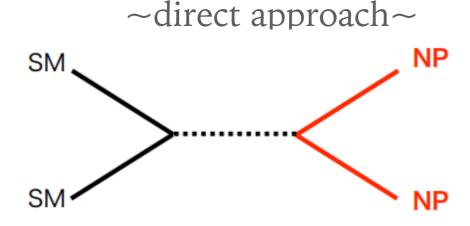


RESULTS AND PROSPECTS OF RADIATIVE AND ELECTROWEAK PENGUIN DECAYS AT BELLE II

Soumen Halder Tata Institute of Fundamental Research (On Behalf of Belle II Collaboration)

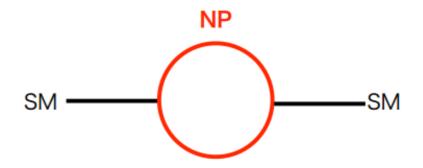


OVERVIEW

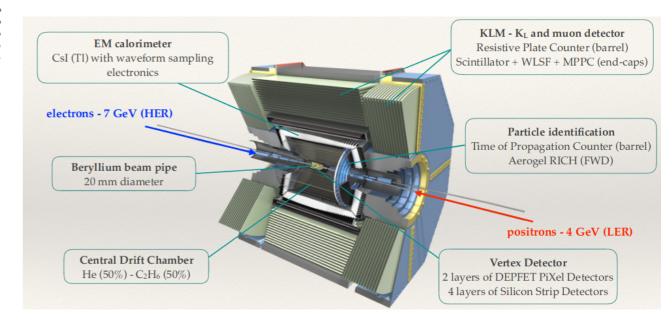
- ➤ New Physics Search
- ➤ Belle II data taking
- ➤ Radiative penguin B decay
 - Analysis strategy
 - Observables
- ➤ Semi-leptonic penguin B decay
 - Angular analysis
 - Lepton universality test
 - $B \to K^{(*)} \nu \bar{\nu}$ prospects
- ➤ Summary

NEW PHYSICS SEARCH

Energy frontier



- ➤ Directly produce new physics particle using high energy collisions
- ➤ Sensitive to energy scale of new physics
- ➤ Limited by energy availability in CMS frame


CMS is a energy frontier experiment

Luminosity frontier

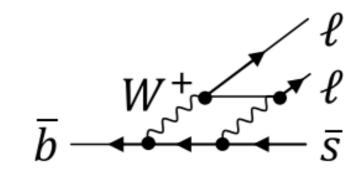
~indirect approach~

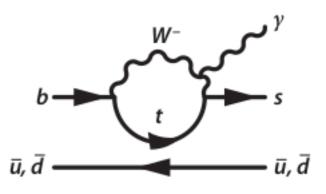
- ➤ Find `indirect' sign of NP particles in the quantum loop
- Sensitive to Flavour structure of new physics
- ➤ Limited by integrated luminosity in probing rarer process

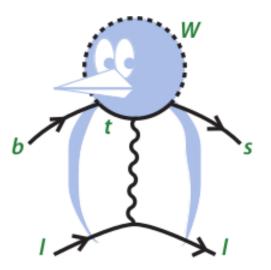
Belle II is a luminosity frontier experiment

NEW PHYSICS SEARCH THROUGH EWP B MESON DECAY

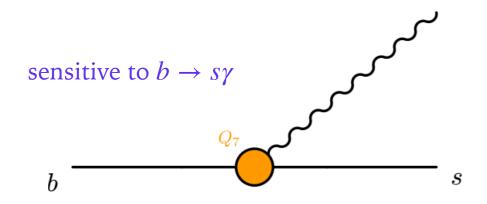
- ightharpoonup b
 ightharpoonup s(d) is FCNC which is not allowed in Tree level in SM (Loop suppression and CKM suppression)
- ➤ Being rare nice probe to new physics
- ➤ NP can appear in loop, change BR or other observables

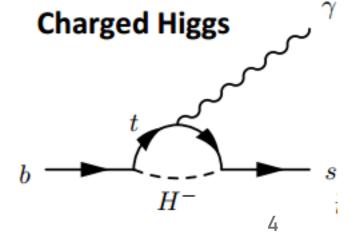

$$\mathcal{H}_{\text{eff}} = \sum_{i} \lambda_{CKM}^{i} C_{i}(\mu) Q_{i}(\mu) + \text{h.c}$$


