Exploiting CP-asymmetries in rare charm decays

Marcel Golz

September 14th, 2020 based on

R. Bause, H. Gisbert, MG, G. Hiller 2004.01206

R. Bause, MG, G. Hiller, A. Tayduganov 1909.11108

Outline

- Trouble and opportunities with charm predictions
- CP-violation in charm
- Anomaly-free Z' models
- Patterns in hadronic decays aka. "What experiment can do"
- Summary

Belle II Germany Meeting 2020

EFT at the charm scale de Boer, (2017), PhD thesis, TU Dortmund

What is the difference between $b \rightarrow s$ and $c \rightarrow u$ penguins?

- Light quark masses need to be set to zero at µ_W
- Effective GIM-mechanism kills C_{7,9,10} at µ_W
- $C_{7,9}$ are induced by RG running to μ_c
- $C_{10}(\mu_c) = 0$

Trouble and opportunities with charm predictions

►
$$C_9^{\text{SM}} = C_9^{\text{eff}} + C_9^{\text{resonant}} \simeq C_9^{\text{resonant}}$$

with resonant contributions from $D \to \pi M$ and $M \to \ell \ell$
 $(M = \eta, \rho, \omega, \phi, \eta')$

▶ $C_{10}^{SM} = 0$ → unique feature in charm physics! (angular analysis)

Belle II Germany Meeting 2020

SM effects are induced by four-quark operators, that also dominate pure hadronic decays $c \rightarrow u$ such as $D \rightarrow \pi\pi$, $D \rightarrow KK$

- Tree and loop contributions exist.
- Long range QCD effects exist/dominate.
- The charm quark is neither really heavy nor light.
- Naive factorization not trustworthy.

Quick example:

Naive estimation of $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$ yields

$$\Delta A_{CP} \sim 2 \frac{|V_{cb} V_{ub}^*|}{|V_{cd} V_{ud}^*|} \left| \frac{P}{T} \right| \sim 2 \cdot 7 \cdot 10^{-4} \cdot 0.1 \sim 1.4 \cdot 10^{-4}$$

One order away from the experimental value.

Discussed in the literature:

1111.4987, 1203.6659, 1706.07780, 1903.10490, 1903.10952, 1909.11242

$$\mathsf{CP}\text{-assymmetry in } c \to u\ell\ell \text{ given by } \quad \mathsf{A}_\mathsf{CP}(q^2) = \frac{1}{\Gamma + \overline{\Gamma}} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} - \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2} \right) \quad \text{with } \quad \Gamma = \int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \mathrm{d}q^2$$

- Strong phase from resonances needed \rightarrow measurement around the ϕ resonance, or in the high q^2 region.
- NP weak phase needed. \rightarrow benchmark $C_9 = 0.1 \exp(i\pi/4)$.

Binning necessary. See also : Fajfer, Kosnik 1208.0759, 1510.00965; de Boer, Hiller 1510.00311

$$\mathsf{CP}\text{-assymmetry in } c \to u\ell\ell \text{ given by } \quad \mathsf{A}_\mathsf{CP}(q^2) = \frac{1}{\Gamma + \overline{\Gamma}} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} - \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2} \right) \quad \text{with } \quad \Gamma = \int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \mathrm{d}q^2$$

- Strong phase from resonances needed \rightarrow measurement around the ϕ resonance, or in the high q^2 region.
- NP weak phase needed. → benchmark C₉ = 0.1 exp(iπ/4).

Binning necessary.
 See also : Fajfer, Kosnik 1208.0759, 1510.00965; de Boer, Hiller 1510.00311

Moriond 2019 offered interesting results including the discovery of charm CP violation by the LHCb coll.! Talk by Frederico Betti, **Phys.Rev.Lett. 122 (2019) no.21, 211803** $\Delta A_{\rm CP} = A_{\rm CP}(D^0 \rightarrow K^+K^-) - A_{\rm CP}(D^0 \rightarrow \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$

September 14th 2020 8 / 14

$$\mathsf{CP}\text{-assymmetry in } c \to u\ell\ell \text{ given by } \quad \mathsf{A}_\mathsf{CP}(q^2) = \frac{1}{\Gamma + \overline{\Gamma}} \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} - \frac{\mathrm{d}\overline{\Gamma}}{\mathrm{d}q^2} \right) \quad \text{with } \quad \Gamma = \int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \mathrm{d}q^2$$

- > Strong phase from resonances needed \rightarrow measurement around the ϕ resonance, or in the high q^2 region.
- NP weak phase needed. → benchmark C₉ = 0.1 exp(iπ/4).

