
Prerequisites

Installing conda
$ mkdir ap_test
$ cd ap_test

Linux:
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod u+x Miniconda3-latest-Linux-x86_64.sh
$./Miniconda3-latest-Linux-x86_64.sh

Mac:
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O ~/miniconda.sh
$ bash ~/miniconda.sh -b -p $HOME/miniconda

Read through license terms press q and type “yes”.

Select default install location.

Type “yes” when prompted to initialize conda in .bashrc

https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Creating our environment

$ git clone ssh://git@stash.desy.de:7999/~murphyco/ap_startertalk.git
$ conda env create

See you in 10!

mailto:git@stash.desy.de

Analysis preservation (AP)
Colm Murphy (IPMU)

Belle II StarterKit

What is analysis preservation?

Over the course of your analysis you will produce thousands of lines of code,
and tens or hundreds of scripts.

What is analysis preservation?

Over the course of your analysis you will produce thousands of lines of code,
and tens or hundreds of scripts.

You may also produce large quantities of data and/or MC, with very specific
requirements and conditions.

What is analysis preservation?

Over the course of your analysis you will produce thousands of lines of code,
and tens or hundreds of scripts.

You may also produce large quantities of data and/or MC, with very specific
requirements and conditions.

How can we ensure analyses are reproducible? (the scientific method!)

Preserve your code and data so your analysis can be re-run in future

Why should we make analyses reproducible?

For you!

Why should we make analyses reproducible?

For you!

When it comes to review, you may have to make a change to an early stage
of the analysis. If you have a reproducible analysis, propagating this
change will be quick and easy.

Why should we make analyses reproducible?

For you!

When it comes to review, you may have to make a change to an early stage
of the analysis. If you have a reproducible analysis, propagating this
change will be quick and easy.

For others!

Why should we make analyses reproducible?

For you!

When it comes to review, you may have to make a change to an early stage
of the analysis. If you have a reproducible analysis, propagating this
change will be quick and easy.

For others!

Have you had to inherit complicated code from a previous student?
Without AP it can be difficult or impossible to understand how an analysis
works. Following AP helps us collaborate.

How do we make our analyses reproducible?

It is much easier to make a new analysis reproducible!

1. Organize our code in a git repo, and make it available to others

How do we make our analyses reproducible?

It is much easier to make a new analysis reproducible!

1. Organize our code in a git repo, and make it available to others
2. Make detailed notes on “data provision”, i.e. exactly what commands you

use to get your data/MC, and what computing environment you used.

How do we make our analyses reproducible?

It is much easier to make a new analysis reproducible!

1. Organize our code in a git repo, and make it available to others
2. Make detailed notes on “data provision”, i.e. exactly what commands you

use to get your data/MC, and what computing environment you used.
3. Use a virtual environment to describe exactly which software you are

using (e.g. virtualenv, pip, conda)

How do we make our analyses reproducible?

It is much easier to make a new analysis reproducible!

1. Organize our code in a git repo, and make it available to others
2. Make detailed notes on “data provision”, i.e. exactly what commands you

use to get your data/MC, and what computing environment you used.
3. Use a virtual environment to describe exactly which software you are

using (e.g. virtualenv, pip, conda)
4. Use a workflow manager to automate your analysis procedure. (e.g.

Snakemake, Luigi)

How do we make our analyses reproducible?

It is much easier to make a new analysis reproducible!

1. Organize our code in a git repo, and make it available to others
2. Make detailed notes on “data provision”, i.e. exactly what commands you

use to get your data/MC, and what computing environment you used.
3. Use a virtual environment to describe exactly which software you are

using (e.g. virtualenv, pip, conda)
4. Use a workflow manager to automate your analysis procedure. (e.g.

Snakemake, Luigi)

1 and 2 are already strongly encouraged. 3 and 4 may be soon, so get ahead!

1. git

Belle II defines some standards for creating an analysis repository. You are
encouraged to follow this procedure from the beginning.