- $ightharpoonup C_i(\mu)$: Short distance contribution (Physics above EW scale)
- $ightharpoonup Q_i(\mu)$: Local operators constructed from field below EW scale, encode large distance contribution

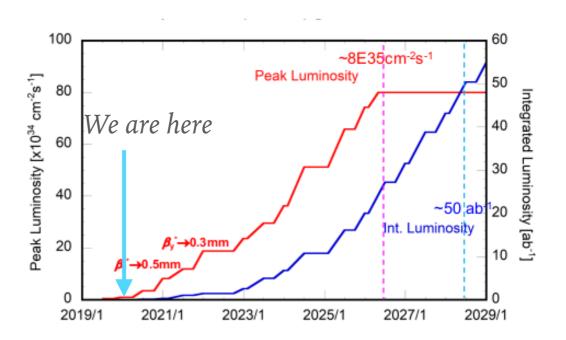


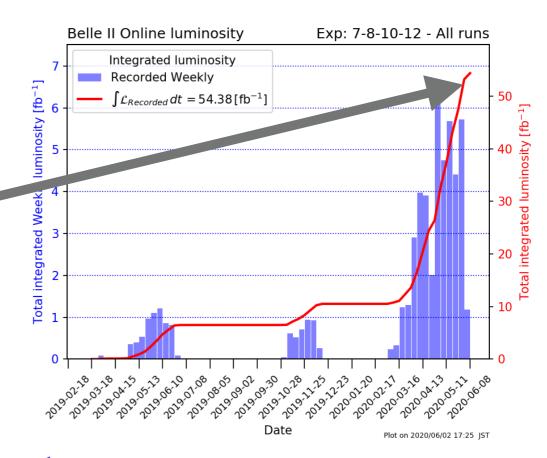
1.
$$C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$$


2. Generate new operators not present in SM



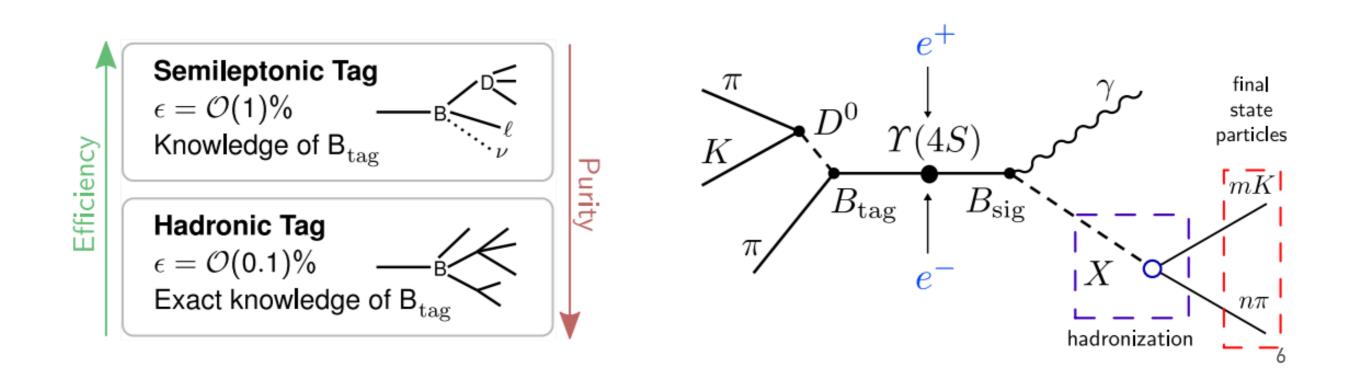


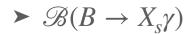



SUPERKEKB AND BELLE II OPERATION

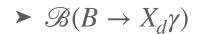
First collisions: 26th April 2018

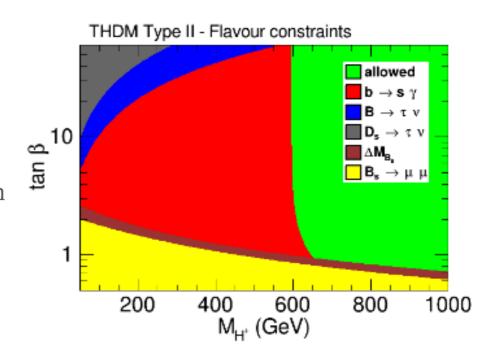
- ightharpoonup Collected 0.5 fb⁻¹ in 2018
- ➤ Collected about 55 fb⁻¹ since 2019

