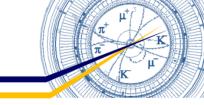


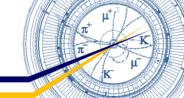
SuperKEKB Challenges and Countermeasures

2025.12.18

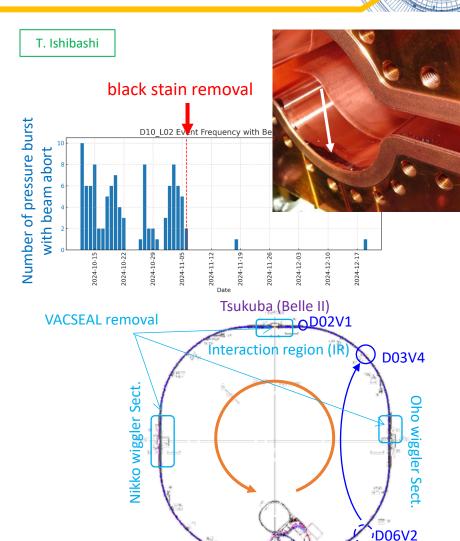

Kyo Shibata (on behalf of SuperKEKB)

Challenges limiting the performance

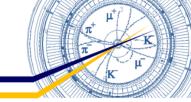
- Major Challenge
 - 1. Low machine stability
 - Sudden Beam Loss (SBL), etc.
 - 2. Low bunch current limit
 - Transverse Mode Coupling Instability (TMCI)
 - 3. Low injection efficiency
 - Low stability of injected beam, Large emittance injected beam, Small aperture at injection point


- 4. Short beam lifetime
 - Strong beam-beam effect, narrow dynamic aperture
- 5. Severe beam-beam effect
 - Large simulation-measurement discrepancy
- 6. Aging of hardware and facilities

• Mitigation efforts for some of them have already been carried out during the long shutdown 1 (LS1) and the previous shutdown.



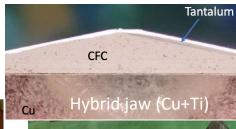
Low machine stability



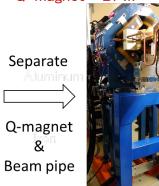
- Sudden Beam Loss (SBL)
 - SBL is the most critical obstacle to achieving stable operation.
 - Part of the beam is suddenly lost within a few turns.
 - It is difficult to prevent uncontrollable beam from damaging Belle II and collimators.
 - Countermeasures
 - Removal of VASCEAL contamination Last shutdown
 - All MO-type flange connections likely used VACSEAL were checked and fully cleaned during the previous shutdown.
 - SBL mitigation effect of VACSEAL removal was confirmed during 2024c run.
 - Significant reduction in SBL events
- Additional countermeasures
 - Collimator relocation Last shutdown
 - D06V2 -> D03V4 (to protect IR (Belle II, QCS, D02V1 collimator) from uncontrollable beam)
 - Additional beam loss monitors and acoustic sensors
 - Faster beam abort system

Low machine stability

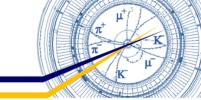
Others


- Injection kicker accidental firing
 - Carbon collimator (D06H3) to stop accidentally kicked LS1 beam
 - No damage from accidental firing so far
 - Optimization of thyratron parameters Last shutdown
 - No accidental kicker firing in 2025c so far
- Collimator damage
 - Development of new robust jaws (Ti, Hybrid(Cu+Ta))
 - Damage mitigation (No damage to Hybrid jaw so far, Not all collimators can be replaced with Ti or Hybrid types)
 - Development of revolver-jaw type collimator (Significant reduction in down time for replacing work)
- Thermal deformation of the beam pipe due to SR irradiation (Shift in Q-magnet and BPM)
 - Isolation of the BPM block from the Q-magnet
 - Beam stability improvement

