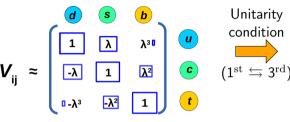
Measurement of γ (ϕ_3) and first results on CP violation at Belle II

Niharika Rout (Belle II collaboration)

Indian Institute of Technology Madras, India

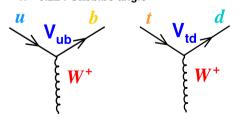
40th International Conference on High Energy Physics

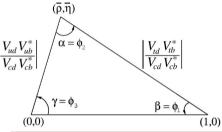
July 30, 2020



Outline

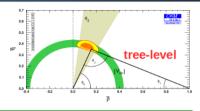
- Introduction
- SuperKEKB and Belle II
- Prospects for ϕ_3
- Prospects for ϕ_1
- **Summary**

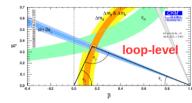

Introduction


Measuring SM $\it CP$ violation \Rightarrow Measure complex phase of CKM elements.

(0

λ ≈ 0.22 : Cabbibo angle




This talk is focused on:

$$\phi_1/\beta \equiv \arg(-\frac{V_{\rm cd}V_{\rm cb}^*}{V_{\rm td}V_{\rm tb}^*})$$
$$\phi_3/\gamma \equiv \arg(-\frac{V_{\rm ud}V_{\rm ub}^*}{V_{\rm cd}V_{\rm cb}^*})$$

 ϕ_2 : see Eldar Ganiev's talk.

CKM: Current status

World average (HFLAV) [hflav.web.cern.ch/]

$$\beta \equiv \phi_1 = (22.2 \pm 0.7)^{\circ}$$

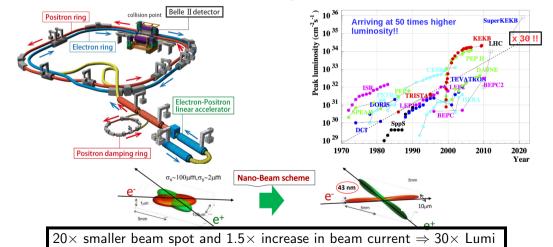
$$\alpha \equiv \phi_2 = (84.9^{+5.1}_{-4.5})^{\circ}$$

$$\gamma \equiv \phi_3 = (71.1^{+4.6}_{-5.3})^{\circ}$$

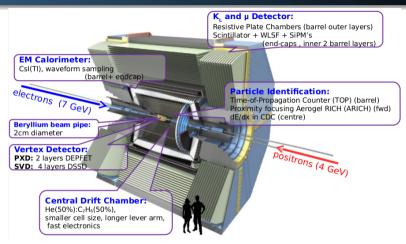
Global fit (CKM fitter)

$$\beta \equiv \phi_1 = (22.51^{+0.55}_{-0.40})^{\circ}$$

$$\alpha \equiv \phi_2 = (91.6^{+1.7}_{-1.1})^{\circ}$$


$$\gamma \equiv \phi_3 = (65.81^{+0.99}_{-1.66})^{\circ}$$

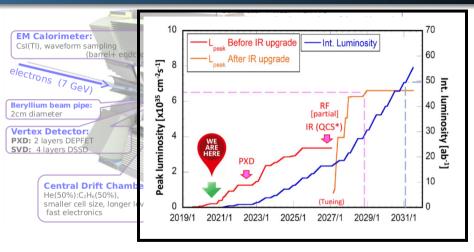
■ New physics (NP) prospects:


- ϕ_1 : comparison of TD-asymmetry in tree- and loop-dominated processes.
- ϕ_3 : test of direct vs indirect disagreement (requires improvement of precision in direct measurement).

SuperKEKB accelerator

- **SuperKEKB**: 4 GeV e^+ and 7 GeV e^- asymmetric collider at KEK.
- A 30-fold increase in instantaneous luminosity over Belle, $\mathcal{L} = 6 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$.

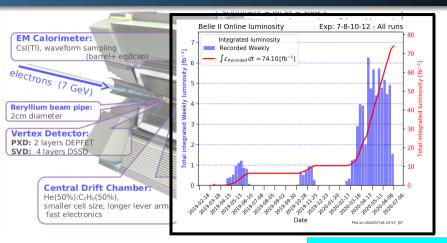
Belle II detector and status



- Improved tracking, vertexing.
- Better particle identification.
- Better calorimeter resolution.

Challenge:

- Higher beam background
- ► Higher trigger rate

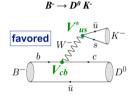

Belle II detector and status

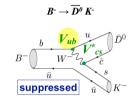
- Improved tracking, vertexing.
- Better particle identification.
- Better calorimeter resolution.

More details in K.Matsuoka's talk.

Belle II detector and status

- Improved tracking, vertexing.
- Better particle identification.
- Better calorimeter resolution.