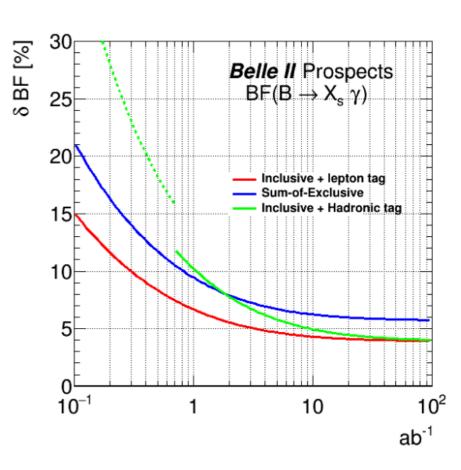



Goal: integrate upto 50ab⁻¹ by 2029

RADIATIVE PENGUIN: ANALYSIS STRATEGY

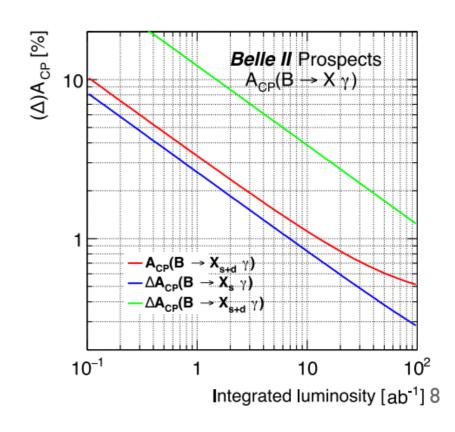

- ightharpoonup Exclusive: Reconstruct specific decay channel say, $B o K^* \gamma$. Theory uncertainty is relatively larger.
- ► Inclusive: Reconstruct $B \to X_s \gamma$, as example
 - Fully inclusive: Info about X_s (not reconstructed explicitly) provided by tag side B. Thanks to the clean $e^+ e^-$ collider.
 - Hadronic tag: Fully reconstruct tag B from hadronic final state. Statistically limited, Hope on Belle II.
 - Semi-leptonic tag: Fully reconstruct tag B from semi-leptonic decay
 - Sum-of-exclusive: Reconstruction of X_s from as many final states as possible. Tag info not needed to determine flavour or charge.


