What can machine learning do for
event reconstruction,
fast simulations, new physics search

Olena Linnyk

21.02.2020 . .
seriously creative

JUSTUS-LIEBIG- ﬂ
FIAS Frankfurt Institute §.3 UNIVERSITAT ()
for Advanced Studies &% GIESSEN )

(reatively serious




ML is revitalized, also in science

“Some people call this artificial intelligence, but the reality is this
technology will enhance us. So instead of artificial intelligence, I think
we'll augment our intelligence.” Ginni Rometty
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Al for CBM

Challenges at the new FAIR collider:
10°-107 collisions per second, high data flux
High radiation load, aging
Many particles/tracks per collision

ldeas:

Al allows online decoding of underlying physics
for the event selection, with controlled accuracy

Al-algorithms for frequent recalibration and
quality control of detector sub-systems

Fast Simulations (efficiency correction!)




Al for CBM

Our group contributes in 3 directions:

fast event reconstruction (noise reduction,
tracking optimization and speed)

fast simulations (efficiency),

“physics filters”: centrality determination, new vs known physics
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Classification, importance map

[EN EOSQ, n/s=0.08

Effects of the CBM detector acceptance?
Event by event?




Equation of state event

by event?

Jan Steinheimer!, LongGang Pang??, Kai Zhou!, Volker Koch®, Jorgen Randrup® and Horst Stoecker!:?:

A machine learning study to identify spinodal clumping
in high energy nuclear collisions

U Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
2 Physics Department, University of California, Berkeley, CA 94720, USA
* Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley,CA 94720, USA
1 Institut fiir Theoretische Physik, Goethe Universitit Frankfurt, D-60438 Frankfurt am Main. Germanu and
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FIG. 8 (color online). Scatter plot of the first two compo-
nents of a PCA of the distribution of the momentum differ-
ence for baryon pairs. The red crosses indicate the events
with the spinodal instabilities, which dominate the south-
ern hemisphere, while the blue pluses indicate events with
a Maxwell construction. The large symbols with error bars
near the center indicate the mean values with their disper-
sions. The spinodal EoS creates a clear crescent of crosses
in the southern hemisphere, x2 < 0. Also the mean value is
shifted downwards slightly.
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FIG. 9 (color online). Scatter plot of the first two compo-
nents of a PCA of the distributions of the momentum dif-
ference for baryon pairs. The blue points correspond to all
70000 events, Maxwell and spinodal. The red crosses corre-
spond to those events that were identified correctly as being
in the spinodal class from among those 1000 events that had
the highest probability for being spinodal events, according
to the neural network. Similarly, the green pluses show the
correctly identified Maxwell events among the 1000 event hav-
ing largest probability of belonging to that class. According



Fast simulations

« Interpolation — prediction of forward neural networks

 GAN - generative adversary networks to produce ,events”
« Time series (RNN, LSTM)

FIAS results for relativistic hydro are coming — stay tuned

Data-driven Fluid Simulations using Regression Forests

Lubor Ladicky*"  SoHyeon Jeong*! Barbara Solenthaler! Marc Pollefeys’ Markus Gross'

ETH Zurich ETH Zurich ETH Zurich ETH Zurich _ ETHZurich
Disney Research Zurich

Figure 1: The obtained results using our regression forest method, capable of simulating millions of particles in realtime. Our promising

results suggest the applicability of machine learning techniques to physics-based simulations in time-critical settings, where running time
matters more than the physical exactness.




Fast solvers

2D Potentials

One-electron energies
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Deep learning and the Schrodinger equation, by K. Mills, M. Spanner, Tamblyn (February 7, 2017)




Calorimeter response
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vRadial development.
XWGAN: Overall scale slightly underestimated.

Martin Erdmann, Jonas Glombitza, Thorben Quast for CMS and ErumData
DPG 2019




Generating texts

GANS WITH REINFORCEMENT LEARNING

Chinese Poetry Generation with Planning based Neural Network

Zhe Wang', Wei He', Hua Wu', Haiyang Wu', Wei Li', Haifeng Wang', Enhong Chen’
JrI_Jrliwu.'i::r:iil].r of Science and Technology of China, Hefei, China
‘Baidu Inc., Beijing. China
xiagose@mail.ustc.edu.cn, cheneh@uste.edu.cn
{hewei06, wu_hua, wuhaiyang, liwei(8, wanghaifeng}@baidu.com
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By a Lake at Autumn Sunset By a Lake at Autumn Sunset
— AL 25 R T ik ik W BT
A cold autumn rain wetted my clothes last night, The wind blows reeds with osmanthuos flying,
o B v 0 EE TRATE £ L8R .
And 1 sit alone by the window and enjoy the sunset. | And the bamboos under clouds are so green as if to flow down,
i m R T b i ¥ S a4
With mountain scenery mirrored on the rippling lake, The misty rain ripples the smooth surface of lake,
Lo B R T TRETMERE.
A silence prevails over all except the hovering birds, And 1 feel blue at sunset .

Table 6: A pair of poems selected from the blind test. The left one is a machine-generated poem. and
the right one is written by Shaoti Ge, a poet lived in the Song Dynasty.




Generation
Image Super Resolution

Conditional generative model P( high res image | low res image)

¥ 8 anput 34 32 samples ground truth
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GAN-generating configurations

700 I Monte-Carlo
600 W GAN
Regressive and generative neural networks for scalar field theory =
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Experiment NA61/SHINE at CERN
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Noisy clusters:
o ~40-50% of clusters for Pb+Pb
o Up to 70% for small systems
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Task at NA61

ToF-L

Pads: 182784 Event rate: ~100 Hz Y PSD

Pad data: 256 time-slices il Readout time: 50 ps

Image: http://shine.web.cern.ch/content/beam-detectors

e Noisy pad signals reduces speed and efficiency of event reconstruction. Identifying the
noise
o improves the event reconstruction
o reduces data storage requirements
e We use machine learning techniques to classify the pad signals as recorded during the data
taking*
*courtesy A.Rybicki, N.Davis for the idea to use machine learning for the reduction of noise in the TPC.

