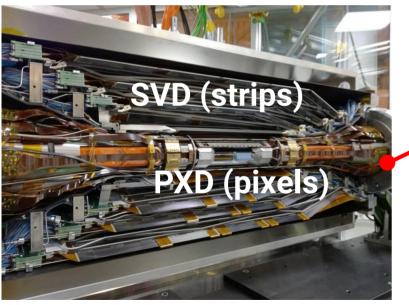
The Belle II Silicon Vertex Detector

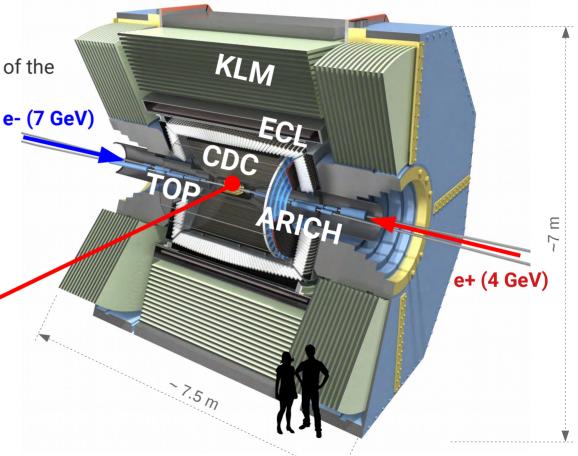
5th Belle II Starter Kit Workshop 29th Jan – 1st Feb 2020, KEK (Tsukuba)

Outline

Introduction to the Belle II vertex detector

•The structure of Belle II SVD

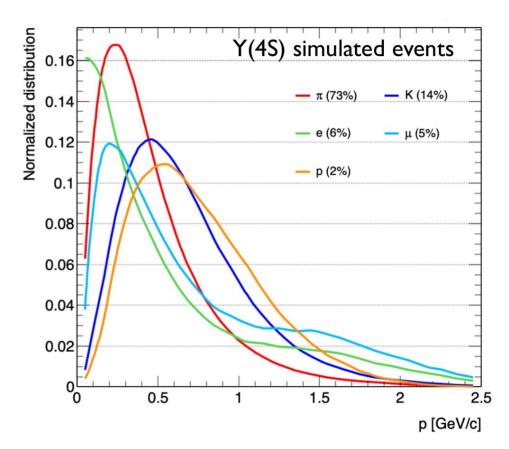

 SVD reconstruction and performance on data


OSummary

The Belle II detector

- The Belle II detector is a magnetic spectometer surrounding the interaction point (IP) of the SuperKEKB collider
- $^{\circ}~$ Its angular coverage exceeds the 90% of 4π
- High hermeticity → reconstruct all products of the e⁺e⁻ interaction

VerteX Detector (VXD)

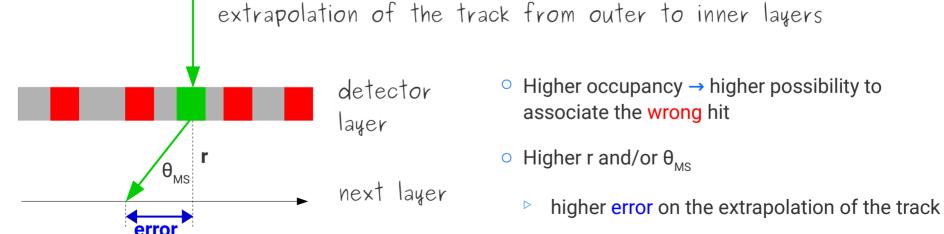

- The VXD provides the precise measurement of the primary and secondary vertices of short-lived particles
- 5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

Typical Y(4S) event

- SuperKEKB → B-factory that works at the center of mass energy corresponding to the Y(4S) resonance (10.58 GeV)
 - ▷ collision of 7 GeV e^{-} and 4 GeV $e^{+} \rightarrow \beta \gamma = 0.28$
- Average multiplicities in a Y(4S) event:
 - 11 charged tracks
 - 5 neutral pions
 - 1 neutral kaon
- Few tracks to be reconstructed but with small momentum → they are significantly affected by multiple scattering

