
- Excellent place where to **search for dark matter** candidates! That's what we are doing (amongst other things)

Michael De Nuccio

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Dark Matter

Dark Matter

QCD Axion

Michael De Nuccio

Dark Matter

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Michael De Nuccio

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Dark Photon - theory

- Massive vector mediator A' **mixes with SM photon** (via kinetic mixing ε)
- Possible decays:
 - into DM final state: **invisible** $A' \rightarrow \chi_1 \chi_2$
 - into two leptons: visible A' \rightarrow f+f-
- Experimental trick: requiring ISR photon (on-shell production & visible final state)

$$E_{\gamma_{\rm ISR}} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Dark Photon - analysis

- Current approach: **invisible:** $A' \rightarrow \chi_1 \chi_2$, *single photon*
 - Needs a **special single-photon trigger**: not available* in previous generation B-factories
- One photon and nothing else in the whole event
 - Discriminant variables: E_{cms} vs θ of the photon
 - Bump search in recoil mass spectrum
- Backgrounds:
 - Cosmic rays
 - Beam-gas interactions
 - $e^+e^- \rightarrow e^+e^-\chi(\chi)$
 - $e^+e^- \rightarrow \chi\chi(\chi)$

Michael De Nuccio

Dark Photon - sensitivity

Michael De Nuccio

BaBar with 50 fb⁻¹

Belle 2 projection with 20 fb⁻¹ Less data but we do better because:

- Non-projective geometry of calorimeter
- Smaller boost and larger calorimeter \implies larger acceptance

<u>arXiv:1808.10567</u> PRL.119.131804 arXiv:1906.00176

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Axion-Like Particles.

ALPs - theory

- Axions as solution to the strong CP problem
- ALPs (**a**) have no mass-coupling constraints
- We focus on their coupling with photons
 - Assume they couple **only** to photons
- Two possible processes at e⁺e⁻ colliders:
 - Photon fusion
 - **ALP-strahlung**

16

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

JHEP12(2017)094

Michael De Nuccio

ALPs - analysis

- Experimentally **ALP-strahlung** is easier: start with this
- Three photons summing up to beam energy, no other particles
 - Bump search in di-photon and recoil mass
- Backgrounds:
 - $e^+e^- \rightarrow \chi\chi(\chi)$
 - $e^+e^- \rightarrow e^+e^-(\chi)$
 - $e^+e^- \rightarrow P\chi, P = \pi^0/\eta/\eta', P \rightarrow \chi\chi$ peaking but negligible background

Michael De Nuccio

ALPs - sensitivity

JHEP12(2017)094

No systematics Only dominant $e^+e^- \rightarrow \gamma\gamma(\gamma)$ background Assumes no **yy** trigger veto in the barrel for the 135 fb⁻¹ projection

Michael De Nuccio

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Z' - theory

- New gauge boson Z' coupling only with 2nd and 3rd generations of leptons (L μ - L τ)
 - Could come either from μ or τ
- If it is lighter than 2 muons: decays only into neutrinos and/or DM
 - **Invisible decay**

20

Z' - analysis

- Investigate e⁺e⁻ $\rightarrow \mu^+\mu^-$ + missing energy
 - Nothing else in the event
 - Bump search in recoil mass against $\mu^+\mu^-$
- Backgrounds:
 - $e^+e^- \rightarrow \mu^+\mu^-(\chi)$
 - $e^+e^- \rightarrow \tau^+\tau^-(\gamma), \tau \rightarrow \mu \vee_{\mu} \vee_{\tau}$
 - $e^+e^- \rightarrow \mu^+\mu^-e^+e^-$
- Only ~50% of commissioning data available due to trigger conditions

Michael De Nuccio

arXiv:1912.11276

Z' - sensitivity

- **First** result ever for the Z' to invisible decay
- First physics paper submitted by Belle II

10⁻¹ ັດ 10⁻² 10⁻³ 10⁻⁴ U

Michael De Nuccio

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

arXiv:1912.11276

Summary

- Belle II is a B-factory but can do more than just B-physics
- Dark photon: decaying to stable DM: we can improve limits with little data
- ALP: we are performing competitive analysis with early calibration data
- Z': first Belle II physics paper, with early calibration data
- Other searches are going to start, like **long-lived particles** (LLP): <u>arXiv:1911.03490</u>, <u>arXiv:1911.03176</u>
- Belle II can access parameter spaces for multiple DM models never investigated before - and it's doing it!

Michael De Nuccio

Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II

Dark Photon - analysis

Michael De Nuccio

ALPs - analysis

Two of the photons overlap or merge

10⁻¹ Invisible 10⁻² 10⁻³ g_{ayy} [GeV⁻¹] 10^{-4} 10⁻⁵ 10⁻⁶ 10⁻⁷ 10^{-8} 10^{-4} 10^{-3}

ALP decays outside of the detector or decays into **invisible** particles: single photon final state

<u>JHEP12(2017)094</u>

Michael De Nuccio