18th December 2025

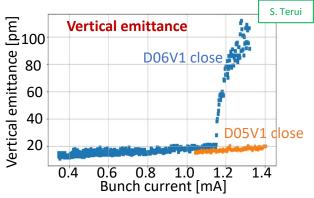


Revolver-type collimator jaws

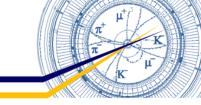

Ongoing

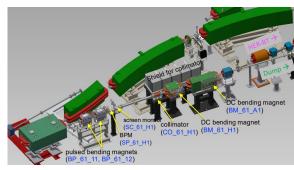
During 202ab run

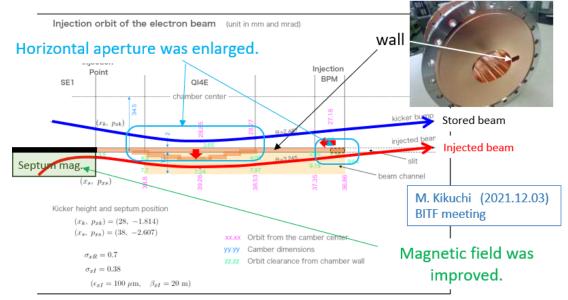
+ Last shutdown


Low bunch current limit

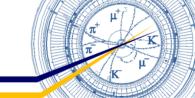
- Transverse Mode Coupling Instability (TMCI) could limit bunch current.
 - Before LS1
 - To reduce Belle II BG noise, LER collimators had to be closed more than expected.
 - High impedance due to narrow collimator setting resulted in a lower TMCI threshold.
 - To ensure stable operation at high bunch current without inducing TMCI, a world-first nonlinear collimator system was installed in the Oho Straight section during LS1.
 - After LS1
 - The BG and impedance reduction effects of the NLC have been confirmed.
 - Radiation level in the OHO experimental hall increased, resulting in restricted NLC usage.
 - Radiation shielding was reinforced during the previous shutdown.
 - Full usage of the NLC has started from this run.



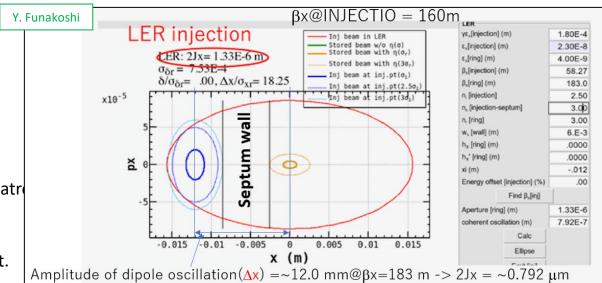

Low injection efficiency

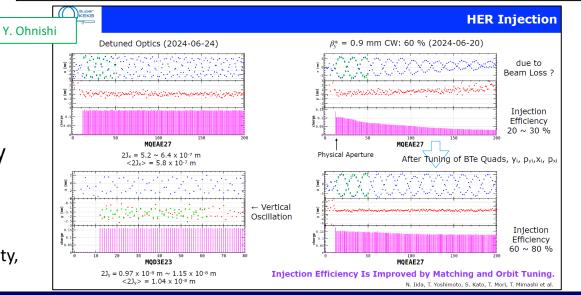


- Hardware Improvements to improve the injection efficiency.
 - Linac
 - Installation of fast kickers for independent 1st/2nd bunch control
 - Implementation of a dedicated e-beam diagnostic line
 - Installation of pulsed magnets for independent e⁻/e⁺ beam control
 - Beam Transport Line (BT)
 - Investigation of emittance growth (cause still understudy)
 - Replacement of ARC03 bending magnet poles(BTp)
 - Installation of an Energy Compression System (ECS) (greater effect at higher bunch charge expected.)
 - Improved magnet alignment
 - Main ring (MR)
 - Installation of vertical kicker
 - Precise aperture survey enabled
 - Aperture enlargement in the HER injection point **LS1**
 - Realignment of the LER injection point. Last shutdown



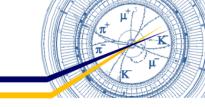
Last shutdown


Low injection efficiency

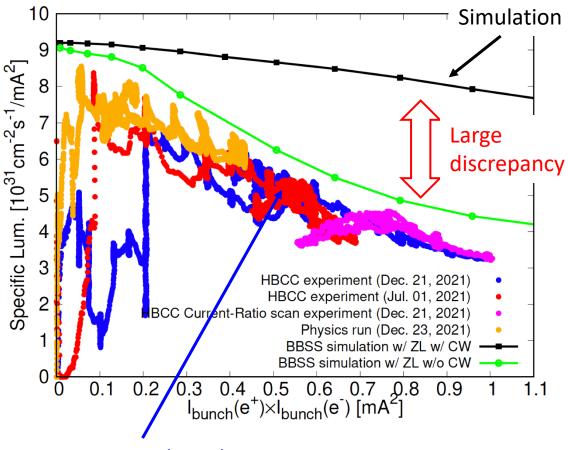


- Beam commissioning measures
 - Establishment of an injection tuning procedure
 - · Optics matching between BT and MR
 - 3D phase-space aperture survey in MR
 - Injected beam oscillation measurements using TbT BPMs
 - Optics modification at the Injection point
 - Increasing the beta function at the injection point to suppress betatroscillation.
 - Optics modification at the IR
 - Decreasing the beata function at IP to suppress beam-beam effect.
 - Operation tune survey

- Injection efficiency has been steadily improving, and LER/HER maximum beam currents have reached 1699/1354 mA
 - At high beam currents, injection efficiency is degraded by the beam-beam effect.
 - The following issues of the injected beam also requires further improvement
 - Energy jitter, Orbit drift, Emittance growth at BT, Poor reproducibility, etc.