This presentation will assume a basic familiarity with the principles behind git,
and remote hosted repositories. (All git commands needed will be supplied)

Exercise: look up usage of the command `b2analysis-create`

2. Data provision

This is harder to formalize, and will differ slightly depending on each case.

Essentially, the analyst must make it possible for a future analyst to
download/produce the same data/MC and they did, with the same conditions.

This must be coordinated with the experiment at large, who e.g. maintain the
conditions database.

3. Environment manager (Conda example)

Why use an environment manager?

3. Environment manager (Conda example)

What is an environment?

A list of software, packages, tools etc and their version numbers.

3. Environment manager (Conda example)

What is an environment?

A list of software, packages, tools etc and their version numbers.

What is an environment manager?

A tool which helps you find and install packages, and switch between isolated
environments. This helps stop ‘dependency hell’ and incompatibilities.

3. Environment manager (Conda example)

What is an environment?

A list of software, packages, tools etc and their version numbers.

What is an environment manager?

A tool which helps you find and install packages, and switch between isolated
environments. This helps stop ‘dependency hell’ and incompatibilities.

Environment managers help us do AP because they let other scientists replicate
our exact run-time environments for analysis programmes.

Open a terminal!

The next slides will be
more interesting

Conda example

Installation:
Detailed instructions at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Let’s test out an installation of Miniconda (smaller footprint) on KEKCC

$ mkdir ap_test
$ cd ap_test

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Conda example

Installation:
Detailed instructions at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Let’s test out an installation of Miniconda (smaller footprint) on KEKCC

$ mkdir ap_test
$ cd ap_test
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Conda example

Installation:
Detailed instructions at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Let’s test out an installation of Miniconda (smaller footprint) on KEKCC

$ mkdir ap_test
$ cd ap_test
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod u+x Miniconda3-latest-Linux-x86_64.sh

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Conda example

Installation:
Detailed instructions at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Let’s test out an installation of Miniconda (smaller footprint) on KEKCC

$ mkdir ap_test
$ cd ap_test
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod u+x Miniconda3-latest-Linux-x86_64.sh
$./Miniconda3-latest-Linux-x86_64.sh

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Conda example

Installation:
Detailed instructions at: https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Let’s test out an installation of Miniconda (smaller footprint) on KEKCC

$ mkdir ap_test
$ cd ap_test
$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ chmod u+x Miniconda3-latest-Linux-x86_64.sh
$./Miniconda3-latest-Linux-x86_64.sh

Read through license terms press q and type “yes”.
Select default install location.
Type “yes” when prompted to initialize conda in .bashrc

We now have a working, minimal, installation of Anaconda.
We can now create separate environment for different analyses, without fear of breaking anything.

https://conda.io/projects/conda/en/latest/user-guide/install/index.html

Conda example

Let’s see what conda can do by making a simple test environment. We’ll use
this environment for the rest of the talk.

Conda example

Let’s see what conda can do by making a simple test environment. We’ll use
this environment for the rest of the talk.

Let’s see how to write an “environment.yml” file.

Conda example

Let’s see what conda can do by making a simple test environment. We’ll use
this environment for the rest of the talk.

Let’s see how to write an “environment.yml” file.

Conda expects to find a file with this name, and can deploy the
environment for you automatically.

Conda example

Let’s see what conda can do by making a simple test environment. We’ll use
this environment for the rest of the talk.

Let’s see how to write an “environment.yml” file.

Conda expects to find a file with this name, and can deploy the
environment for you automatically.

These are human readable specifications of the software/python packages
you want installed.

Conda example

Let’s see what conda can do by making a simple test environment. We’ll use
this environment for the rest of the talk.

Let’s see how to write an “environment.yml” file.

Conda expects to find a file with this name, and can deploy the
environment for you automatically.

These are human readable specifications of the software/python packages
you want installed.

They’re easily shareable with collaborators so perfect for AP!