Manjunath Omana Kuttan | NA61 Collaboration meetin 11-February-2020




Machine learning for cluster classification

» Time slice

e We have tested for our task -‘."""III ‘
three powerful approaches: '

Y
o ' . I * . o
Decision ’Free (Xgboost) Blecric N "";‘ i1/
Convolutional neural SO R O/ AN
WARRRRREEEN ,-}.Egu'll
network (ResNet) Ie
o Unsupervised learning .

Electrons

(AE+K-means) Track —1’

Detection

volume '—L,

Figure 2. Simplified illustration of TPC working principle.

Manjunath Omana Kuttan | NA61 Collaboration meetin




Sample data

“Good” clusters
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1. XGBoost model

e Ensemble of “learned”
decision trees

Overall Accuracy : 84%
4% good are mistaken for

bad
e 28% bad are mistaken for (=
0od f( )=2+09=29 f( = )=-1-09=-19
g Image: https://xgboost.readthedocs.io

Manjunath Omana Kuttan | NA61 Collaboration meetin




2. Convolutional neural networks

e Convolution Neural network (CNN):

o better feature extractor

o Learnson this extracted features
e Resnet:

o Variant of CNN

o Learns better than regular CNN

Simple Neural Network Deep Learning Neural Network

Image: https://www.securityinfowatch.com
@ Input Layer () Hidden Layer @ Output Layer

Manjunath Omana Kuttan | NA61 Collaboration meetin




The ResNet architecture
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Results (confusion matrix)

1750 e 89% overall accuracy
good — e 96% of good clusters and 83%
e of bad clusters correctly
identified

- 1000

True label

4% good are mistaken for bad
17% bad are mistaken for good
-> “safety first”

- 750

bad -
250 e Removing 83% of “bad clusters”
- — at the expense of losing 4% of
good bad
Predicted label useful data

Manjunath Omana Kuttan | NA61 Collaboration meetin




Unsupervised clustering:IT

security, finances, physics
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Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters®




Anomaly detection

Anomaly detection (find out outliers)
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Unsupervised learning for classification

e Autoencoder encodes the

information in a low dimensional -Z_,

space —
e Clustering this data could reveal ~ inpu
its underlying structure

Encoder

—>E—> Decoder

A

Reconstructed

Compressed
representation

l

Clustering

Autoencoder + K-means clustering = Unsupervised classification

Manjunath Omana Kuttan | NA61 Collaboration meetin
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Autoencoder architecture
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Clustering: results

Case 1: No of clusters=2 e 99.8% “good hits” were

grouped into cluster 1
e 82% “bad hits” were also
grouped to same cluster

e 18% “bad hits” that were
grouped to cluster 2 had many
“obvious bad hits” which had

Cluster 2 multiple peaks with maximum

Good:3 amplitude

Bad: 362

Cluster 1
Good:199
7
Bad:

1638 Is it safe to remove all hits which

doesn’t contribute to a track?

Manjunath Omana Kuttan NA61 Collaboration meetin 11-February-2020




Clustering: results

Case 2: No of clusters=3

Cluster

1
Good:
1983
Bad: 1112

Manjunath Omana Kuttan

Cluster 2
Good: 16
Bad: 568

NA61 Collaboration meetin

Cluster 3
Good: 1
Bad: 320

11-February-2020

99% “good hits” and 56%
“bad hits were grouped
together

The remaining “bad hits”
were distributed among 2
other clusters



Computation time (ResNet) & BG reduction

The study was conducted on an Intel(R) Xeon(R) CPU E5-2680 v3 @
2.50GHz with 8GB physical memory and Nvidia GeForce RTX 2080 Ti GPU
with 10 GB graphics processing memory

e Trainingtime: ~4 s/ epoch ~ 30 minutes

e Testingtime: ~130 ps/ sample

e The ResNet model with 89% accuracy and can remove 83% of data
labelled as “bad”

e The unsupervised technique groups together 99% hits contributing to a
track along with 56 % of hits which didn’t contribute to any track

Manjunath Omana Kuttan | NA61 Collaboration meetin 11-February-2020




Summary and outlook

Signal-to-noise improvement AND online physics analysis for the
heavy-ion-collision experiments (CBM, NA61/SHINE) can be done
effectively and fast by ML/DL

->Unsupervised clustering, fast simulations

Bias detection and removal: high energy detectors AND social science
applications (,,Al Judge", ,Al recruiter™)
->De-correlation method

(DisCo Fever: Robust Networks Through
Distance Correlation, by Gregor Kasieczka,
David Shih, arXiv:2001.05310 [hep-ph])

H.
=)
A8

(=)
<
L

| after cut, no decor,
before cut

normalized counts

= =
2 9
Ln Fet

after cut, DisCo

Let's study this together!

=
b
=]

50 100 150 200 250
mass [GeV]



Thank you for your attention!

Great thanks to:

Frankfurt: H. Stocker, K. Zhou, J. Steinheimer, M. Omana Kuttan
Giessen: |. Teetz, J. Kohl, L. Novakovskij, D. Donges, T. Weber

CERN: N. Davis, A. Rybicki, W. Brylinski, M. Gazdzicki