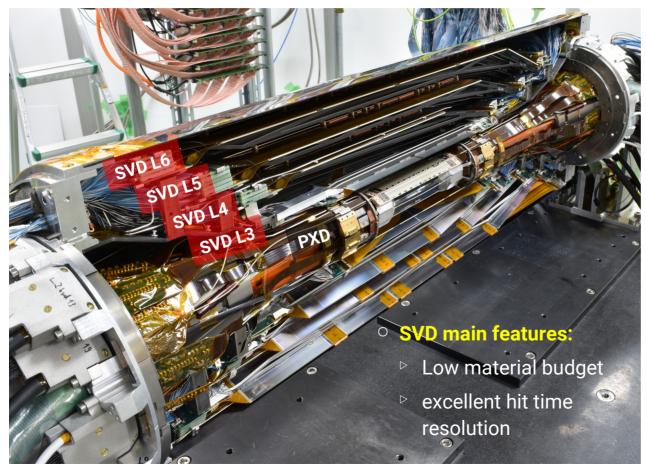
Soft charged tracks momentum spectrum

Background hits vs Signal hits expected in a silicon detector


- $^{\rm O}$ The nominal luminosity of SuperKEKB is 8 \cdot 10 35 cm 2 s $^{-1}$
- Signal hits on the VXD are overwhelmed by beam-background hits
 - at nominal background:
 - 11 signal hits, because of the average multiplicity of a typical Y(4S) event
 - many background hits \rightarrow hits of particles not produced at triggered Y(4S) events

Belle II full	Layer	1 of pixels	Layer 3 of strips (closer to IP)		
luminosity	Number of hits	Occupancy	Number of hits	Occupancy	
Y(4S)	11	5 · 10 ⁻⁵	11	0.2%	
beam bkg	50000	3%	3200	3%	

Occupancy: the averaged fraction of strips (pixels) fired per event


Precision on the vertex position determination

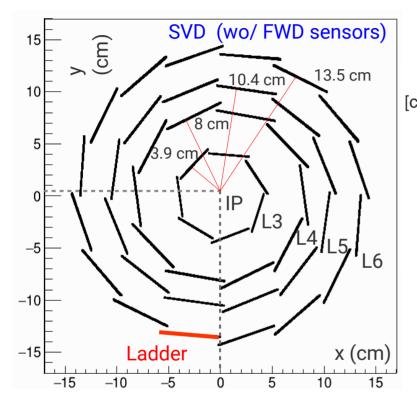
- We need at least two tracks to reconstruct the vertex Ο
- In order to determine correctly the vertex position, the impact parameters of the tracks must be 0 measured very well
- The most important factors affecting the precision of the impact parameters determination are: 0
 - Multiple scattering $(r \cdot \theta_{MS}) \rightarrow a$ detector with low material budget and closer to where we want to \triangleright extrapolate needed
 - probability to associate the correct hit to the track \rightarrow low occupancy preferred \triangleright

The Belle II Vertex Detector

- The Belle II VXD consists of two different silicon detectors, complementary to each other:
 - PiXel Detector (PXD): 2-layers of DEPFET pixel sensors, innermost layer @ 1.4 cm from IP (see previous talk!)
 - Silicon Vertex Detector (SVD): 4-layers of double-sided silicon strip detectors (see next slides)

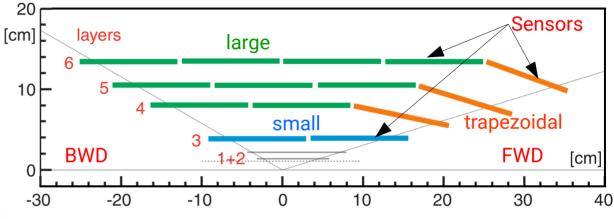
5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

