

Istituto Nazionale di Fisica Nucleare Sezione di Roma Tre

KLM overview and µ identification algorithm

Alberto Martini University & INFN Roma Tre

5th Starter Kit, 30 January 2020, PID session - μID

Only scintillators;

KLM layers: RPC and scintillators

RPC= Resistive Plate Chamber

Gas detector supplied with 4.7kV

2.4 mm thick float glass (73% SiO2, 14% Na2O, 9% CaO, and 4%)

Scintillator strips:

Supplied with ~73V

Wavelength shifting (WLS) fibers coupling and photons read out by silicon photomultiplier (SiPMs)

KLM layers: RPC and scintillators

Supplied with ~73V

Scintillator strips:

Wavelength shifting (WLS) fibers coupling and

photons read out by silicon photomultiplier

RPC= Resistive Plate Chamber

Gas detector supplied with 4.7kV

2.4 mm thick float glass (73% SiO2, 14% Na2O, 9% CaO, and 4%)

Alberto Martini - Physics/Performance session - 34th B2GM - 23 October 2019

KLM and µID acceptance

Range of θ (radians)	Range of θ (degrees)	
$0.820 < \theta < 2.129$	$47^{\circ} < \theta < 122^{\circ}$	
$0.646 < \theta < 0.820 \ + \ 2.129 < \theta < 2.269$	$37^{\circ} < \theta < 47^{\circ} + 122^{\circ} < \theta < 130^{\circ}$	
$0.314 < \theta < 0.646 \ + \ 2.269 < \theta < 2.705$	$18^{\circ} < \theta < 37^{\circ} + 130^{\circ} < \theta < 155^{\circ}$	
$0.646 < \theta < 2.269$	$37^{\circ} < \theta < 130^{\circ}$	
$0.314 < \theta < 0.820 + 2.129 < \theta < 2.705$	$18^{\circ} < \theta < 47^{\circ} + 122^{\circ} < \theta < 155^{\circ}$	

KLM and µID acceptance

μ and K_L difference (I)

KLM provides 3.9 hadronic interaction lengths of material, beyond the 0.8 interaction lengths of the calorimeter

μ and K_L difference (I)

KLM provides 3.9 hadronic interaction lengths of material, beyond the 0.8 interaction lengths of the calorimeter

Muons characteristics:

Muons have a high penetration power (no hadronic interactions) → crossing lot of matter before being stopped. Muons can reach the outermosts layers of KLM leaving a very contained interaction shower

µ: 0.7 GeV in Fe→~12 MeV/cm lost

μ and K_L difference (I)

KLM provides 3.9 hadronic interaction lengths of material, beyond the 0.8 interaction lengths of the calorimeter

Muons characteristics:

Muons have a high penetration power (no hadronic interactions) → crossing lot of matter before being stopped. Muons can reach the outermosts layers of KLM leaving a very contained interaction shower

K_L^0 characteristics:

 K_L^0 can hadronically interact in the KLM or the calorimeter \rightarrow hadronic showers appear in the KLM \rightarrow clear K_L^0 signature

μ and K_L difference (II)

μ and K_L difference (II)

Belle II

Muons

Geant4e is used to extrapolate tracks reconstructed from the inner detectors by the tracking software

When the track reaches the KLM layers the μ ID algorithm provides the probability of the track to be a muon.

μ and K_L difference (II)

Muons

Geant4e is used to extrapolate tracks reconstructed from the inner detectors by the tracking software

When the track reaches the KLM layers the μ ID algorithm provides the probability of the track to be a muon.

KL Reconstructed by looking at KLM signals only. Usage of clusters (bunch of consequential layers)

Algorithm steps:

• Track extrapolated from last CDC layer hit towards the KLM. Always µ hypothesis.

Algorithm steps:

- Track extrapolated from last CDC layer hit towards the KLM. Always µ hypothesis.
- Check the presence of hits in KLM layers within 3.5σ from the extrapolated position.

Algorithm steps:

- Track extrapolated from last CDC layer hit towards the KLM. Always µ hypothesis.
- Check the presence of hits in KLM layers within 3.5σ from the extrapolated position.

Algorithm steps:

- Track extrapolated from last CDC layer hit towards the KLM. Always µ hypothesis.
- Check the presence of hits in KLM layers within 3.5σ from the extrapolated position.
- If there are hits in the KLM layers \rightarrow the track is considered most likely as a muon.

µID probability calculation (I)

 L_{Ln} = probability of having a hit in the Ln layer, for a particle hypothesis (MC pre-calculation) $L_{\text{long}} = \prod_{n=1}^{n_{OuterExt}} L_{\text{Ln}}$ is the longitudinal probability of a track to be the hypothesised particle.

µID probability calculation (I)

 L_{Ln} = probability of having a hit in the Ln layer, for a particle hypothesis (MC pre-calculation) $L_{\text{long}} = \prod_{n=1}^{n_{OuterExt}} L_{\text{Ln}}$ is the longitudinal probability of a track to be the hypothesised particle.