Conda example

$ nano environment.yml

Conda example

$ nano environment.yml

 It uses the YAML markup language to specify the following:

1. A name for the environment, which helps us see clearly which environment
we’re currently working in from the terminal

$ name: myb2env

Conda example

$ nano environment.yml

 It uses the YAML markup language to specify the following:

1. A name for the environment, which helps us see clearly which environment
we’re currently working in from the terminal

$ name: myb2env

2. A list of “channels”, which are semi-official repositories of software which
conda will search to find our packages. In HEP lots of packages are in a
non-default channel called “conda-forge”.
$ channels:
$ - defaults
$ - conda-forge
$ - bioconda

Needed to install workflow
manager “snakemake”, see
later.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

The syntax for version specification is the following:
-package_name = major.minor.patch Use this exact version.
-package_name = major.minor Use latest patch of this version
-package_name = major Use latest minor version.
-package_name >= major.minor.patch etc Use most recent compatible

version later or same as this.
-package_name Use latest compatible version

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

The syntax for version specification is the following:
-package_name = major.minor.patch Use this exact version.
-package_name = major.minor Use latest patch of this version
-package_name = major Use latest minor version.
-package_name >= major.minor.patch etc Use most recent compatible

version later or same as this.
-package_name Use latest compatible version

Conda will try and “resolve” and environment which satisfies all your requirements. Note that if you are too
strict with exact version numbers, it may be impossible to create the environment. For this reason you
should minimize non-essential version specifications.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

The syntax for version specification is the following:
-package_name = major.minor.patch Use this exact version.
-package_name = major.minor Use latest patch of this version
-package_name = major Use latest minor version.
-package_name >= major.minor.patch etc Use most recent compatible

version later or same as this.
-package_name Use latest compatible version

Conda will try and “resolve” and environment which satisfies all your requirements. Note that if you are too
strict with exact version numbers, it may be impossible to create the environment. For this reason you
should minimize non-essential version specifications.

When you finish your analysis, you can “print” the exact version of the environment file to ensure 100%
reproducibility.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

For this example we will use python3. Let’s specify a modern (but not too modern) version, 3.6.
Let’s install the infinitely useful package “root_pandas”, which also installs a copy of ROOT into your
environment.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

For this example we will use python3. Let’s specify a modern (but not too modern) version, 3.6.
Let’s install the infinitely useful package “root_pandas”, which also installs a copy of ROOT into your
environment.

Note that these packages will share some dependencies, for example, numpy.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

For this example we will use python3. Let’s specify a modern (but not too modern) version, 3.6.
Let’s install the infinitely useful package “root_pandas”, which also installs a copy of ROOT into your
environment.

Note that these packages will share some dependencies, for example, numpy.

The beauty of conda is that we only need to give the minimum level of detail needed, and everything else is
calculated for us. In this example, numpy and matplotlib will be downloaded for us.

Conda example

3. A list of dependencies. This is where we list the software, python version, and packages we want for
 our analyses.

For this example we will use python3. Let’s specify a modern (but not too modern) version, 3.6.
Let’s install the infinitely useful package “root_pandas”, which also installs a copy of ROOT into your
environment.

Note that these packages will share some dependencies, for example, numpy.

The beauty of conda is that we only need to give the minimum level of detail needed, and everything else is
calculated for us. In this example, numpy and matplotlib will be downloaded for us.

$ dependencies:
$ - python=3.6
$ - ipython
$ - root_pandas
$ - pandas
$ - seaborn

Conda example

The final product! Note, we can add packages to the file as we need to, then recreate the environment.

-- environment.yml ---
name: myb2env

channels:
- defaults
- conda-forge
- bioconda

dependencies:
- python=3.6
- root_pandas
- snakemake

Conda example

The moment of truth: let’s use our environment.yml file to create our environment:

$ conda env create

Conda example

The moment of truth: let’s use our environment.yml file to create our environment:

$ conda env create

Now let’s wait. If it takes a computer this long to solve the dependencies, think how
impossible it is without a tool…

Conda example

The moment of truth: let’s use our environment.yml file to create our environment:

$ conda env create

Now let’s wait. If it takes a computer this long to solve the dependencies, think how
impossible it is without a tool…

Done?

