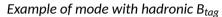
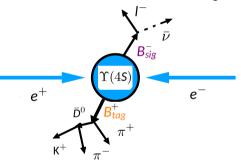
Status and Future Development of the Full Event Interpretation Algorithm at Belle II

Slavomira Stefkova on behalf of Belle II collaboration

FPCP, 11.06.2020





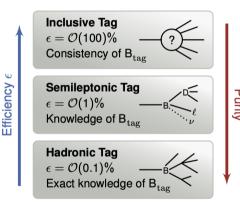
Event in Belle II

- ▷ $e^+ e^-$ collision at $\Upsilon(4S)$ resonance
- $\triangleright \ \Upsilon(4{\rm S}) \to {\rm B}^+{\rm B}^- \text{, } {\rm B}^0\bar{\rm B}^0 \text{ with } {\rm B}>96\%$
- If possible, reconstructs one of the B meson in either semileptonic or hadronic decay chains (B_{tag})
- Properties of the other B can be studied (B_{sig})
- ▷ Flavour constraint: $B_{tag}^+ \rightarrow B_{sig}^-$
- Kinematically constrained system with hadronically tagged event:

$$ec{p}_
u+ec{p}_{\mathsf{l}}=ec{p}_{e^+e^-}-ec{p}_{\mathsf{B}_{\mathsf{tag}}}$$

What is Full Event Interpretation (FEI)?

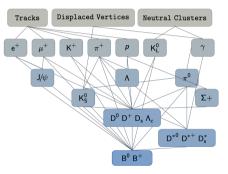
- Flexible multivariate tagging algorithm developed for B-meson reconstruction in Belle II Keck, T. et al. Comput. Softw. Big. Sci. (2019) 3: 6
- ▷ **Task**: Correctly identifying one *B* decay (B_{tag}) allowing for detailed investigation of the other *B* (B_{sig})
- ▷ **Use in** *B***-physics**: Especially useful when studying modes with missing energy (modes with one or more neutrinos, specific dark matter searches)
- ▷ Successor of the Belle Full Reconstruction Feindt, M. et al. Nucl.Instrum.Meth.A 654 (2011) 432-440
- Can be used on Belle data set


 PHYSICAL REVIEW LETTERS 124, 161803 (2020)
 PHYSICAL REVIEW D 98, 112016 (2018)

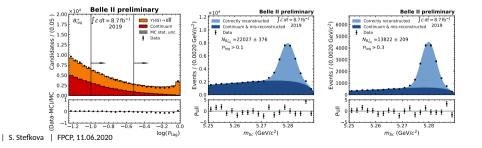
 Referent Graphing
 Resurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ with a Semileptonic Tagging Method
 Search for the rare decay of $B^* \rightarrow t^* v_{eff}$ with improved hadronic tagging

 The Belle Collaboration, Phys. Rev. Lett. 124, 161803
 The Belle Collaboration, Phys. Rev. D 98, 112016

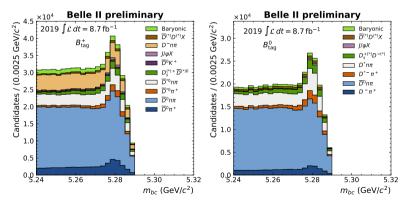
Tagging Techniques in Belle II


- Generic FEI techniques include reconstruction of the B-meson candidate with
 - Semileptonic Tagging
 - Hadronic Tagging
- Trade-off between efficiency, purity, and knowledge of missing kinematics
- Another possibility: dedicated signal-specific FEI

How Does FEI Work?


- FEI uses hierarchical approach to reconstruct $\mathcal{O}(200)$ decay channels via $\mathcal{O}(10^4)$ decay chains
- Firstly tracks, neutral clusters and displaced vertices are interpreted as final state particles (FSPs) e.g e[±], μ[±], K[±], ...
- ▷ FSPs are then combined into intermediate particles until *B* candidates are formed
- Each unique particle has its own multivariate classifier which quantifies the correctness of reconstruction based on input features such as four-momentum, vertexing information...
- ▷ Usually only one B-meson candidate with the highest probability is kept
- Recent development: Inclusion of baryonic modes DESY. | S. Stefkova | FPCP, 11.06.2020

Schematic view


Hadronic FEI Performance in Early Belle II Data

- Evaluated with efficiency-purity scan
- ▷ **Tag-side efficiency**: *N* of correct B_{tag} candidates / *N* of $\Upsilon(4S)$
- ▶ **Purity**: *N* of correct *B*_{tag} candidates / *N* of *B*_{tag} candidates
- hinstriangle Correct B_{tag} yield: Fit to $m_{bc}=\sqrt{rac{s}{4}}-p_{\mathsf{B}_{tag}}^{*2}$
- ▷ $p_{B_{tag}}^{*2}$:= three-momentum of B_{tag} candidate, \sqrt{s} := beam energy (Υ (4S) frame) ▷ N of correct B_{tag} candidates can be controlled with B classifier value: $\mathcal{P}_{B_{tag}}$

