

THE UNIVERSITY OF **MELBOURNE**

Particle identification at *Belle II* with the Electromagnetic Calorimeter (ECL)

Marco Milesi (with contributions from many others)

School of Physics - The University of Melbourne

Belle II StarterKit Workshop, KEK, January, 31st 2020

- 1. Overview of particle identification at *Belle II*.
- 2. Review of particle interactions with matter \rightarrow cf. Christian Wessel's lecture.
- 3. The Electromagnetic Calorimeter (ECL).

3.1 Pulse Shape Discrimination.

- 4. Overview of ECL clustering algorithm.
- 5. Neutral particle identification with the ECL.
 - 5.1 Photons

5.2 Ku

- 6. Charged particle identification with the ECL.
 - 6.1 Standard proxy: *E/p*
 - 6.2 Novel improvements at low momentum \rightarrow machine learning

Outline

1. Particle identification at Belle II

1. Particle identification at Belle II

• Particle Identification (PID): identify "long lived" particles passing through the detector by means of their interaction with matter.

- Often one of the most crucial factors determining sensitivity/precision of a physics measurement.
- PID algorithm works by encoding measurements from different sub-detectors into a likelihood ratio \rightarrow cf. Umberto Tamponi's lecture. This lecture focuses on the PID reach of the Belle II Electromagnetic Calorimeter (ECL).

(In Belle II) "standard charged": { e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , p^{\pm} , d^{\pm} }, "standard neutral": { γ , K^{0}_{L} }

The Belle II detector

"Barrel"

B = 1.5

"Backward"

EM Calorimeter:

CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector

2 layers DEPFET + 4 layers DSSD

Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

"Forward"

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

2. Particle interactions with matter

2. (Very brief) review of particle interactions with matter

Muons:

• In $p \sim [10^{-1}-10^3]$ GeV/c, mostly lose energy by *ionisation* \rightarrow

minimum ionising (M.I.P) up to several GeV, $dE/dx \sim O(2 \cdot \rho \text{ MeV/cm})$.

> As a result, muons unlikely to be stopped by detector material, will escape through. ightarrow m_µ = 105 MeV/c² \approx m_π = 139 MeV/c² implies measuring dE/dx has low power to discriminate the two species.

Bethe-Bloch (approx.) formula of average *E* loss per unit distance:

$$\frac{dE}{dx} \approx \rho (2 \text{MeVcm}^2/\text{g}) \frac{Z^2}{\beta^2} \qquad \left(p = m\beta\gamma c, \quad \gamma = \right)$$

CDC-dE/dx distribution and predictions

2. (Very brief) review of particle interactions with matter

Electrons:

• almost always $\beta \approx 1$, $dE/dx \sim O(2 \text{ MeV/cm})$ in light absorbers \rightarrow not stopped by VXD and CDC

(unless tracks curl in B field: $p_T < 200 \text{ MeV/c}$).

• For $E \sim [100-1000]$ MeV \rightarrow loss dominated by *bremsstrahlung*:

$$\frac{dE}{dx} = -\frac{E}{X_0} \qquad (X_0: r)$$

radiation length \rightarrow property of material)

(NB: for muons, brems loss suppressed by a factor $(m_e/m_\mu)^2$ up to $E \approx O(\text{TeV})$.

Photons in same range lose E by analogous mechanism: pair production $(\gamma \rightarrow ee)$

 \blacktriangleright EM shower progresses until critical energy reached: E_c : brems = ionisation

> Max *longitudinal* shower depth t_{max} depends only on $\ln(E_0)$.

▶ 95% of *lateral* width $< 2R_M$, independently of E_0 .

Moliere radius

2. (Very brief) review of particle interactions with matter

Hadrons (π, K, p) :

• As other charged massive particles, in $E \sim [10^{-1}-10^3]$ GeV, show M.I.P behaviour.

• Strong interactions with material atoms also lead to inelastic scattering loss.

► For $Z \ge 6$, $\lambda_I \gg X_0 \rightarrow$ hadrons are likely to punch-through the EM calorimeter.

► Inelastic interactions lead to fuzzier shapes of hadronic showers vs. EM showers.

► Modelling of simulated hadronic interactions w/ detector material not a trivial task:

cross-section energy dependence, different particle type responses...

 $\lambda_I = \frac{1}{N\sigma} \approx \frac{A^{1/3}}{\rho} 35 \text{ g/cm}^2$

 $(\lambda_{l}: interaction \ length \rightarrow hadronic \ mean \ free \ path)$

3. The Electromagnetic Calorimeter

3. The *Belle II* Electromagnetic Calorimeter (ECL)

Main tasks of the ECL:

Made up of 8736 laterally segmented CsI(TI) crystals.