Severe beam-beam effect

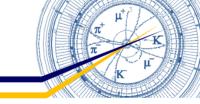


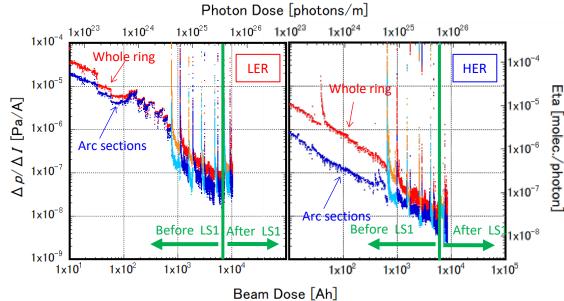
- Low specific luminosity at high bunch current product
 - The cause of the L_{sp} drop is still unknown.
 - There remains a significant discrepancy between simulation and measurement.
- Low injection efficiency due to beambeam effect
 - Injection efficiency appears to be limited by the beam-beam effect.
 - Maximum achievable beam current is limited by the beam-beam effect.
 - The dynamic aperture needs to be enlarged.

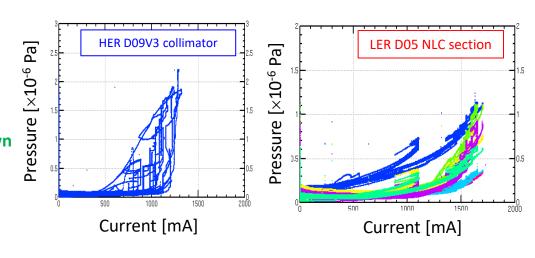
Countermeasures

- An improvement was achieved after introducing the crab-waist collision scheme.
- An international collaboration on beambeam simulation studies has now been launched.

Strong-Strong Beam-Beam simulation (D. Zhou)

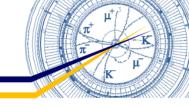

Experimental results





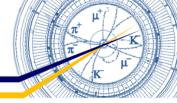
Short beam lifetime

- Dynamic aperture is smaller than expectation.
 - Further optimization of the sextupoles may allow for an increase in the dynamic aperture.
- The vacuum pressure may become the dominant factor limiting the maximum beam current.
 - At high beam current, the lifetime determined by vacuum pressure is comparable to the Touschek lifetime in the LER.
 - The LER shows a large pressure rise per unit beam current (dp/dI) than the HER, and vacuum scrubbing requires a longer time.
 - Abnormal pressure increases are a concern for further current increase.
 - Nonlinear pressure increases have been observed in the LER NLC section, HER D09 collimator section, etc.
 - They may limit maximum beam currents.
 - Countermeasures
 - Installation of RF-shielding gaskets on ion pumps
 - S Last shutdown
 - D09V3 collimator was replaced with new water-cooled one.
 - Ongoing and Future work
 - Investigation will continue in parallel with physics run.
 - Residual gas analysis and further studies are ongoing.



Others

- RF electron gun discharge
 - 2-bunch injection became unavailable during 2024c due to discharge in RF cavity.
 - The RF gun was replaced with a new RF electron gun.


→ 2-bunch injection tuning is planned.

- HER vertical emittance growth
 - The cause remains unknown.
 - The impact may remain acceptable because the beam size becomes large as the bunch current product increases.
 - Investigation will continue in parallel with physics run.
- Abort procedure in case of abort-kicker failure
 - The issue become apparent in 2025c run.
 - → Development of an alternative abort procedure has been initiated.

Summary

Low machine stability

- SBL events significantly reduced by VACSEAL removal
 - SBL still occurs and additional countermeasures are required.
- Mitigation measures for other instability sources are also proving effective.
 - Further improvements in machine stability are expected through the development of new collimators.

Low bunch current limit

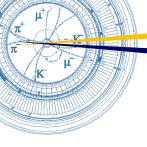
- The NLC has been functioning well so far.
 - The effectiveness of the enhanced radiation shielding will be evaluated.

Low injection efficiency

- Beam currents have been gradually increasing as a result of implemented countermeasures.
 - The effectiveness of the countermeasures introduced during the last shutdown will be evaluated during 2025c-2026ab.
- At higher currents, the beam-beam effect becomes the limiting factor for further current increase.
- The following issues of the injected beam require further improvement
 - Energy jitter, Orbit drift, Emittance growth at BT, Poor reproducibility, etc.

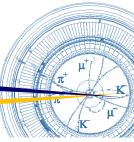
Severe beam-beam effect

Both specific luminosity and efficiency are limited by the beam-beam effect.

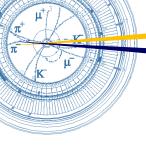

Short beam lifetime

- Further optimization of the sextupoles is required to enlarge the dynamic aperture.
- Abnormal pressure increases are a concern for further current increase.

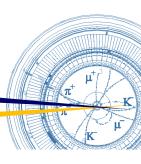
Aging of hardware and facilities


Continuous mitigation efforts will be required.

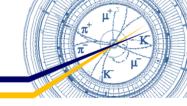
Fin.

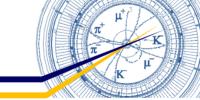


Thank you for your attention.



Back up





Aging of hardware and facilities

・老朽化機器の更新状況の紹介