Let’s fire up the environment:

$ conda activate myb2env

Conda example

The moment of truth: let’s use our environment.yml file to create our environment:

$ conda env create

Now let’s wait. If it takes a computer this long to solve the dependencies, think how
impossible it is without a tool…

Done?

Let’s fire up the environment:

$ conda activate myb2env

If we need to switch to another/our base environment: $ conda deactivate

Exercise: look up the conda command to list all available environments

Conda example

The important bit! Making the environment completely reproducible!

Conda example

The important bit! Making the environment completely reproducible!

We need to create an environment.yml file to send to our scientist friends so they
can reproduce our environment. The most-recent solved environment may change
in the future. We want to “freeze” the exact environment we have now:

Conda example

The important bit! Making the environment completely reproducible!

We need to create an environment.yml file to send to our scientist friends so they
can reproduce our environment. The most-recent solved environment may change
in the future. We want to “freeze” the exact environment we have now:

$ conda env export > my_environment.yml

Conda example

The important bit! Making the environment completely reproducible!

We need to create an environment.yml file to send to our scientist friends so they
can reproduce our environment. The most-recent solved environment may change
in the future. We want to “freeze” the exact environment we have now:

$ conda env export > my_environment.yml

I’ve given it a new name so it doesn’t overwrite our environment.yml

This file can be shared and used to create a complete replica of your working
environment

Exercise: look at the output of the previous command - how is it different from our
previous dependencies.yml file?

Now we have a
reproducible
environment!

Next step: workflow
manager. Let’s use
snakemake

3. Workflow manager (Snakemake example)

What is a workflow manager? A software tool which allows the analyst to
describe a series of steps, input files, output files, and configurations, which
constitute their analysis.

3. Workflow manager (Snakemake example)

What is a workflow manager? A software tool which allows the analyst to
describe a series of steps, input files, output files, and configurations, which
constitute their analysis.

Why is it useful? It serves as excellent documentation. It allows you to
automatically re-run your analysis if when you need to.

3. Workflow manager (Snakemake example)

What is a workflow manager? A software tool which allows the analyst to
describe a series of steps, input files, output files, and configurations, which
constitute their analysis.

Why is it useful? It serves as excellent documentation. It allows you to
automatically re-run your analysis if when you need to.

Using a workflow manager (snakemake in my case) has improved my quality of
life. The tools exist to automate our workflows - let’s use them!

Snakemake example

Snakemake is a simple tool which allows you to build a workflow using rules

Snakemake example

Snakemake is a simple tool which allows you to build a workflow using rules

Each rule has:
1. input/s (optional)
2. output/s
3. A shell command which takes the input and produces the output. We will use exclusively python scripts with an

`if __name__ == “__main__”:` clause to turn them into command line tools. But they don’t need to be python!
E.g. “hadd {output} {input}”.

rule my_rule_name:
input: “my_input.txt”
output: “output_file.root”
shell: “python my_script.py --input {input} --save_to {output}

Example rule

Snakemake example

Snakemake is a simple tool which allows you to build a workflow using rules

Each rule has:
1. input/s (optional)
2. output/s
3. A shell command which takes the input and produces the output. We will use exclusively python scripts with an

`if __name__ == “__main__”:` clause to turn them into command line tools. But they don’t need to be python!
E.g. “hadd {output} {input}”.

rule my_rule_name:
input: “my_input.txt”
output: “output_file.root”
shell: “python my_script.py --input {input} --save_to {output}

Rules must be written in a text file called “Snakefile”

Example rule

Snakemake example

Snakemake is a simple tool which allows you to build a workflow using rules

Each rule has:
1. input/s (optional)
2. output/s
3. A shell command which takes the input and produces the output. We will use exclusively python scripts with an

`if __name__ == “__main__”:` clause to turn them into command line tools. But they don’t need to be python!
E.g. “hadd {output} {input}”.

rule my_rule_name:
input: “my_input.txt”
output: “output_file.root”
shell: “python my_script.py --input {input} --save_to {output}

Rules must be written in a text file called “Snakefile”

Snakemake allows one to automate one’s analysis, and easily extend, re-run, and modify steps with minimal overhead.