Designed to longitudinally contain ~any EM cascade.

3. The *Belle II* Electromagnetic Calorimeter (ECL)

We can clearly observe resonances decaying to photons in the early *Belle II* data, with good mass resolution.

 $\eta \rightarrow \gamma \gamma$

 $\pi^0 \rightarrow \gamma \gamma$

Upgraded ECL readout electronics in *Belle II* (waveform sampling) allows offline analysis of the shape of the CsI(TI) crystal signal waveform \rightarrow pulse shape discrimination.

 \blacktriangleright Exploit different hadronic (π ,K,p) vs.E.M. (γ , e) scintillation response as a powerful handle for particle identification.

3.1 Pulse Shape Discrimination (PSD)

3. Overview of ECL clustering algorithm

4. Overview of ECL clustering (very simplistic)

4. Overview of ECL clustering

Simulation of single particles' energy deposition in a 15x15 ECL crystal array (pre-clustering):

γ

- Radially symmetric shape
- Usually contained in
 5x5 cells

e

- Similar shape of γ
- Less symmetric

(*B* field bend, brems γ

emitted before the ECL)

π

Ionisation loss contained

in 1-2 cells.

• Asymmetric lateral spread

due to hadronic interactions

μ

- Pure MIP behaviour.
- $\langle E_{cluster} \rangle \sim 200 \text{ MeV}$

5. Neutral PID with the ECL

5. Neutral PID with the ECL

Photons can be mimicked by:

- Neutral hadrons
- Charged hadrons \rightarrow "secondary" clusters

w/o matching track due to hadronic splitoffs.

► Identification mostly relies on variables describing the lateral shower shape development \rightarrow E1/E9, Zernike moments.

Standard "candle" to test ID performance in data: $ee \rightarrow \mu\mu\gamma$

6. Charged PID with the ECL

6.1 Standard proxy for *charged* ECL PID: *E/p*

Ratio of $E_{cluster}$ over p_{track} : "standard" variable, mostly designed for electron identification (\rightarrow peaks at 1!)

- *PDFs* defined in MC simulation from one-dimensional fits of *E/p* templates (single particle samples).
- Used to calculate likelihood of i-th particle type:

e

$$\mathcal{L}_i^{ECL} = \mathcal{L}(x|i) = \mathcal{L}\left((E/p)_{obs}|(E/p)_i^{MC}\right)$$

Events / (0.01035) 1701 (0.01035) 1001 (0.01035) Simulation Belle I $cluster \le 2.24$ 0.56 < 0.60 \square PDF for particle class: π 80 60 40 20 Pulls 0.2 0.4 0.6 0.8 20 E/p

π

6.1 Standard proxy for *charged* ECL PID: *E/p*

6.2 The low momentum PID challenge

- material, averaged over ϕ 1.2 -**B2TIP** SVD 1.0 -ARICH 0.8 XX radiation length, - 9.0 • Separation power partially recovered by CDC. 0.2 - $0.2 \le p < 0.6$ [GeV/c], ECL Barrel $0.2 \le p < 0.6$ [GeV/c], ECL Barrel 4.5 4.0
- At low momenta, E/p by itself becomes sub-optimal for PID purposes: • Electrons: larger bremsstrahlung losses before the ECL + stronger track bending. • Muons: if $p_T < 600$ GeV/c, they fall outside of the KLM acceptance.

6.2 Novel improvements to (low p) ECL PID - BDT

6.2 Novel improvements to (low p) ECL PID - Convolutional NN

Feed raw energy information (instead of higher level variables like shower shapes) in a convolutional NN architecture. • Train algorithm on (pre-processed) calorimeter cells images for μ and π .

- Idea is by-pass clustering algorithm shortcomings when dealing with "atypical" energy deposition patterns.

Questions?

- The Belle II Physics Book [https://arxiv.org/abs/1808.10567]
- S. Taavernier, *Experimental Techniques in Nuclear and Particle Physics* [Springer, 2010]
- C. Grupen, B. Schwartz, *Particle Detectors* [Cambridge University Press, 2011]
- S. Longo, J.Roney, Hadronic vs Electromagnetic Pulse Shape Discrimination in CsI(TI) for High Energy Physics Experiments [2018 JINST 13 P03018]
- S. Lacaprara, Internal Note [<u>https://docs.belle2.org/record/1218</u>]
- M. De Nuccio, The Belle II Electromagnetic Calorimeter [June 2019 B2SKWS]
- D.Ferlewicz et al [Internal note], Y.Sato et al. [Internal note]