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6.1 Standard proxy: E/p 
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1. Particle identification at Belle II 
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• Particle Identification (PID): identify “long lived” particles passing through the detector by means of their interaction with matter.   

(In Belle II) “standard charged”: {e±, μ±, π±, K±, p±, d±}, “standard neutral”: {𝜸, K0L}  

• Often one of the most crucial factors determining sensitivity/precision of a physics measurement. 

• PID algorithm works by encoding measurements from different sub-detectors into a likelihood ratio → cf. Umberto Tamponi’s lecture. 

This lecture focuses on the PID reach of the Belle II Electromagnetic Calorimeter (ECL).
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The Belle II detector
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2. Particle interactions with matter



2. (Very brief) review of particle interactions with matter
Muons: 

• In p ∼ [10-1–103] GeV/c, mostly lose energy by ionisation →  

minimum ionising (M.I.P) up to several GeV, dE/dx ∼ O(2 ∙ ρ MeV/cm) .

➤ As a result, muons unlikely to be stopped by detector material, will escape through.

➤ mμ = 105 MeV/c2 ≈ mπ = 139 MeV/c2 implies measuring dE/dx has low power  

to discriminate the two species.
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dE

dx
≈ ρ(2MeVcm2/g)

Z2

β2

(
p = mβγc, γ =

1√
1 − β2

)

Bethe-Bloch (approx.) formula of average E loss per  

unit distance:
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2. (Very brief) review of particle interactions with matter

Electrons: 

• almost always β≈1, dE/dx ∼ O(2 MeV/cm) in light absorbers → not stopped by VXD and CDC  

(unless tracks curl in B field: pT < 200 MeV/c). 

• For E ∼ [100-1000] MeV → loss dominated by bremsstrahlung: 

(X0: radiation length→ property of material)dE

dx
= − E

X0

➤ EM shower progresses until critical energy reached:Ec: brems = ionisation

➤ Max longitudinal shower depth tmax depends only on ln(E0). tmax ∝ ln
(

E0

Ec

)

Photons in same range lose E by analogous mechanism: pair production (𝜸→ee)

➤ 95% of lateral width < 2RM, independently of E0.
=3

RM = 21MeV
Ec

X0 [g /cm2]

Moliere radius

(NB: for muons, brems loss suppressed by a factor (me/mμ)2 up to E ≈ O(TeV).
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2. (Very brief) review of particle interactions with matter
Hadrons (π, K, p): 

• As other charged massive particles, in E ∼ [10-1–103] GeV, show M.I.P behaviour. 

• Strong interactions with material atoms also lead to inelastic scattering loss.

➤ For Z ≥ 6, λI ≫ X0 → hadrons are likely to punch-through the EM calorimeter.

➤ Inelastic interactions lead to fuzzier shapes of hadronic showers vs. EM showers.

(λI: interaction length → hadronic mean free path)

=3

λI = 1
Nσ ≈ A1/3

ρ 35 g/cm2

➤ Modelling of simulated hadronic interactions w/ detector material not a trivial task:  

cross-section energy dependence, different particle type responses…



3. The Electromagnetic Calorimeter



3. The Belle II Electromagnetic Calorimeter (ECL)

Made up of 8736 laterally segmented CsI(Tl) crystals.

• Photon (𝜸) detection with high efficiency. 

• Precise determination of 𝜸 energy and angular coordinates. 

• Electron/hadron separation.

Main tasks of the ECL:

ri = 1.25 m

Δz = 3.0 m

1.96 m-1.02 m

Designed to longitudinally contain ∼any EM cascade.
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3. The Belle II Electromagnetic Calorimeter (ECL)

η→𝜸𝜸 π0→𝜸𝜸

We can clearly observe resonances decaying to photons in the early Belle II data, with good mass resolution.
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3.1 Pulse Shape Discrimination (PSD)
Upgraded ECL readout electronics in Belle II (waveform sampling) allows offline analysis of the shape of the CsI(Tl) 

 crystal signal waveform  → pulse shape discrimination.

➤ Exploit different hadronic (π,K,p) vs.E.M. (𝜸, e) scintillation response as a powerful handle for particle identification.

Ionising particles→  

fast scintillation

EM particles→ slow scintillation



3. Overview of ECL clustering algorithm
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ECL(Cal)Digit 
(32 bit string w/ waveform amplitude 

(calibrated → E) & time info)

4. Overview of ECL clustering (very simplistic)
Exhaustive overview of the ECL clustering algorithm: 

 M. De Nuccio T. Ferber, June 2019 B2SK.  

ECLConnectedRegion
(contains all info not directly  

correlated with other info in the event.)

ECLShower
(up to 5x5 cells, 

excluding corners)
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https://indico.belle2.org/event/99/sessions/52/attachments/1009/1557/2019_June_SK_TFMDN_4.pdf


4. Overview of ECL clustering

e π μ

• Similar shape of 𝜸 

• Less symmetric  

(B field bend, brems 𝜸  

emitted before the ECL)

• Ionisation loss contained  

in 1-2 cells. 

• Asymmetric lateral spread  

due to hadronic interactions

• Pure MIP behaviour. 

• ⟨Ecluster⟩ ∼ 200 MeV

• Radially symmetric shape  

• Usually contained in 

 5x5 cells

𝜸

Simulation of single particles’ energy deposition in a 15x15 ECL crystal array (pre-clustering):
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5. Neutral PID with the ECL
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5. Neutral PID with the ECL
Photons can be mimicked by: 

• Neutral hadrons 

• Charged hadrons → “secondary” clusters  

w/o matching track due to hadronic splitoffs. 

➤ Identification mostly relies on variables describing the  

lateral shower shape development → E1/E9, Zernike moments.

E1/E9 n𝜸

Standard “candle” to test ID performance in data: ee→μμ𝜸

𝜸



6. Charged PID with the ECL
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6.1 Standard proxy for charged ECL PID: E/p
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Ratio of Ecluster over ptrack  : “standard” variable, mostly designed for electron identification (→ peaks at 1!) 

e π

• PDFs defined in MC simulation from one-dimensional fits of E/p templates (single particle samples).

• Used to calculate likelihood of i-th particle type: LECL
i = L(x|i) = L

(
(E/p)obs|(E/p)MC

i

)



6.1 Standard proxy for charged ECL PID: E/p
(E/p-based) electron identification performance in early Belle II data studied in 

 J/ѱ decays, as well as ee→eeee events  

J/ѱ →ee

ee → eeee

21
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6.2 The low momentum PID challenge

At low momenta, E/p by itself becomes sub-optimal for PID purposes: 

• Electrons: larger bremsstrahlung losses before the ECL + stronger track bending. 

• Separation power partially recovered by CDC. 

• Muons: if pT < 600 GeV/c, they fall outside of the KLM acceptance. 
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6.2 Novel improvements to (low p) ECL PID - BDT
Combine several ECL observables in a BDT → exploit non-trivial correlations among shower shape variables, E/p, PSD… 

Examples: E9/E21

•  Background (π) rejection  

(→1/fake rate) strongly improved  

wr.t  simple E/p-based PID:
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∆L, “track depth” 



6.2 Novel improvements to (low p) ECL PID - Convolutional NN
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Feed raw energy information (instead of higher level variables like shower shapes) in a convolutional NN architecture. 

• Train algorithm on (pre-processed) calorimeter cells images for μ and π. 

• Idea is by-pass clustering algorithm shortcomings when dealing with “atypical” energy deposition patterns.

μ→ worm-like energy  

deposition pattern



Questions?
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