- SVD:
 - Standalone reconstruction (and PID) of low-p_T tracks
 - ▷ Extrapolates tracks to PXD → find the correct pixel to attach to the track



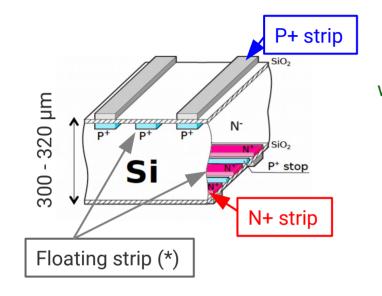
PXD data reduction to cope with storage and bandwidth limits

SVD structure, sensors and readout system


Structure of the Belle II SVD

• SVD section in the (xy) plane

- FWD sensors slanted (L4, 5, 6):
 - optimize track incident angle
 - reduce material budget in the FWD region


- SVD section in the (rz) plane
- O Angular acceptance: 17° 150° → it covers the full tracking volume

layer	number of ladders / layer	number of sensors / ladder	$\boldsymbol{\theta}_{FWD}$
3	7	2	0°
4	10	3	11.9°
5	12	4	17.2°
6	16	5	21.1°

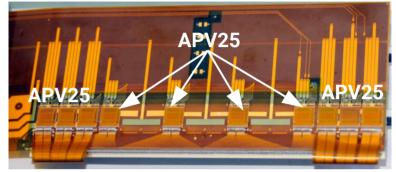
SVD strip silicon sensors

• Double-Sided Strip Detector (DSSD)

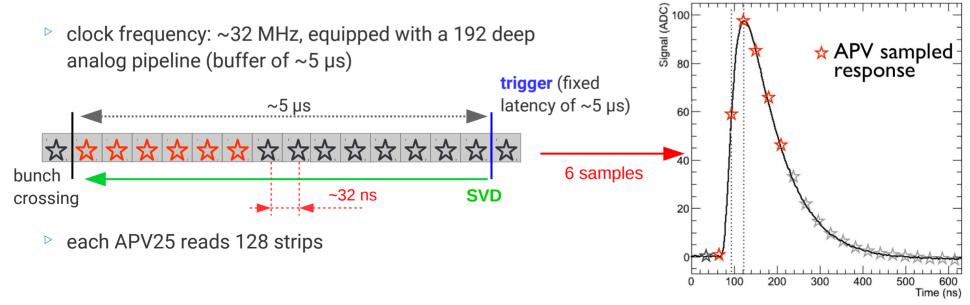
- 2D information about position
 X
 V/n side
- w ψ U/p side φ z
 - u-v coordinates are used on each sensor
 - \triangleright p-strips: u (r- ϕ) information
 - n-strips: v (z) information

- SVD operates applying an operation voltage of 100 V on each sensor
- Signal is generated by the drift of the charges in the sensor

(*) Floating strips are not readout

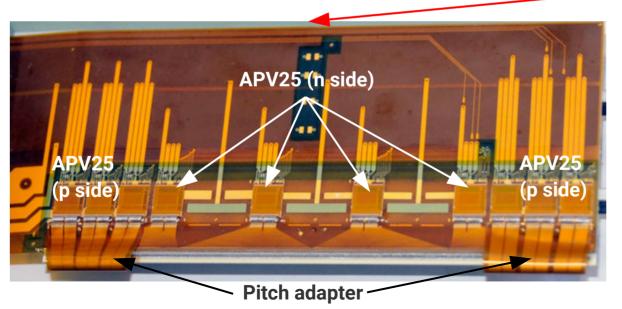

layer	type	readout strip (p/r-φ)	readout strip (n/z)	strip pitch (p/r-φ)	strip pitch (n/z)	number of sensors	sizes (mm)	thickness	total number of strips
4,5,6	large	768	512	75 µm	240 µm	120	125, 60	320 µm	
4,5,6 FWD	trapeizoidal	768	512	50-75 µm	240 µm	38	126, 61, 41	300 µm	224000
3	small	768	768	50 µm	160 µm	14	125, 40	320 µm	