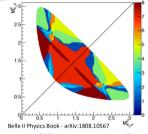

World Record by SuperKEKB on June 15th 2020:


$$\mathcal{L} = 2.4 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

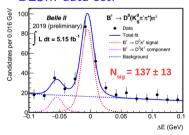
Extraction of ϕ_{3}

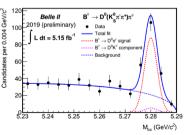
- Only CKM angle accessible at tree level.
- Very precise theoretical prediction $\delta\phi_3/\phi_3\sim 10^{-7}$ [J. Brod, J. Zupan, arxiv:1308.5663].
- $lackbox{}{lackbox{}{lackbox{}{lackbox{}{}}}} \phi_3$ is the phase between b
 ightarrow u and b
 ightarrow c transition:

$$\frac{\mathcal{A}^{\mathrm{suppr.}}(B^{-} \to \overline{D^{0}}K^{-})}{\mathcal{A}^{\mathrm{favor.}}(B^{-} \to D^{0}K^{-})} = r_{B}e^{i(\delta_{B} - \phi_{3})}$$

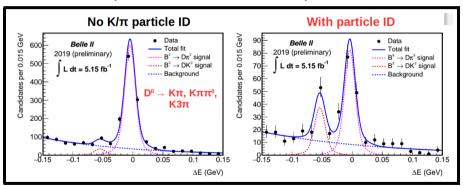

- Measured via the interference between $B^- \to D^0 K^-$ and $B^- \to \overline{D}^0 K^-$ with various D^0 channels.
 - ▶ **GLW method**: *CP* eigenstates: $K^-K^+, \pi^-\pi^+, K_S^0\pi^0$ [*Phys. Lett. B* **253**, 483]
 - ▶ **ADS method**: DCS modes: $K^+\pi^-$, $K\pi\pi^0$ [Phys. Rev. Lett. 78, 3257]
 - ▶ **BPGGSZ method**: self-conjugate multibody final states: $K_S^0\pi^-\pi^+$, $K_S^0\pi^-\pi^+\pi^0$, $K_S^0K^-K^+$ [*Phys. Rev. D* **68**, 054018]

Belle II prospects for ϕ_3


- lacksquare Golden mode in Belle II: ${f B}^\pm o {f D}^0 ({f K}^0_{
 m S} \pi^- \pi^+) {f K}^\pm$
 - ▶ Model-independent binned Dalitz plot approach.
 - ▶ Number of events in i^{th} bin is a function of x_{\pm}/y_{\pm} :


$$N_{i}^{\pm} = h_{B}[K_{\pm i} + r_{B}^{2}K_{\mp i} + \sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} \pm y_{\pm}s_{i})]$$

$$(x_{\pm}, y_{\pm}) = r_{B}(\cos(\pm\phi_{3} + \delta_{B}), \sin(\pm\phi_{3} + \delta_{B}))$$

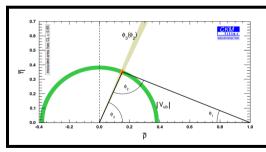

■ Precise strong phase measurement needed to match Belle II stat. precision: expected from **20** fb⁻¹ BESIII data set.

$B \rightarrow DK$ **@Belle II**

- More sensitive to ϕ_3 than $B \to D\pi$ because of its higher r_B value.
- Rediscovery of B \rightarrow DK with more than 5 σ evidence using the continuum suppression tool and particle identification technique of Belle II.

■ Total 53 \pm 9 signal candidates are obtained with a 1D maximum likelihood fit to the ΔE .

Future prospects


- Expect Belle II and LHCb upgrade to match each other's performance!
- \bullet $\delta(\phi_3) < 1.6^{\circ}$ with 50 ab⁻¹ data set.

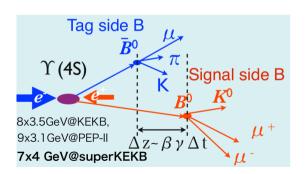
- Modes that are good for Belle II:
 - $D^* \rightarrow D^0 \pi^0, D^0 \gamma$
 - $D^0 \to K_{\rm S}^0 \pi^0, K_{\rm S}^0 \pi \pi \pi^0...$

[P. K Resmi, J. High Energy Phys. 10, 178 (2019)]

- Belle II strength:
 - ► Increasing statistics
 - Good neutral reconstruction
 - ▶ Better K/π separation
 - ▶ Better continuum suppression

Figure: Fit extrapolated to 50 ab^{-1} for a SM-like scenario

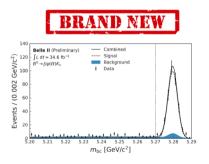
Belle II Physics book: arXiv:1808.10567

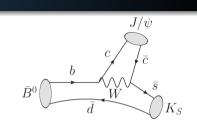

■ LHCb will clearly have more precise results in fully-charged final states.