Binning necessary.
 See also : Fajfer, Kosnik 1208.0759, 1510.00965; de Boer, Hiller 1510.00311

Moriond 2019 offered interesting results including the discovery of charm CP violation by the LHCb coll.! Talk by Frederico Betti, **Phys.Rev.Lett. 122 (2019) no.21, 211803** $\Delta A_{\rm CP} = A_{\rm CP}(D^0 \rightarrow K^+K^-) - A_{\rm CP}(D^0 \rightarrow \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$

Any links??

Z' models

$$\begin{split} \mathbf{f}_{Z'} \supset & \left(g_L^{uc} \ \bar{u}_L \gamma^\mu c_L Z'_\mu + g_R^{uc} \ \bar{u}_R \gamma^\mu c_R Z'_\mu + \mathrm{h.c.} \right) \\ & + \ g_L^d \ \bar{d}_L \gamma^\mu d_L Z'_\mu + g_R^d \ \bar{d}_R \gamma^\mu d_R Z'_\mu \\ & + \ g_L^s \ \bar{s}_L \gamma^\mu s_L Z'_\mu + g_R^s \ \bar{s}_R \gamma^\mu s_R Z'_\mu \\ & + \ g_L^{\ell\ell} \ \bar{\ell}_L \gamma^\mu \ell_L Z'_\mu + g_R^{\ell\ell} \ \bar{\ell}_R \gamma^\mu \ell_R Z'_\mu \,, \end{split}$$

with $\ell = e, \mu, \tau$ and $g_{L,R}^{d,s}$ and $g_{L,R}^{\ell\ell}$ given by U(1)'-gauge coupling g_4 times the associated charge F_{ψ} .

$$\begin{split} g_R^{\ell\ell} &= g_4 \, F_{e_i} \,, \\ g_L^{uc} &\approx g_4 \, \lambda_{\text{CKM}} \, \Delta F_L \,\,, \\ g_R^{uc} &= g_4 \sin \theta_u \cos \theta_u \, e^{\mathrm{i}\phi_R} \Delta F_R \,, \end{split}$$

$$\Delta F_L = F_{Q_2} - F_{Q_1}$$
, $\Delta F_R = F_{u_2} - F_{u_1}$ and $\Delta \tilde{F_R} = \Delta F_R \sin \theta_u \cos \theta_u$

Z' models

$$ig|(g_L^{uc})^2 + (g_R^{uc})^2 - X \, g_L^{uc} \, g_R^{uc} ig| \lesssim 6 \cdot 10^{-7} \left(rac{M_{Z'}}{ ext{TeV}}
ight)^2 \, ,$$

with $X \sim 20$ for $M_{Z'}$ in the TeV range (1909.11108)

Marcel Golz

Patterns in hadronic decays

If ΔA_{CP} is NP, a huge effect is necessary. Strong correlation between CP–asymmetries in $c \rightarrow u\ell\ell$ and ΔA_{CP} .