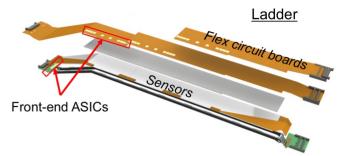
5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st


SVD front-end ASIC readout system: APV25

- Electric signals from sensors are processed by readout chips (APV25) on the sensors (inside the tracking volume):
 - high radiation hardness (designed for CMS)
 - ▷ shaping time of 50 ns \rightarrow low occupancy
 - ▷ thinned to 100 μ m → low material budget

Readout front-end on a sensor

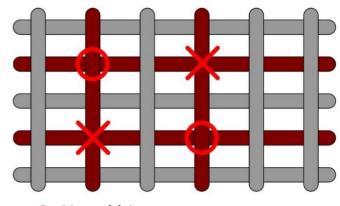



APV25 sampling output

SVD front-end ASIC readout system: Origami

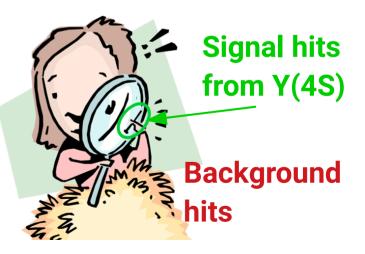
- SVD will operate at a high-luminosity machine (8 · 10³⁵ cm⁻² s⁻¹)
- Need short strips and short pitch adapters:
 - reduce the occupancy
 - reduce the noise
- The Origami chip-on-sensor → flex circuits that allows to minimise the analog path lenght
- Signals are readout on the sensors

- Pitch adapter folded and connected to the strips on the other side of the sensor
- APV25 are only on one side and they can be cooled down with only one CO2 cooling pipe
 - reduce the material budget


5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

SVD background hits

- Considering a particle that crosses one sensor and fires only one strip for each side → one signal hit (combination of the strips on the two sides) on that sensor
- Considering two particles that cross the same sensor and each of them fires only one strip per side → two signal hits and two ghost hits
- $\,\circ\,$ Beam background at very high luminosity $\,\rightarrow\,$ many hits on each sensor


Belle II full	SVD layer 3 only			
luminosity	Number of hits	Occupancy		
Y(4S)	11	0.2%		
beam bkg	3200	3%		

- Considering all possible combinations, these numbers explode!
- Additional background from electronic noise (1% of the strips)

O Signal hits

× Ghost hits

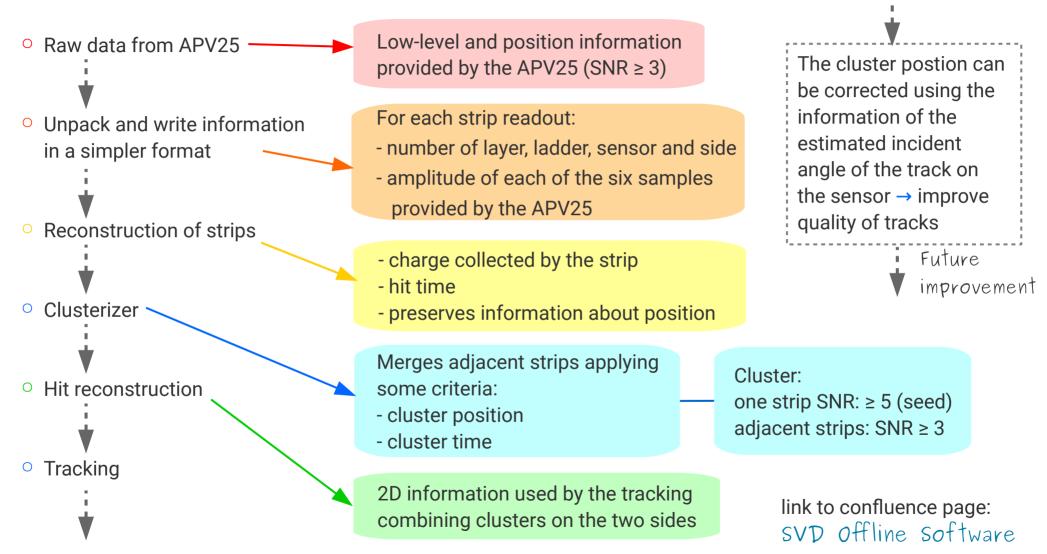
d.use_x = False d.use_y = True d.use_y = True d.use_z = False lion == "MIRROR_Z": d.use_x = False d.use_y = False d.use_z = True