Example rule

Snakemake example

Snakemake is a simple tool which allows you to build a workflow using rules

Each rule has:
1. input/s (optional)
2. output/s
3. A shell command which takes the input and produces the output. We will use exclusively python scripts with an

`if __name__ == “__main__”:` clause to turn them into command line tools. But they don’t need to be python!
E.g. “hadd {output} {input}”.

rule my_rule_name:
input: “my_input.txt”
output: “output_file.root”
shell: “python my_script.py --input {input} --save_to {output}

Rules must be written in a text file called “Snakefile”

Snakemake allows one to automate one’s analysis, and easily extend, re-run, and modify steps with minimal overhead.

Snakemake isn’t dependent on programming language at all. All you need is a shell command which produces the correct
output. Snakemake will monitor your filesystem and wait for files to appear before sending off the next step. We will use
python for these examples.

Example rule

Snakemake example

Example from real-life.

Snakemake can build a
visualisation of the steps in your
analysis.

This helps other people (and you!)
understand your workflow.

This example creates toy datasets,
and template PDFs as the first
stage (no input required).

It then performs fits to each toy
dataset and then calculates and fits
pull distributions.

Snakemake example

Before we jump into making rules for our Snakemake workflow, we need some scripts, and some
data!

Snakemake example

Before we jump into making rules for our Snakemake workflow, we need some scripts, and some
data!

Unfortunately we don’t have enough time to write some dummy analysis code together, so please
download my pre-made git repo:

$ git clone ssh://git@stash.desy.de:7999/~murphyco/ap_startertalk.git

mailto:git@stash.desy.de

Snakemake example

Before we jump into making rules for our Snakemake workflow, we need some scripts, and some
data!

Unfortunately we don’t have enough time to write some dummy analysis code together, so please
download my pre-made git repo:

$ git clone ssh://git@stash.desy.de:7999/~murphyco/ap_startertalk.git

We should see four files (and a README)
1. generate_mc.py
2. fit_and_plot_mc.py
3. Snakefile
4. environment.yml

mailto:git@stash.desy.de

Snakemake example

Before we jump into making rules for our Snakemake workflow, we need some scripts, and some
data!

Unfortunately we don’t have enough time to write some dummy analysis code together, so please
download my pre-made git repo:

$ git clone ssh://git@stash.desy.de:7999/~murphyco/ap_startertalk.git

We should see four files (and a README)
1. generate_mc.py
2. fit_and_plot_mc.py
3. Snakefile
4. environment.yml

1 and 2 are simple scripts which generate some toy MC from a RooFit PDF and fit back to the
distribution. We will use this trivial workflow as a way of understanding Snakemake.

Please open up “Snakefile” in your editor of choice.

mailto:git@stash.desy.de

Snakemake example

Snakemake is built upon python, so normal python3 code can be used to extend it.

At the top of the file we define some constants needed as input to the generate_mc.py script

Exercise: look up “Configuration” on the Snakemake documentation. How could we
achieve the same thing with a config file?

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Wildcards are denoted with surrounding curly braces, {my_wildcard}

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Wildcards are denoted with surrounding curly braces, {my_wildcard}

Let’s define a simple rule, based on the script “generate_mc.py”.

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Wildcards are denoted with surrounding curly braces, {my_wildcard}

Let’s define a simple rule, based on the script “generate_mc.py”.

