Particle ID in Belle II ARICH and TOP

Oskar Hartbrich University of Hawaii at Manoa

Spring B2SKW, KEK 06/26/2019

What to Expect

- What is Particle Identification?
- Techniques for charged particle identification
- Dedicated charged PID subdetectors in Belle II
 - ARICH
 - TOP

• Heavily borrowing from the excellent lectures by Umberto Tamponi

Recap: Particle Detection

- PDG: thousands of known particles and their various decays
- But in detectors: e^{\pm} , μ^{\pm} , γ , π^{\pm} , K^{\pm} , K^{0}_{L} , p^{\pm} , n, (v)
 - Charged particles: momentum from bending radius in Bfield
 - → light "tracking" detectors (non-destructive measurements)
 - − Kinetic energy from stopping particles in material
 → heavy "calorimeters" (destructive measurement)
- What else can we measure?

Why Particle Identification?

- In flavour physics, we are often interested in reconstructing the whole decay chain of a specific event
 - Aim to reconstruct all final state particles: identify species

Particle Identification

- Some final state particles are easily identified by "unique" behaviour
 - Photons, Electrons (see M. Milesi's talk)
 - High-momentum muons (p>GeV) (see A. Martini's talk)
- Some behave very similarly
 - Charged hadrons, low-momentum muons
 - Neutral hadro ns
- The goal is always to construct a **likelihood** for a detected particle being of a given species.
 - Likelihoods of various detectors can be combined into a global PID likelihood (see U. Tamponi's talk)

Particle Behaviour

Distinguishing Charged Hadrons

- Particle identification == measuring a particle's rest mass
 - π^{\pm} : 140MeV
 - K±:494MeV
 - p±:938MeV
 - μ±:106MeV
- Momentum is known already
 - Do we have a handle on the particle velocity?

Distinguishing Charged Hadrons

- Particle identification == measuring a particle's rest mass
 - π^{\pm} : 140MeV
 - K±:494MeV
 - p±:938MeV
 - µ±:106MeV
- Momentum is known already
 - Do we have a handle on the particle velocity?
- Specific energy loss: dE/dx
- Time of flight (ToF)
- Cherenkov techniques

p √ → m

K/ π Separation: dE/dx and ToF

- dE/dx resolution limited by fundamental physics
- ToF depends on detector time resolution and lever arm
- Clearly need something else for higher momenta

Cherenkov Radiation: Basics

- Charged particle moving through a dielectric medium with velocity > the propagation speed of light in the medium will radiate photons along the way
 - Velocity threshold effect
 - (n.b.: Interestingly, this is radiation from constant motion)
- Photons are emitted at a fixed angle depending on refractive index n and particle velocity v:

$$\cos(heta)=rac{c'}{v}=rac{1}{neta}$$

• Emission spectrum is ~1/E: mostly in optical range

Cherenkov: Threshold Counters

- Free choice of radiator medium (just needs to be transparent, non-scintillating, dielectric):
 - Gases (easily adjust n with pressure)
 - Aerogels, Crystals
- Simple decision: Cherenkov photons detected or not?
 - Not using angular information
- Simple detector design:
 - Volume of radiator medium
 - Single photo detector
 - (Mirror)

11

Ring Imaging Cherenkov (RICH)

- Disc of Cherenkov photons becomes a ring after focusing
 - Radius of projected Cherenkov ring is a direct measure of the Cherenkov opening angle and thus particle velocity
- Now need imaging readout (many PMTs, pixelated detectors)
 - Reconstruction now depends angular resolution on the measured ring image

RICH: Proximity Focusing

- Gas RICH not suited for 4π detectors (especially barrel region), how can we make this smaller?
 - B-factories: momentum range <5GeV
- Don't need a focusing mirror if radiator is thin enough
 - Needs more light yield, larger opening angle \rightarrow higher n radiator \rightarrow Aerogel
- Drawbacks:
 - Rings can get distorted into ellipses depending on track angle
 - Radiator thickness adds on to angular resolution

ARICH: Belle II Endcap PID

ARICH: Belle II Endcap PID

- Special trick: use two stacked layers of Aerogel with slightly different n to double the lightyield
- Large single photon sensitive are with ~mm spatial resolution: Hybrid APD sensors

ARICH: Ring Image p=1.03GeV

• Cherenkov threshold effect: Kaon would not radiate at all

ARICH: Ring Image p=2.26GeV

• Large difference in Cherenkov angles → easy PID

ARICH: Ring Image p=3.56GeV

• Not so easy anymore. Clearly more likely a pion than a Kaon, but how much exactly likely?