> ion at the end -add back the dese elect= 1
> .select=1
> .scene.objects.active = modifier_elected" + str(modifier_ob)) # modifier_elected" + str(modifier_ob)) # modifier_elected_objects[0]
> context.selected_objects[0]
> bjects[one.name].select = 1

please select exactly two objects,

OPERATOR CLASSES -----

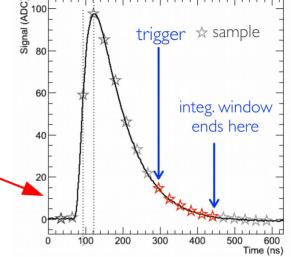
SVD data reconstruction and performance on data


SVD performances overview

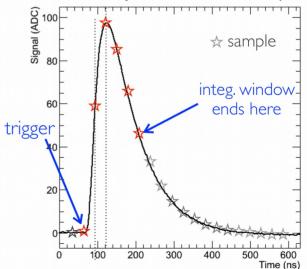
- Successful operations without major problems up to now:
 - all sensors are working fine
 - very few strips are defective and disabled (< 1%)</p>

- all of 1748 readout chips are working since October (one of them was disabled during Spring Run)
- Performances of the detector are excellent:
 - cluster energy and signal-to-noise-ratio (SNR) distributions look as expected
 - the hit efficiency of all sensors is very high
 - b the SVD hit time measurement shows very promising results → the hit time resolution after calibration is excellent
- Beam background studies:
 - the measured occupancy from beam-background is ~0.3% during data taking
 - limit for good tracking performance is ~3%

SVD reconstruction software

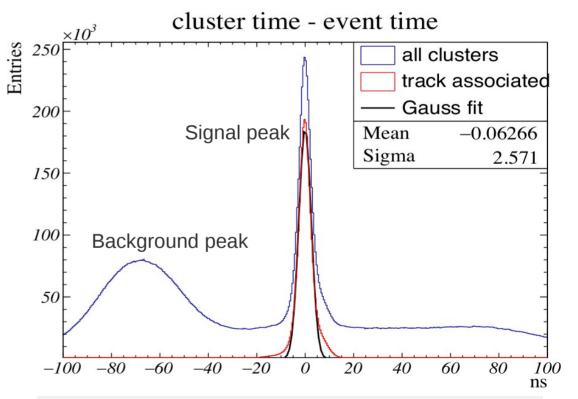

SVD hit time

- Precise determination of the SVD hit time is crucial to significantly reduce the occupancy by rejecting off-time particles
- SVD will be sensitive to off-time particles produced up to 100 bunch crossing before the triggered event
- Physics events are triggered at 30kHz, while the frequency of bunch crossing is 256 MHz \rightarrow in each bunch-crossings are produced beambackground particles (off-time with respect the triggered event). The signals of those particles stays over threshold for several bunch crossings
- The SVD hit time is determined using the sampling of the signal Ο response and the information of the trigger arrival