In order to correctly treat inefficient layers, if there are no hits in the layer \rightarrow take into account efficiencies and store: 1- L_{Ln} * Eff_{Ln}

Algorithm is corrected for both BKLM and EKLM since release 4

µID probability calculation (II)

Following the same layer per layer logic the L_{χ^2} probability is also defined and it depends on how much broad the hit pattern made by the tracks is (due to transverse shower effects)

The μ hypothesis follows the reduced $\chi 2$ distribution.

 L_{χ^2} has significantly less discrimination power of L defined in the previous slide

Alberto Martini - Physics/Performance session - 34th B2GM - 23 October 2019

µID problems

The most relevant issues with the algorithm are:

• Very similar behaviour from other particles (mostly pions). μ - π discrimination can be done almost completely by the KLM.

The interaction length λ_l for a pion of p~few GeV is:

 $\lambda_l = \frac{A}{\sigma N_A \rho} \simeq$ 17 cm in iron

• Low momentum regions: tracks do not reach KLM for kinematics reasons

µID problems

The most relevant issues with the algorithm are:

• Very similar behaviour from other particles (mostly pions). μ - π discrimination can be done almost completely by the KLM.

The interaction length λ_l for a pion of p~few GeV is:

$$\lambda_l = \frac{A}{\sigma N_A \rho} \simeq 17 \text{ cm in iron}$$

• Low momentum regions: tracks do not reach KLM for kinematics reasons

Recoverable issues:

- Not instrumented regions;
- KLM inefficiencies;

Direct implication on pion fake rate \rightarrow not having some hits allows the algorithm to identify tracks more likely as hadrons

µID performances

 μ ID eff VS μ momentum

μID performances depend a lot on the momentum of the tracks:

Once μ reaches KLM performances are good

Remember μ energy looses from the first slides...

0.7 GeV is the minimum momentum to reach KLM

µID performances

 μ ID eff VS μ theta Efficiency / (0.1 rad) $= 0.6 \\ 5 \\ = 0.6 \\ = 0.6 \\ 5 \\ = 0.6 \\ 5 \\ = 0.6 \\ 5 \\ = 0.6 \\ 5 \\ = 0.6 \\$ μμ**(**γ) 0.4 MC 0.3 0.2 **EKLM EKLM BKLM** 0.1 0¹ 0 0.5 2.5 1.5 2 Theta [rad]

μ ID performances depend a lot on the polar angle θ of the tracks:

If μ pass through instrumented part of the detector \rightarrow performances are good

Between BKLM and EKLM there is a small no instrumented area...

Alberto Martini - Physics/Performance session - 34th B2GM - 23 October 2019

µID performances

 μ ID performances depend a lot on the polar angle θ of the tracks:

If μ pass through instrumented part of the detector \rightarrow performances are good

Between BKLM and EKLM there is a small no instrumented area...

remember the chimney?

KLM and µID acceptance

µID behaviour based on data performances:

µID momentum behaviour:

- P<0.7GeV μ do not reach KLM
 0.7 GeV < P < 1 GeV μ reach KLM but no much info
- P > 1 GeV μ reach KLM and most of them exit it.

μ ID θ acceptance:

EKLM- backward: 131°-142° BKLM: 40°-51° - 115°-131° EKLM-forward: 24° - 40°

Summary and µID references

- KLM subdetector is made of layer of Resistive Place Chambers, scintillators (active volumes) and iron (absorber) \rightarrow Aim: identify long lived particles: K_L^0 and μ
- *µ* identification algorithm working principle is based on the penetration power of muons in the material and <u>*NOW*</u> it takes into account KLM efficiencies.
- K_L^0 identification algorithm is not yet in a good shape: work is ongoing
- μ identification performances are giving good results and additional work is going on:
 - -Fine tuning of the algorithm and debug (if necessary) [A. Martini]
 - Performances in different channels: J/Ψ decay, $\mu\mu(\gamma)$ and 4I events and more to come [all interested people, so far: Yo Sato, A. Martini, M. Milesi]
 - -Performance comparison with different approaches, like MVA [M. Milesi, Jo Yamanouchi]
 - $-\pi$ fake-rate study using different channels: J/ Ψ K_S [**D.** Ferlewicz, **M.** Milesi, A. Martini],
 - $\tau \rightarrow 3\pi$ (P. Feichtinger, N. Molina, A. Martini), D^{*} \rightarrow D π (all interested people, so far S. Sandilya, J. Strube)
 - Data analysis results/official plots on J/\mathcal{Y} [G. De Pietro, D. Farlewicz, Yosuke Yusa, M. Milesi], on 4l [Yo Sato, Akimasa Ishikawa]

Emergency slides!!

RPC strips detail

layer	phi strips	z strips
1	37	54 (*38)
2	42	54 (*38)
3	36	48 (*34)
4	36	48 (*34)
5	36	48 (*34)
6	36	48 (*34)
7	48	48 (*34)
8	48	48 (*34)
9	48	48 (*34)
10	48	48 (*34)
11	48	48 (*34)
12	48	48 (*34)
13	48	48 (*34)
14	48	48 (*34)
15	48	48 (*34)

* backward, sector#3, z strips are fewer, due to the chimney