ARICH: Ring Image Likelihood

- Reconstruction not actually based on fitting the Cherenkov ring
- For each track, analytically construct a pdf of expected detected photon positions for each possible particle species
- Evaluate pdf at position of each detected photon: **likelihood** for each particle hypothesis

Go thinner than RICH: DIRC

- How can we go even thinner? Capture Cherenkov photons inside of the radiator and use it as a light guide.
 - Angular information is preserved in total internal reflection
 - Needs high-n radiator (quartz) surrounded by low-n gas
- "Detector of Internally Reflected Cherenkov Light": DIRC

DIRC: Realisation

- Light guide allows to move photo sensors out of the detector barrel region
 - Quartz bar thickness is limited by minimum lightyield
- DIRC produces arcs (segments of conic sections) instead of rings
 - Arc thickness from quartz bar thickness
 - Ambiguities and reflections in the projected image can be solved in reconstruction

DIRC in BaBar

- Only DIRC ever built
 - Brilliant approach for B-factory requirements, but SOB needs a lot of space

TOP: Belle II Barrel PID

The "Time of Propagation" (TOP) Detector I

- Can we save space if we add timing to the DIRC concept?
- Instead of reconstructing the full ring image, measure time of propagation (path length) of individual Cherenkov photons.
 - Since collision timing is well known, measure ToF at the same time

The "Time of Propagation" (TOP) Detector II

- 16 quartz Cherenkov radiator bars arranged around IP
- Forward side: spherical mirror
- Backward side: small expansion prism, sensors, readout electronics

5

TOP: Total Internal Reflection

TOP Readout: Micro-Channel-Plate PMTs

- Goal: <100ps single optical photon time resolution
- Similar gain, photon efficiency as PMTs, but smaller
- (Mostly) resistant to B-fields
- Pixelated anodes for spatial resolution
- Very good time resolution for single photons

TOP "Cherenkov Rings" I

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing prism-side of TOP bar
 - Little room for Cherenkov cone to open up
 - PDF differences dominated by ToF offset

TOP "Cherenkov Rings" II

- $D^{*+} \rightarrow D^0 \pi_s^+; D^0 \rightarrow K^- \pi^+$ "Nature's MC truth"
- Kaon facing mirror-side of TOP bar
 - PDF differences dominated by shape

TOP PID Peformance: K- π Separation

PRELIMINARY

PRELIMINARY

Summary

- dE/dx and Time of Flight techniques can work well for low momenta
- Cherenkov techniques can cover a wider momentum range
- Belle II Endcap: ARICH
 - Aerogel radiator (proximity focusing double layer)
 - Reconstructing Cherenkov ring image directly
- Belle II Barrel: **TOP**
 - **Quartz** radiator captures Cherenkov photons
 - Reconstructing Cherenkov angle via time of propagation of individual photons, additional Time of Flight component
- Each PID subdetector constructs a PID likelihood for a given track
 - As always: contructing the pdf is getting complicated quickly
- Umberto will explain how to **combine PID likelihoods** information of various subdetectors and how to use them in analyses

dE/dx: Specific Ionisation

- Energy loss of charged particles in matter: Bethe-Bloch formula
- Measure ionisation from deposited charge in traversed tracking detector material (silicon diodes, gas mixture)

dE/dx: Specific Ionisation

• Some real data from ALICE and Belle I

dE/dx: Separation Power

- Assuming 7% deposited energy resolution (~Belle)
 - \rightarrow works great for low momenta, very mediocre above ~GeV

ARICH: Separation

ToF: Concept

Time of flight

Measure signal time difference between two detectors with good time resolution [start and stop counter]

Typical detectors:

Scintillation counter + photodetector time resolutions ~50-100 ps (r/o at both ends of the scintillator bar)

Resistive Plate Chamber (RPC)

not sensitive to B, time resolutions $\sim 30_{1}50$ ps cost effective solution for large surfaces

PMT

particle

Scintillator I

Scintillator II

PMT

ToF: Data

• Real data from ALICE and Belle

TOP Readout: Electronics

- Reads MCP-PMT signals
- Time resolution <50ps
 - ~GSa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable
- Low power
- Small form factor
- Online data processing
- etc. etc.

Readout: Electronics

- "Oscilloscope on a Chip": IRSX ASIC
 - Designed by IDLAB, UH (Prof. Gary Varner)
- Operated at 2.7GSa/s in TOP
 - ~600MHz analog bandwidth
 - 32k analog buffer cells (~10us)
 - 12 bit digitisation w/o deadtime
- Power budget ~600mW/ch
 - ASIC: ~125mW/ch
 - Preamp: ~150mW/ch
 - FPGAs: ~300mW/ch

Online Data Reduction

- Whole TOP stores 22x10¹² samples every second
- Only digitise relevant ASIC samples
 - Based on global trigger, local channel triggers
- Apply all raw data conditioning in frontend
 - Pedestal subtraction
 - Time base calibrations
- Extract waveform features in frontend
 - Photon timing, pulse shape parameters
- Write out only feature parameters
- Powerful frontend processing: 320 FPGAs, 640 ARM cores
 - Based on Xilinx Zynq SoCs

Feature Extraction in TOP

- Constant fraction discrimination
- Template fit to photon pulses
 - Computationally complex, possible on Zynq DSPs?
 - but only needed for low amplitude hits

41