

Leptonic and semileptonic decays with taus at the Belle II experiment

ICHEP 2020 | PR

The second second

Belle II

<u>Marco Milesi</u>, on behalf of the Belle II collaboration School of Physics - The University of Melbourne

ICHEP 2020, Prague, July, 31st 2020

Motivation for $B \to \tau \nu, B \to (X) \tau \nu$

1. Powerful test for lepton flavour universality violation \rightarrow portal to new physics:

- Two-Higgs doublet models (stronger coupling to τ leptons).
- Leptoquarks.
- 2. Complementary measurements of V_{ub} , V_{cb} to light lepton (e, μ) channels \rightarrow input to CKM global fits.

SuperKEKB and the Belle II detector

- SuperKEKB: 40x higher instantaneous luminosity than KEKB \rightarrow $\mathscr{L} = 6 \times 10^{35} cm^{-2} s^{-1}$
- Belle II: major upgrade of Belle detector to cope with harsher beam background conditions.
- Improvements in reconstruction algorithm, esp. on vertexing and particle identification.

Current Belle II dataset and projected luminosity

• Present data sample too limited for performing actual physics measurements.

 \rightarrow Studied data/MC comparisons to demonstrate understanding of detector performance.

• Expecting first semileptonic *B* measurements with τ 's with $O(200 \text{ fb}^{-1})$ in 2021.

Event reconstruction strategy

Information

Inclusive Tag $\epsilon = \mathcal{O}(100)\%$ Consistency of B_{tag} Semileptonic Tag $\epsilon = \mathcal{O}(1)\%$ Knowledge of B_{tag}

 • Exploit flavour and kinematic constraints on "signal" *B* system by *tagging* the other.

$$M_{bc} = \sqrt{E_{beam}^2/4 - p_{B_{tag}}^{*2}}$$

• Signal *B* reconstructed through leptonic decays of the τ (BR ~34 %) to further minimise background.

 $\mathbf{\Psi}$

Efficiency

Full Event Interpretation algorithm for tag reconstruction

• New Full Event Interpretation (FEI) algorithm developed in Belle II software \rightarrow BDT classifier trained on $\mathcal{O}(200) B$ decay channels to identify the B_{tag}

• FEI successfully exploited in $R(D^{(*)})$ "semileptonic tag" analysis on Belle data analysed with the Belle II software.

G. Caria et al. (Belle Collaboration), Phys. Rev. Lett. 124, 161803

Signal region observables for B decays with τ

• $p_{\ell}^* \rightarrow$ crucially dependent on good lepton identification performance.

• Challenging due to low momentum of lepton daughters.

• $m_{miss}^2 \rightarrow$ separates signal from $B \rightarrow X \ell \nu$, pure hadronic final states.

• E_{extra} (aka E_{ECL}) \rightarrow energy in the calorimeter not associated to reconstructed particles.

Lepton identification performance in 2020 data

 $J/\psi \rightarrow e^+e^-$

• Lepton identification & hadron mis-id performance in simulation calibrated to data using several "standard candles"

$$\ell \mathrm{ID} = rac{\mathcal{L}_{\ell}}{\mathcal{L}_e + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_K + \mathcal{L}_p}.$$

• Methods cover broad p range: $p \in [0.4 - 6.0]$ GeV/c

Lepton identification performance in 2020 data

Muons

 $1.13 \le \theta < 1.57$ [rad], electronID > 0.9 $0.82 \le \theta < 1.16$ [rad], muonID > 0.9 **Belle II** 2020 (Preliminary), $\int Ldt = 34.6 \, [fb^{-1}]$ **Belle II** 2020 (Preliminary), $\int Ldt = 34.6 \, [fb^{-1}]$ efficiency, mis-ID probability 1.2 1.0 0.8 0.6 $J/\psi \rightarrow \mu^+\mu^- - \epsilon(\mu)$ $\rightarrow e^+e^- - \epsilon(e)$ ee → μμγ - ε(μ) →eev - ε(e) 0.4 ee → eeμμ - ε(μ) ee → eeee - ε(e) $K_S \rightarrow \pi^+ \pi^-$ - mis-ID $(\pi \rightarrow \mu)$ $K_{\rm S} \rightarrow \pi^+ \pi^-$ - mis-ID($\pi \rightarrow e$) $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID $(\pi \rightarrow \mu)$ $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID $(\pi \rightarrow e)$ 0.2 0.2 $\tau(3p)\tau(1p) - mis-ID(\pi \rightarrow \mu)$ $\tau(3p)\tau(1p) - mis-ID(\pi \rightarrow e)$ $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID $(K \rightarrow \mu)$ $D^* \rightarrow D^0(K\pi)\pi$ - mis-ID($K \rightarrow e$) 0.0 0.0 5 1 2 3 5 4 3 6 p [GeV/c] p [GeV/c]

• e, $\mathscr{L}_{ratio} > 0.9 \rightarrow$ average ID efficiency of 94%, with 2% pion misidentification probability.

• μ , $\mathscr{L}_{ratio} > 0.9 \rightarrow$ average ID efficiency of 90%, with 4% pion misidentification probability.

Electrons

Upgrades to lepton identification

•.At low momentum, limit in KLM acceptance and large energy losses for electrons before the ECL make lepton identification a challenge.

 \rightarrow Combine several calorimetric observables (lateral shower shapes, extrapolated track depth in the ECL...) in a BDT to improve lepton-hadron separation.

• Factor 10 reduction in $\pi - e$ fake rate, and a factor 2 in $\pi - \mu$ fake rate for p < 1 GeV/c (MC)

muon system

ECL

Full leptonic $B \rightarrow \tau \nu_{\tau}$ - Preliminary results

- •.Describe selection, data and MC
- •.Only electrons
- •.Wait for Mario's final approved plots...

Btag Mbc shows good performance of the FEI aalgorithm

(I like this plot of costheta_thrust to describe continuum suppression)

Full leptonic $B \rightarrow \tau \nu_{\tau}$ - Preliminary

•.Good modelling of background in the low E_{ECL} region \rightarrow potential for observation of $B \rightarrow \tau \nu$ with larger statistics.

Beam background suppression for E_{extra}

• Beam background broadens distribution in the "rest of event" (ROE \rightarrow what is not associated to any reconstructed final state particles on both signal and tag sides)

 \rightarrow detrimental for semileptonic tau analyses relying on E_{extra}

• BDT developed to reduce beam background contamination on ROE E_{extra} in the $\bar{B}^0 \to D^{*+} \ell^- \nu$ analysis, based on ECL shower shape variables and cluster angular positions.

Prospects for semileptonic B decays with τ leptons

•.WIP....suggestions welcome (other than BII Physics Book)

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91 \cdot (1 \pm 24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

$R(D), R(D^*)$ projections

•.WIP....suggestions welcome (other than BII Physics Book)

Conclusions