$$t_{hit} = \frac{\Sigma_n t_n \cdot A_n}{\Sigma_n A_n}$$

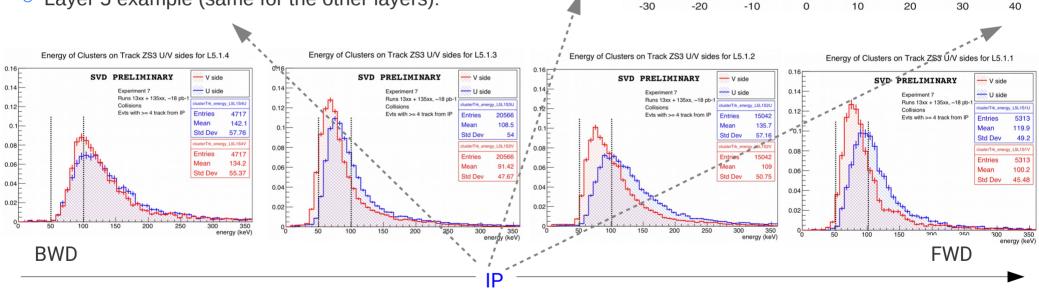
n: sample A_n : amplitude of the sample t_n : time of the sample

OFF-time particle noiseless response trigger ☆ sample


ON-time particle noiseless response

SVD hit time resolution

- Calibrated using the estimation of the event time (t₀) provided by the Central Drift Chamber (CDC)
- $^{\circ}~$ The SVD hit time resolution is ~ 3 4 ns
- Expected rejection of ~30% of clusters per sensor side. This corresponds to reject ~50% of hits per sensor
 - ▷ time information allows to reduce the occupancy → very important in the innermost layer of SVD
 - improvement in tracking, but currently time is not used in tracking on data and run dependent MC!


 (cluster time – event time) for Bhabha events from a subset of the 2019 Spring Run data sample

 cluster time is obtained as weighted mean of the time of the strips where the weight is the charge of the strips

SVD cluster energy

- $\circ~$ The cluster energy depends on the track incident angle 90° $\alpha~$ on the sensor
- With tracks from the IP, cluster energies are higher in the forward and backward sensors because of larger incident angle, as expected
- Layer 5 example (same for the other layers):

20 [cm]

BWD

- Cluster energy is similar for U/p and V/n sides; 20% charge loss in the V/n side due to capacitance effects between strips
- 5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