OBSERVABLES OF RADIATIVE PENGUIN DECAY

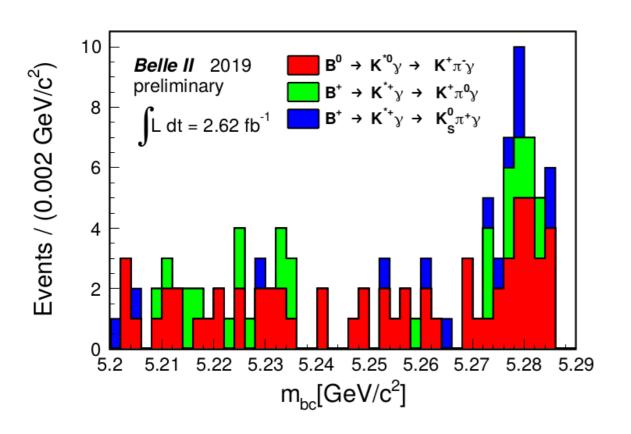


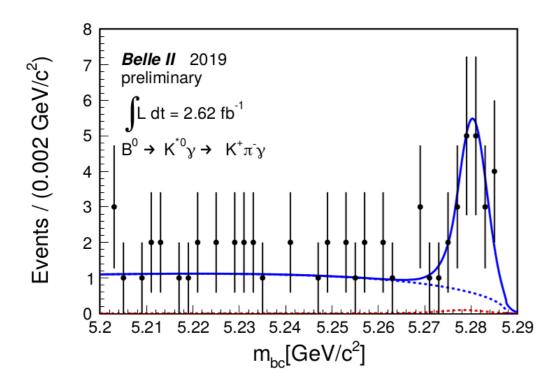
- Both theoretically and experimentally clean.
- Newest Belle measurement $\mathcal{B}(B \to X_s \gamma) = 3.12 \pm 0.10 \pm 0.21$ with $E_{\gamma} > 1.6 GeV(\text{arxiv:} 1608.02344)$ is systematically dominant (Only 7.3% uncertainty)
- Consistent with SM prediction
- Constrain Charged Higgs mass (2HDM type-II) > 580 GeV in 95%
 CL (Eur. Phys. J. C. 78 (2018) 3)
- Goal in Belle II to reduce systematic uncertainty and measure BR with $E_{\gamma} > 1.6 GeV$ w/o extrapolation

- Extra CKM suppression factor $|\frac{V_{td}}{V_{ts}}|^2 \approx \mathcal{O}(\lambda^2)$
- Rely on Sum-of-exclusive analysis, as fully inclusive analysis not possible (large $B \to X_s \gamma$ background)

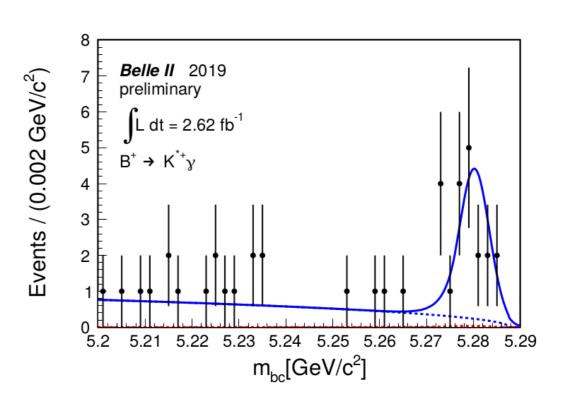


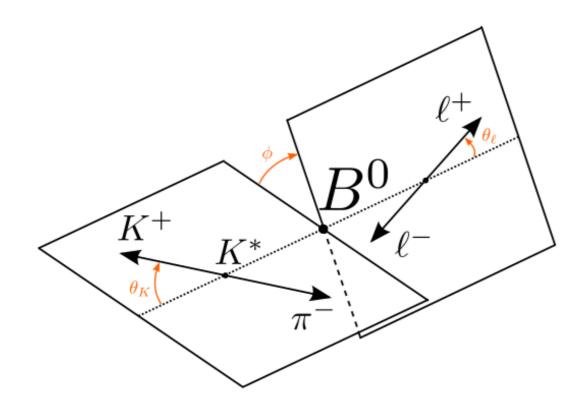
OBSERVABLES OF RADIATIVE PENGUIN DECAY


- ► Direct CP asymmetry: $A_{CP} = \frac{\Gamma(\bar{B} \to X_s \gamma) \Gamma(B \to X_{\bar{s}} \gamma)}{\Gamma(\bar{B} \to X_s \gamma) + \Gamma(B \to X_{\bar{s}} \gamma)}$
 - Has large uncertainty in SM for both $B \to X_s \gamma$ and $B \to X_d \gamma$
- $ightharpoonup \mathcal{A}_{\mathrm{CP}}^{X_{s+d}\gamma} \sim \mathcal{O}(\Lambda_{QCD}/m_b)$ in SM, and any deviation from zero indicates NP
 - Belle full dataset measurement (PRL 114 (2015) 15) result ($\mathscr{A}_{CP}^{X_{s+d}\gamma} = (2.2 \pm 3.9 \pm 0.9)\%$) is statistically limited
- - Belle measured (PRD 99 (2019) 3) is $\Delta \mathcal{A}_{CP}(B \to X_s \gamma) = (3.69 \pm 2.65 \pm 0.76)\%$, statistically limited
- - Belle measured (PRD 99 (2019) 3) $\Delta_{0-} = -0.48 \pm 1.49 \text{(stat.)} \pm 0.97 \text{syst.} \pm 1.15 (f_{+-}/f_{00})$


Sensitivity at Belle II (PTEP 2019 (2019) 12)

