

Prague 2020 - Laura Zani *

*zani@cppm.in2p3.fr - Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Outline

- Motivation
- Experimental context: Belle II at SuperKEKB collider
- Measurement strategy:
 - Event selection and background suppression
 - Comparison to simulation
 - Calibration procedure
- Results

Motivation

 \rightarrow Track reconstruction efficiency is a key performance driver for Belle II physics...

- Real detector != simulated detector
- GOAL: assess the systematic uncertainty due to track finding in physics analyses, based on the measured discrepancy (δ*) in track reconstruction efficiency between simulation and data

Discrepancy, $\mathbf{\delta}^* = 1 - \mathbf{\epsilon}_{\text{DATA}} / \mathbf{\epsilon}_{\text{MC}}$

• **B-factories**: dedicated experiments at *e*+*e*asymmetric-energy colliders

$$e^+e^- \rightarrow \Upsilon(4S) \ [10.58 \text{ GeV}] \rightarrow B\overline{B}$$

...also a D, $\boldsymbol{\tau}$ factory

- Clean environment \rightarrow lower background, high resolution
- Hermetic detector with excellent PID capability
- Efficient reconstruction of neutrals (π⁰, η) and missing energy final states

SuperKEKB accelerator

• World highest luminosity, applying the large crossing angle (83 mrad) *nano-beam scheme* [arXiv:0709.0451].

L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

e+ 4 GeV 3.6 A

Belle II

Breaking the wall of world highest luminosity

• Wo

Belle II detector

Measurement strategy

Tag & probe method on $e^+e^- \rightarrow \tau^+\tau^- \rightarrow (1 + \nu \overline{\nu}) (3\pi^{\pm} + \nu + n\pi^0)$

TAG: three good quality tracks with minimal requirements for particle identification (PID), satisfying $\Sigma q = \pm 1$

PROBE: 4th track in the event, satisfying looser selection requirements and conserving charge, $\Sigma q=0$.

Count the number of events were the probe track is found (N4) and not found (N3):

 $A \times E = N4/(N4 + N3)$

- A = detector acceptance,
- $\mathbf{E} = \text{track}$ reconstruction efficiency.

All reprocessed 2019 data, L_{int} =8.8 fb⁻¹

100 fb⁻¹ Monte Carlo official production: Signal: $e^+e^- \rightarrow \tau^+\tau^-$, Background: $e^+e^- \rightarrow q\bar{q}$ + low multiplicity

3x1-prong events

 $n\pi'$

P

- Low multiplicity but high track density (boosted events)
- Investigate wide mediummomentum range (0.2 - 3.5)GeV/c) $\sigma_{\tau\tau}$ (10.58 GeV) ~ 0.92 nb $\rightarrow x BF x L_{int} = 1.2 M events$ others $3\pi^{\pm}1\pi^{0}$ $3\pi^{\pm}$ leptonic $1\pi^{\pm}2\pi^{0}\nu$ mode hadronic mode $1\pi^{\pm}1\pi^{0}\nu$ $1\pi^{\pm}\nu$

Event selection

- ECL triggers fired on data to provide unbiased samples
- *Track Selection*: define **4 track lists** starting from *good quality* tracks (= coming from the interaction point, IP)
 - NO further selection on the *probe track*, not to bias the efficiency measurement
 - Tight pions (tag hadronic tracks) are a subset of loose pions
 - Apply PID to make lists orthogonal

\rightarrow Constrain the #candidates per list, but NOT the total #tracks

Muon channel		Electron channel			
N3 sample:	N4 sample:	N3 sample:	N4 sample:		
#loose pion = 2	#loose pion = 3	#loose pion = 2	#loose pion = 3		
#tight pion = 2	#tight pion >= 2	#tight pion = 2	#tight pion >= 2		
#muon $= 1$	#muon $= 1$	#muon = 0	#muon = 0		
#electron = 0	#electron = 0	#electron $= 1$	#electron $= 1$		

Background suppression

- **Topology:** require angular isolation of the 1-prong leptonic tag from all the other three hadronic tracks + good quality of the χ^2 of the fit to the 2-prong tracks vertex
- Radiative QED and continuum qq rejection:
 - $^-$ 1-prong track momentum within 20% and 80% of the beam energy (/s/2)
 - constrain number of neutral pions and photons per event
 - minimum opening angle between the two tag pions

L.Zani, ICHEP2020 - Track reconstruction efficiency on τ pairs at Belle II

120

Data -MC comparison

- Data and simulation (signal + background) are compared after all selections
- Simulation scaled to data luminosity (8.8 fb⁻¹) and weighted bin-by-bin with the measured *trigger efficiency* on data (see P.Rados talk from yesterday Operation performance session)