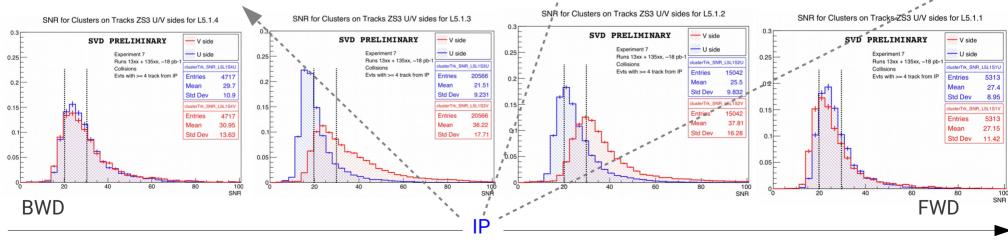
 $d = 300 \mu m$

 $E \simeq \frac{d}{\sin \alpha} \cdot 80 \frac{e^{-}}{um}$

FWD

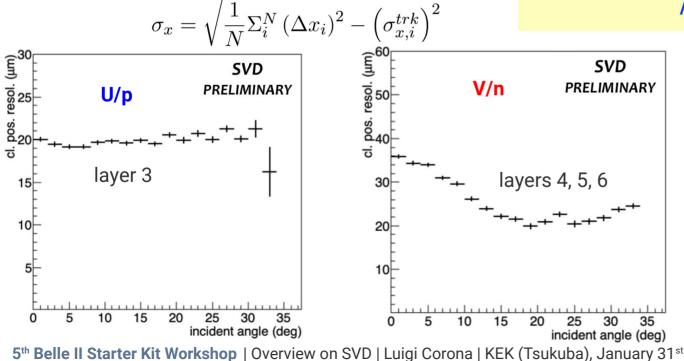
[cm

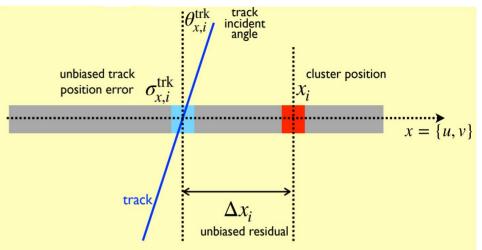
 $\frac{d}{\sin \alpha}$


SVD cluster SNR

- The signal-to-noise-ratio is used for example in the Clusterizer (SNR ≥ 5 for the seed strip and ≥ 3 for the adjacent strips)
- SNR depends on the collected charge and on the strip noise
 - ▷ noise of the U/p side > noise of the V/n side \rightarrow dominant difference
 - signal of the U/p side > signal of the V/n side, and it also depends on the track incident angle, i.e. on the position of the sensor

 $SNR_{cls} = -$

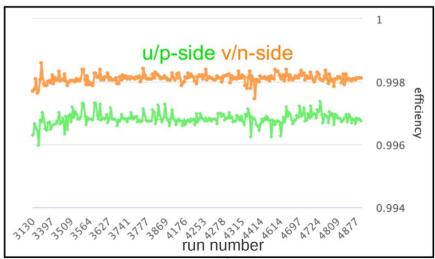

Layer 5 example


- Expectations:
 - higher SNR on V/n side with respect to U/p side of the same sensor
 - higher SNR on FWD and BWD sensors

SVD cluster position resolution

- $^{\circ}\,$ Cluster position resolution is estimated using $\mu^{*}\mu^{*}\,$ events from Spring run data
- Resolution is estimated from the residual of N selected cluster position with respect to the unbiased track (reconstructed removing the selected cluster) position
- The track position error is subtracted under squared root from the residual

- Preliminary cluster position resolution is ~20 – 30 µm vs the track incident angle
- Worse than optimistic MC prediction, ~10 µm. SVD simulation needs to be tuned!


SVD hit efficiency

- O Hit efficiency → number of clusters within ±0.5 mm from the intercept divided by the number of intercepts of the extrapolated tracks on the sensor under study
- Hit efficiency > 99% for most of the sensors and it is stable over time
- Averaged hit efficiency of one layer is obtained summing the number of clusters found nearby the intercepts divided by the sum of intercepts overall the sensors
- Averaged hit efficiency measured during a data taking run of 3 hours in December 2019, for all layers and sides

Layer	U/p side	V/n side
3	99.72%	99.79%
4	99.71%	99.76%
5	99.73%	99.88%
6	99.50%	99.81%

$$\epsilon_{layer} = \frac{\Sigma_{sensors} \ nCls_i}{\Sigma_{sensors} \ nInter_i}$$

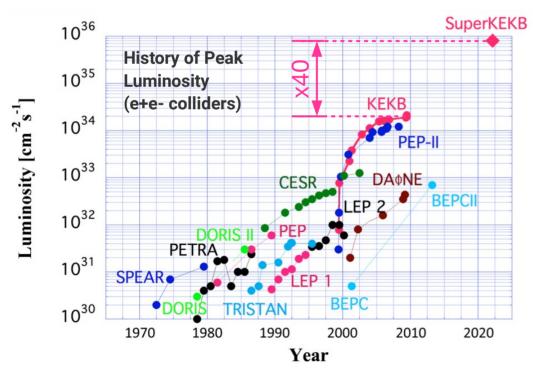

 Averaged hit efficiency measured in November 2019, it is stable for all the month