Observables	Belle $0.71\mathrm{ab^{-1}}$	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$Br(B \to X_s \gamma)_{inc}^{lep-tag}$	5.3%	3.9%	3.2%
$Br(B \to X_s \gamma)_{\rm inc}^{\rm had\text{-}tag}$	13%	7.0%	4.2%
$Br(B \to X_s \gamma)_{\text{sum-of-ex}}$	10.5%	7.3%	5.7%
$\Delta_{0+}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.1%	0.81%	0.63%
$\Delta_{0+}(B \to X_{s+d}\gamma)_{\mathrm{inc}}^{\mathrm{had\text{-}tag}}$	9.0%	2.6%	0.85%
$A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	1.3%	0.52%	0.19%
$A_{CP}(B^0 \to X_s^0 \gamma)_{\text{sum-of-ex}}$	1.8%	0.72%	0.26%
$A_{CP}(B^+ \to X_s^+ \gamma)_{\text{sum-of-ex}}$	1.8%	0.69%	0.25%
$A_{CP}(B \to X_{s+d}\gamma)_{\mathrm{inc}}^{\mathrm{lep\text{-}tag}}$	4.0%	1.5%	0.48%
$A_{CP}(B \to X_{s+d}\gamma)_{\mathrm{inc}}^{\mathrm{had\text{-}tag}}$	8.0%	2.2%	0.70%
$\Delta A_{CP}(B \to X_s \gamma)_{\text{sum-of-ex}}$	2.5%	0.98%	0.30%
$\Delta A_{CP}(B \to X_{s+d}\gamma)_{\rm inc}^{\rm had-tag}$	16%	4.3%	1.3%

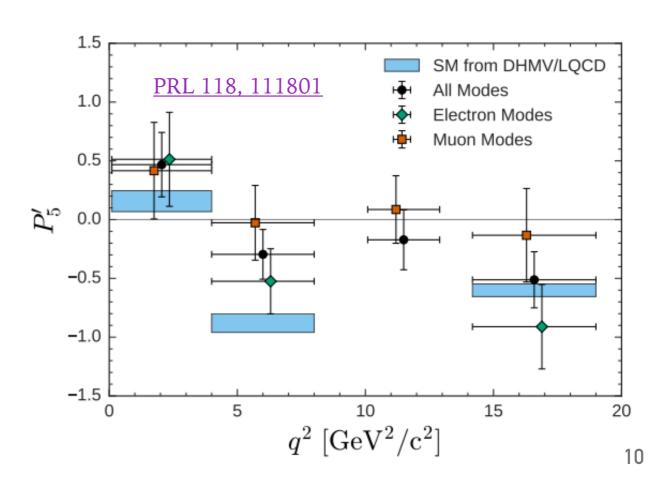

FIRST OBSERVED PENGUIN DECAY ($B \to K^* \gamma$)


	Signal Yield	Significance
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	19.1 ± 5.2	4.4σ
$B^+ \to K^{*+} [K_s^0 \pi^+] \gamma$	6.6 ± 3.1	2.1σ
$B^+ \to K^{*+}[K^+\pi^0]\gamma$	9.8 ± 3.4	3.7σ

- \triangleright Combined significance exceeds 5σ
- ➤ Yield agree with PDG branching Fraction

$B \to K^* \mathscr{C} \mathscr{E}$: ANGULAR ANALYSIS

$$\frac{d^4\Gamma}{d\cos\theta_{\ell}d\cos\theta_{K}d\phi dq^2} = \frac{9}{32\pi} \sum_{i=1}^{i=9} I_i f_i(\theta_{\ell}, \theta_{K}, \phi)$$



- ► Largest deviation from SM: 2.5σ for the muon mode in $q^2 \in [4,8] \text{GeV}^2/c^2$
- \blacktriangleright Electron mode deviates from the SM by 1.3σ
- ➤ The sensitivity at 50 /ab Belle II data in this bin will be around 0.04 (PTEP 2019(2019) 12)

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,6,8}}{\sqrt{F_L(1-F_L)}}$$

Cancel out uncertainties from formfactor at leading order (JHEP 05 (2013) 137)

- ► P'_5 is a sensitive probe of C_7 , C_9 and C_{10}
- ► LFU test using $Q_i = P_i^{\mu} P_i^e$