If you look in the script you will see it expects three command line arguments:
1. Signal yield
2. Background yield
3. Output directory (to save RooDataSet)

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Wildcards are denoted with surrounding curly braces, {my_wildcard}

Let’s define a simple rule, based on the script “generate_mc.py”.

If you look in the script you will see it expects three command line arguments:
1. Signal yield
2. Background yield
3. Output directory (to save RooDataSet)

We don’t need any input files. We just run the script and generate output.

So, when we define our rule, we do not need an input field

Snakemake example

Fundamentally, Snakemake works by matching wildcards in input fields to those in output fields.

Wildcards are denoted with surrounding curly braces, {my_wildcard}

Let’s define a simple rule, based on the script “generate_mc.py”.

If you look in the script you will see it expects three command line arguments:
1. Signal yield
2. Background yield
3. Output directory (to save RooDataSet)

We don’t need any input files. We just run the script and generate output.

So, when we define our rule, we do not need an input field

Here we use an f-string to format in the numbers for N_SIG and N_BKG, we don’t expect these to change.

This is just a slightly more flexible way of writing:
shell: “python generate_mc.py 10000 30000 {output}

Snakemake example

Let’s add a second rule, for the next distinct stage in our workflow: fitting the MC and making a plot.

As always, let’s first think conceptually about the input and output.

Snakemake example

Let’s add a second rule, for the next distinct stage in our workflow: fitting the MC and making a plot.

As always, let’s first think conceptually about the input and output.

The script fit_and_plot_mc.py expects two arguments.
1. Path to RooDataSet .root file
2. Path to save plot

Clearly we can see that the first argument corresponds to an “input”, and the second argument
corresponds to “output”.

Snakemake example

Let’s add a second rule, for the next distinct stage in our workflow: fitting the MC and making a plot.

As always, let’s first think conceptually about the input and output.

The script fit_and_plot_mc.py expects two arguments.
1. Path to RooDataSet .root file
2. Path to save plot

Clearly we can see that the first argument corresponds to an “input”, and the second argument
corresponds to “output”.

In this simple example, we can see that the “input” of this rule, corresponds to the “output” of the last rule.
This is our workflow in action.

As before, the shell field is simply invoking our python script with the input and output command line
arguments.

Snakemake example

The final stage is to force snakemake to run the whole procedure by creating a rule whose input is all of
our desired output.

Snakemake example

The final stage is to force snakemake to run the whole procedure by creating a rule whose input is all of
our desired output.

This “completes the circuit” of our workflow.

Snakemake example

The final stage is to force snakemake to run the whole procedure by creating a rule whose input is all of
our desired output.

This “completes the circuit” of our workflow.

This rule is given the special name “all” and must be placed at the top of our Snakefile.

In our case, we want the plot of our fit.

Try it out!
$ snakemake

Snakemake example

This barely scratches the surface of what snakemake can do.

For even more complicated workflows, the tool “Luigi” can be
used.

Note
It is possible to use KEKCC batch computing with snakemake.

Because snakemake creates a graph of processes, it knows what can be run in parallel automatically.

$ snakemake --cluster bsub -j 999 Max number of
consecutive jobs

Snakemake example

Now we see the true power of combining git, environment
managers, and a workflow manager.

In only three commands, one can reproduce another user’s
analysis.

$ git clone ssh://git@stash.desy.de:7999/~murphyco/ap_startertalk.git
$ conda env create
$ snakemake

Let’s write reproducible analyses!

mailto:git@stash.desy.de

Thank you for
listening!

Bonus snakemake exercises

1. Look up the “--dag” and “--rulegraph” options in the snakemake
documentation. Visualise the rulegraph for the test workflow in these slides

2. How can wildcards be used in the “shell” field of a rule? (wildcards object)

3. What does the “expand” keyword do?

4. Let’s say you have a preprocessing step which is intermediary, but produces
large files that you want to delete afterwards. How do you mark those files as
temporary in snakemake? (“temp” keyword)

5. Look up how conda environments can be integrated into specific rules