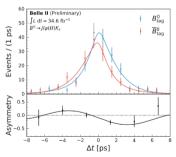
CPV at Belle II

■ Decay rate of B^0 meson to CP eigen-states:

$$\mathcal{P}(\Delta t, \mathbf{q}) = \frac{e^{-|\Delta t|/\tau}_{B^0}}{4\tau_{B^0}} \left[1 + \frac{\mathbf{q}}{\mathbf{q}} \left(\mathcal{A}_{CP} \cos \Delta m_d \Delta t + \mathcal{S}_{CP} \sin \Delta m_d \Delta t \right) \right]$$


■ Key element: Vertex position measurement, B meson flavor tagging.




BELLE2-CONF-PH-2020-003 200 Data Belle II 2019, preliminary Candidates / (0.5 ps) -Total fit $L dt = 8.7 \text{ fb}^{-1}$ 140 hh $B^0 \rightarrow D^{(*)} \pi(\rho)^+$ - cont $= 0.56 \pm 0.18$ 100 ∆t [ps] see Cyrille Praz's talk.

Belle II prospects for $\sin 2\phi_1$

- Most precisely measured UT parameter so far.
- Tree-dominated $b \to c\bar{c}s$ golden mode: $\mathbf{B^0} \to \mathbf{J/\psi K_S^0}, \Rightarrow \mathcal{A}_{CP} = 0, \ \mathcal{S}_{cp} = \sin 2\phi_1$
 - ► Theoretically and experimentally precise.
- \blacksquare Asymmetry in $\mathsf{B}^0 \to \mathsf{J}/\psi \mathsf{K}^0_{\mathrm{S}}$

Numbers:

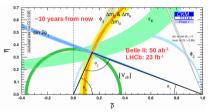
Future prospects

- Challenge both for experiment and theory: penguin pollution.
- lacksquare Can be controlled experimentally: $B^0 o J/\psi \pi^0$


$\sin 2\phi_1$			
Belle II		LHCb	
$5~{ m ab}^{-1}$	$50~{ m ab}^{-1}$	$8~{ m fb}^{-1}$	$50~{ m fb}^{-1}$
0.4°	0.3°	0.6°	0.3°

■ Other modes which can also contribute $(b \rightarrow q\bar{q}s)$:

$$egin{aligned} (b
ightarrow qar{q}s): \ {\sf B^0}
ightarrow \phi{\sf K_S}, \eta^{'}{\sf K_S}, \omega{\sf K_S}... \end{aligned}$$


■ Compare the time-dependent asymmetry between tree- and loop-dominated processes: NP could produce a sizable shift.

CP asymmetry projection @50ab⁻¹

Summary

- Flavor physics at high luminosity B-factories offers good probe for testing SM and looking for NP.
- Belle II will play a key role in particle physics.
 - Experience from Belle and Babar.
 - ► Good complementarity with LHCb.
 - ► CKM angle measurements can be improved with just 5 -10 ab⁻¹ data set.
 - ► Huge data set of 50 ab⁻¹: several measurements will be syst. limited → lots of work ahead!

$$egin{array}{l} \delta\phi_1\lesssim0.1^\circ\ \delta\phi_2\lesssim1^\circ\ \delta\phi_3\lesssim1.6^\circ \end{array}$$

- Brand new asymmetry results from $B^0 \to J/\psi K_S^0$: towards $\sin 2\phi_1$
- Expected experimental performance often better w.r.t Belle despite 20x higher beam background and lower boost.
- Looking forward to the next decade of Belle II results!!

Belle II highlights at ICHEP 2020

- CPV and CKM: Experimental overview: **Doris Kim**
- \blacksquare First results and prospects for τ LFV decays: **Francesco Tenchini**
- First results on V_{ub} and V_{cb} with Belle II: Racha Cheaib
- **Leptonic** and semileptonic decays with aus at the Belle II experiment: Marco Milesi
- Early charmless B decay physics at Belle II: Eldar Ganiev
- Tau physics prospects at Belle II: Kenji Inami
- Charm potential at Belle II: Giulia Casarosa
- Results and Prospects of Radiative and EWP Decays at Belle II: Yo Sato
- First results from Belle II on exotic and conventional quarkonium: Roberto Mussa
- Dark Sector first results at Belle II: Enrico Graziani
- The Belle II Experiment: Status and Prospects: Kodai Matsuoka
- Status and Future development of the FEI Algorithm at Belle II: William Sutcliffe
- B lifetimes at Belle II: Cyrille Praz
- Track rec. eff. measurement using $e^+e^- \to \tau^+\tau^-$ events at Belle II: Laura Zani
- Trg eff measurement using $e^+e^- \to \tau^+\tau^-$ events at Belle II: **Petar Rados**