LEPTON UNIVERSALITY TEST

$$R_{H}[q_{0}^{2}, q_{1}^{2}] = \frac{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to H\mu^{+}\mu^{-})}{dq^{2}}}{\int_{q_{0}^{2}}^{q_{1}^{2}} dq^{2} \frac{d\Gamma(B \to He^{+}e^{-})}{dq^{2}}}$$

$$\Rightarrow \text{ Precise prediction of R-rat}$$

$$q^{2} > 14.4 \text{ GeV}^{2}/c^{4} \text{ in SM}$$

$$\Rightarrow \text{ Say for eg. } R_{K^{*}} = 1.000 \pm$$

- ➤ In SM guage bosons couple equally to the different flavours of lepton
- ➤ Precise prediction of R-ratios in $q^2 \in [1,6] \text{GeV}^2/c^4$ and
- ➤ Say for eg. $R_{K^*} = 1.000 \pm 0.001$ (JHEP 12 (2007))

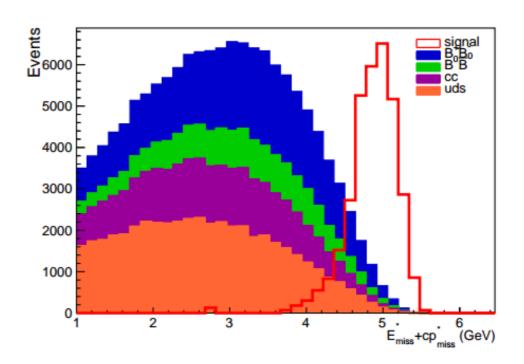
Advantage at Belle II

- ➤ Electron and muon modes have similar efficiency
- \triangleright Both low and high q^2 regions possible
- ► All R_K , R_{K^*} and R_{X_s} Is possible at Belle II

Result

- ► LHCb reported $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$ for $q^2 \in [1.1,6] \text{GeV}^2/c^4$, which is compatible with SM at 2.5σ (PRL 122 (2019)19)
- ► LHCb reported $R_{K^{*0}}$ for $q^2 \in [0.045, 1.1] \text{GeV}^2/c^4$ and $q^2 \in [1.1,6.0] \text{GeV}^2/c^4$ which are compatible with SM at $2.1-2.3\sigma$ and $2.4-2.5\sigma$ respectively (JHEP 08 (2017) 055)

Belle II Sensitivity (PTEP 2019(2019) 12)


Observables	Belle 0.71/ab	Belle II 5/ab	Belle II 50/ab
$R_K[1,6]GeV^2$	28%	11%	3.6%
$R_{K^*}[1,6]GeV^2$	26%	10%	3.2%
$R_{X_s}[1,6]GeV^2$	32%	12%	4.0%

$$B \to K^{(*)} \nu \bar{\nu}$$

- ightharpoonup Probe dark matter coupling to $b \rightarrow s$ transition
- ➤ Allow to extract $B \to K^{(*)}$ form factors to high accuracy
- ➤ K^* longitudinal polarisation F_L is sensitive to right handed currents ($F_L^{\text{SM}} = 0.47 \pm 0.03$)
- NP can appear as new operator (eg. Q_R^{ℓ}), and wilson coeff can be constrained

Belle measurement (PRD 87, 111103(R)) provide an UL to the BR

► $\Gamma(B \to K^{(*)} \nu \bar{\nu})$ can be observed in Belle II even if at SM rate

Identify signal peak in missing 4 momentum in CM frame $E^*_{\rm miss} + cp^*_{\rm miss}$ with hadronic tag using FEI algorithm

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab^{-1}}$	Belle II $50 \mathrm{ab^{-1}}$
$\text{Br}(B^+ \to K^+ \nu \bar{\nu})$	< 450%	30%	11%
${ m Br}(B^0 o K^{*0} u ar{ u})$	< 180%	26%	9.6%
${ m Br}(B^+ o K^{*+} \nu \bar{\nu})$	<420%	25%	9.3%
$F_L(B^0 o K^{*0} \nu \bar{\nu})$	_	_	0.079
$F_L(B^+ \to K^{*+} \nu \bar{\nu})$	_	_	0.077

SUMMARY

- ➤ Belle II is collecting data and by now 55/fb data has been collected.
- \blacktriangleright Clean environment at Belle II grants access to unique observables (eg. R_{X_s})
- ightharpoonup Model independent constrains on NP (C_7 , C_9 and C_{10}) with large data sample