Calibration procedure

- Discrepancy estimator δ^{meas} calibrated to represent the true value (δ^*):
 - Combinatorial effects
 - Impact of charge dependent selection (e.g., $ee\gamma^*$ veto for OS-electron channel)
- Introduce known *per track* inefficiencies in signal simulation, $\tau\tau$ sample ($\delta_{MC} = 2.5\%$, 5%, 7.5%, 10%)
- Extract calibration k-factors from linear fits to the 2D distributions of $\pmb{\delta}^{\text{meas}}\,\pmb{Vs.}\,\,\pmb{\delta}_{\text{MC}}$

recall that: $e^{meas} = N_4/(N_3 + N_4)$ $\delta^{meas} = 1 - \epsilon_{Data}^{meas} / \epsilon_{MC}^{meas} = k \cdot \delta^*$ $\delta^* = 1 - \epsilon^*_{Data} / \epsilon^*_{MC}$ $=\frac{1}{L}(1-\epsilon_{Data}^{meas}/\epsilon_{MC}^{meas})$

ExA measurement

- Remaining background estimated from simulation \rightarrow background subtraction applied to data ٠
- Efficiency $\mathcal{E} \times A$ computed from the ratio N4/(N4 + N3) for data and simulation, as well as calibrated ٠ discrepancies δ^* .

Results: calibrated discrepancy

• Calibrated data-MC discrepancies:

$$\delta^* = 1 - \epsilon_{Data}^* / \epsilon_{MC}^* = \frac{1}{k} (1 - \epsilon_{Data}^{meas} / \epsilon_{MC}^{meas})$$

- Systematic uncertainty contributions are included
- Dominated by trigger efficiency uncertainty and charge dependence

$$\delta^*_{\text{overall}} = 0.28 \pm 0.15 \text{ (stat)} \pm 0.73 \text{ (sys)} \%$$

Fake rate measurement

- Estimate the probability to reconstruct a *fake track* coming from: random combination of (beam) background hits; low-momentum tracks curling inside the detector without being merged (*clone tracks*)
- Analogue tag-and-probe technique
 - Fully reconstruct a 3x1 τ-pair event by requiring 4 tracks (tag)
 - Look for the 5th track (probe)
 - Compute the fake rate as r_{fake}=N5/(N4 + N5)

- Exploit full event kinematics to increase signal purity (measured on simulation)
- Scale yields in data for the measured signal purity: $r_{fake} = 0.97 \pm 0.34$ (stat) \pm 0.06 (sys) %

Summary

- Belle II successfully took data for all 2020 run periods
- With a sample of ~ 9 fb⁻¹ data (Belle II 2019) we devise the strategy to measure the quantity ExA on data and simulation, by analyzing ~ 1.2M processes:

$$e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\ I + \nu \ \overline{\nu} \) \ (3\pi^\pm + \nu + n\pi^{_0})$$

• The overall calibrated (first time this calibration procedure is applied!) discrepancy is measured to be

 0.28 ± 0.15 (stat) ± 0.73 (sys) %

 \rightarrow Prescription on how to assign systematic uncertainties for analyses dealing with tracks of transverse momentum [0.2 < pT <3.5] GeV/c is provided

• The track reconstruction fake rate in Belle II data has been also measured exploiting τ -pair events and found to be 0.97 \pm 0.34 (stat) \pm 0.06 (sys) % consistently with simulation.

Belle II collaboration

Track selections

- The tighter *pion tag* candidates also satisfied the selections as looser *pion probe* candidate
- N3 samples: no additional pion probe is needed \rightarrow $N_{pion}^{probe} = N_{pion}^{tag}$

	Probe pion track	Tag pion track	Tag electron track	Tag muon track
$p_T \; [{ m MeV}]$		> 200	> 200	> 200
$ z_0 $ [cm]	< 3	< 3	< 3	< 3
$ d_0 $ [cm]	< 1	< 1	< 1	< 1
$rac{E_{ ext{cluster}}}{p}$	< 0.8	< 0.6	(0.8, 1.2)	< 0.6
E_{cluster}	-	> 0	-	> 0
muonID	_	< 0.9	_	> 0.9

TABLE III: Track selection criteria. The first three lines in the table are the selections which define the *good tracks* used for this analysis.

	$N_{ m pion}^{ m probe}$	$N_{ m pion}^{ m tag}$	$N_{ m electron}^{ m tag}$	$N_{ m muon}^{ m tag}$
electron channel, 4-track sample	3	≥ 2	1	0
electron channel, 3-track sample	2	2	1	0
muon channel, 4-track sample	3	≥ 2	0	1
muon channel, 3-track sample	2	2	0	1

Trigger selection

- Different hardware (Level 1, L1) trigger lines based on ECL cluster properties are used to select events according to the channel:
 - $^-\,$ Electron channel: energy deposit in ECL $>\!\!1~\text{GeV}$ + Bhabha veto
 - $^-\,$ Muon channel: low multiplicity trigger with minimum 3 ECL clusters, at least one above 300 MeV $+\,$ Bhabha veto
- Reference L1 trigger line to measure the ECL trigger efficiency: CDC trigger lines

For details on trigger efficiency measurement: P. Rados's talk.

 $\epsilon_{bit_{ECL}} = \frac{N(bit_{ECL} \text{ AND } bit_{CDC})}{N(bit_{CDC})}$

19

Selections

• Selection optimization is performed on simulated MC samples for signal and background