Effect of Baryonic Modes on Hadronic FEI Performance

- ▷ Inclusion of baryonic modes improves hadronic tag-side efficiency by 3% (2%) for $B^+(B^0)$
- ▷ Below m_{bc} distribution highlighting contributions from several decay modes for B^+ and B^0 in early Belle II Data

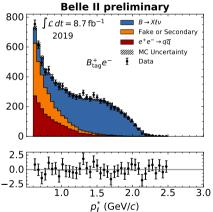
Generic FEI Performance Comparison

MC tag-side efficiency

@10% Purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺ /B ⁰ [%]
Full Reconstruction Belle	0.28/0.18	0.67/0.63
FEI Belle	0.76/0.46	1.80/2.04
FEI Belle II preliminary	0.58/0.37	-
corresponding to 8.7 fb $^{-1}$		
N of correct B_{tag} per 1 fb ⁻¹ in Belle II	6380/4070	-

FEI outperforms Full Reconstruction

Lower efficiency of FEI Belle II compared to Belle due to lower reconstruction efficiency


Hadronic FEI Calibration in Early Belle II Data

Calibration: difference in tagging efficiency between data and MC

- Sources: hadronic branching fraction ratios, simulation 600 of detector, dynamics of the hadronic decays...
- ▷ Calibration Strategy: measure signal-side yield in wellknown, high B channel

Steps:

- ▷ Reconstruct $B_{sig} := B \rightarrow X I \nu$ with specific selection
- \triangleright Extract the number of signal events: Fit to p_l^*
- ▷ Derive calibration factors: $\epsilon_{(DATA/MC)}$
- ▷ Preliminary $\epsilon_{(DATA/MC)}(B_{tag}^+e^-) = 0.61 \pm 0.02$
- Calibration factors used to correct the tag-side efficiency in physics measurements DESY. | S. Stefkova | FPCP, 11.06.2020

Upcoming FEI-related Work

Calibration plans:

- \triangleright Hadronic FEI calibration with $B
 ightarrow D^{(*)} l
 u$
- Semileptonic FEI calibration

Expected physics results with FEI:

- ▷ Observation of $B \rightarrow D^{(*)} l \nu$, J/ ψ X, $B \rightarrow \pi l \nu$
- \triangleright B \rightarrow I ν , B \rightarrow X_uI ν , B \rightarrow h $\nu\nu$

Future FEI Developments:

▷ FEI for $\Upsilon(5S)$ resonance

▷
$$\Upsilon(5S) \rightarrow B^{(*)} = 76.2\%, \Upsilon(5S) \rightarrow B_s^{(*)} = 20.1\%$$

▷ Physics target: $B_s^0 \rightarrow \tau\tau, B_s^0 \rightarrow I\tau, B_s^0 \rightarrow \phi\nu\nu$

 Deep classifiers in FEI instead of fastBDTs, exploration of graph convolutions

Used B⁰_s channels

 $\begin{array}{l} B^0_s \to D^-_s D^+_s \\ B^0_s \to D^+_s D^-_s \\ B^0_s \to D^+_s D^-_s \\ B^0_s \to D^+_s D^-_s \\ B^0_s \to D^-_s K^+ \\ B^0_s \to D^-_s K^+ \\ B^0_s \to D^-_s \pi^+ \\ B^0_s \to D^-_s \pi^+ \\ B^0_s \to D^-_s \pi^+ \pi^+ \\ B^0_s \to D^-_s \pi^+ \pi^+ \\ B^0_s \to D^-_s \pi^+ \pi^+ \\ B^0_s \to D^-_s D^+_s \\ B^0_s \to D^-_s \pi^+ \pi^0 \\ B^0_s \to D^-_s \pi^+ \pi^0 \\ B^0_s \to D^-_s D^{*0} K^+ \\ B^0_s \to D^-_s D^+_s D^+ \\ B^0_s \to D^-_s D^+_s D^+_s D^+ \\ B^0_s \to D^-_s D^+_s D^+_$

Conclusion

- Generic FEI algorithm now includes baryonic modes
- ▷ FEI performance with early Belle II data corresponding to $\mathcal{L} = 8.7$ fb⁻¹ was presented
- FEI performs significantly better than its Belle predecessor
- ▷ Calibration with hadronic tag in early Belle II data is being performed
- ▷ Exciting physics analyses utilising FEI algorithm are under-way
- ▷ New developments of FEI algorithm can open door to B_s^0 physics in Belle II