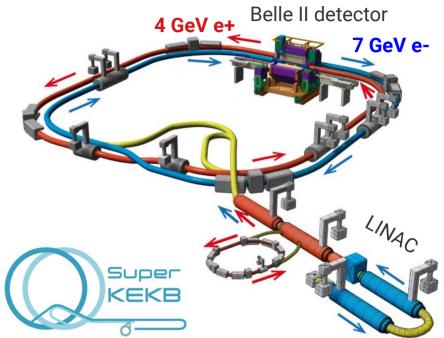
5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

Summary

- SVD is a 4-layer silicon strip detector and, together with PXD, makes up the Belle II vertex detector
 - ▷ low material budget (~0.7% X_0) and hit time resolution (~3 ns)
- SVD is the detector that "connects" PXD with the central drift chamber (CDC) → it is crucial for Belle II tracking and its rich physics program
 - $\triangleright~$ it provides standalone tracking (and PID) of low $p_{_{\rm T}}$ tracks
 - ▷ it guarantees the finding of the correct pixels to attach to the track \rightarrow PXD data reduction
- SVD response to particles is excellent and it is ready for the tracking and physics challenges:
 - the detector is stable and the hit efficiency > 99% for most of the sensors
 - cluster SNR and energy distributions as expected
- Improvements of the analysis tools used to study the performances is ongoing and the tuning of the SVD simulation is needed → Much interesting work to do and help is always welcome!

Thank you

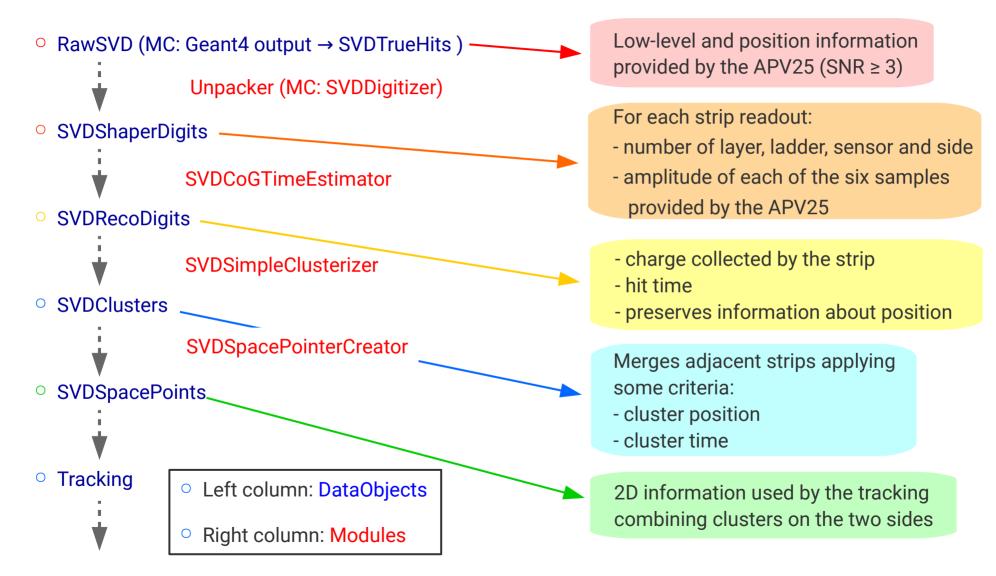

Luigi Corona ~ INFN and Università di Pisa


🖄 luigi.corona@pi.infn.it

The Belle II experiment at SuperKEKB

The B-factory SuperKEKB (KEK, Japan)

- Asymmetric e+ (4 GeV) e- (7 GeV) collider
- CM energy is set at the Y(4S) resonance (10.58 GeV)
- Target luminosity is 8.0 · 10³⁵ cm⁻² s⁻¹
- Target integrated luminosity is 50 ab⁻¹ (in 10 years)



The Belle II experiment

- Explores flavor physics at intensity frontier
- Search for new physics
- Physics data taking with the full Belle II detector has started on March 2019

5th Belle II Starter Kit Workshop | Overview on SVD | Luigi Corona | KEK (Tsukuba), January 31st

SVD reconstruction software: DataObjects and Modules