NP in $c \rightarrow u\ell\ell \quad \Leftrightarrow \quad \text{NP in } \Delta A_{\text{CP}}$

Patterns in hadronic decays

U-spin breaking beyond 30% possible and clear NP signal. Z' models explicitly break U-spin.

model	F_{Q_i}			F _{ui}			F _{di}			F_{L_i}			F _{ei}			F_{ν_i}		
10	0	0	0	-13	6	7	-1	-14	15	-15	15	0	-14	18	-4	0	0	0

×10 ⁻⁴	Data	σ_{LHCb}	σ_{Belle} II
$\Delta A_{\rm CP}$	-15.4 ± 2.9^{LHCb}	1.3(0.3)	-
$\Delta A_{\rm CP}^{\rm HFLAV}$	-16.4 ± 2.8^{HFLAV}	1.3 (0.3)	-
$A_{\rm CP}(D^0 o K^+ K^-)$	-9 ± 11^{HFLAV}	3(0.7)	3
$A_{ m CP}(D^0 o \pi^+\pi^-)$	-1 ± 14^{HFLAV}	3(0.7)	5
$A_{ m CP}(D^0 o \pi^0 \pi^0)$	-3 ± 64^{HFLAV}	-	9
$A_{ m CP}(D^+ o \pi^+ \pi^0)$	$+290\pm290\pm30^{\text{CLEO}}$	_	17

Belle II sensitivities with 50 ab^{-1} .

$$Z' \text{possibilities} \Rightarrow \begin{cases} A_{\text{CP}}^{\text{NP}}(\pi^{+}\pi^{0}) & \sim (1-2) \cdot \Delta A_{\text{CP}}^{\text{NP}}, \\ A_{\text{CP}}^{\text{NP}}(\pi^{0}\pi^{0}) & \lesssim 2 \cdot \Delta A_{\text{CP}}^{\text{NP}}, \\ \frac{A_{\text{CP}}^{\text{NP}}(\pi^{0}\pi^{0})}{A_{\text{CP}}^{\text{NP}}(\pi^{+}\pi^{0})} & \sim 1.08 \pm 0.10 \,, \end{cases} \Rightarrow \quad \text{Isospin tests}$$

 $A_{\rm CP}(\pi^+\pi^0)$ is a good null tests! 1204.3557

- Charm unique up-type candidate to do flavor physics
- ▶ Belle II can help to disentangle NP nature of ΔA_{CP} measurement
- CP tests in charm
 - Null tests provide clean playground to find NP
 - Correlations are helpful
- ► Z' models suitable minimal candidate to explore ΔA_{CP} vs. CP-asymmetries in $c \rightarrow u\ell\ell$

- Charm unique up-type candidate to do flavor physics
- ▶ Belle II can help to disentangle NP nature of ΔA_{CP} measurement
- CP tests in charm
 - Null tests provide clean playground to find NP
 - Correlations are helpful
- ► Z' models suitable minimal candidate to explore ΔA_{CP} vs. CP-asymmetries in $c \rightarrow u\ell\ell$

Take home message: Hadronic uncertainties can also be overcome with null tests, correlations and data!

BACKUP

$$\begin{aligned} \mathcal{H}_{\mathrm{eff}} \supset -\frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} \Biggl[\sum_{i=7,9,10,S,P} (C_i O_i + C_i' O_i') + \sum_{i=T,T5} C_i O_i \Biggr], \\ O_7 &= \frac{m_c}{e} (\overline{u}_L \sigma_{\mu\nu} c_R) F^{\mu\nu}, \\ O_9 &= (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \ell), \\ O_{10} &= (\overline{u}_L \gamma_\mu c_L) (\overline{\ell} \gamma^\mu \gamma_5 \ell), \\ O_S &= (\overline{u}_L c_R) (\overline{\ell} \ell), \\ O_P &= (\overline{u}_L c_R) (\overline{\ell} \gamma_5 \ell), \\ O_T &= \frac{1}{2} (\overline{u} \sigma_{\mu\nu} c) (\overline{\ell} \sigma^{\mu\nu} \gamma_5 \ell). \end{aligned}$$

- Extend the SM gauge group by an additional U(1)'
- Choose non-universal charges using restrictions from anomaly cancellation conditions
- Assume the U(1) symmetry to be (spontaneously) broken at a high NP scale ⇒ massive Z'
- Rotations from gauge to mass basis along with non-universal charges give rise to off-diagonal quark couplings.

Constraints from

- $\blacktriangleright D \overline{D}$ mixing
- ► Kaons ⇒ avoid FCNC's in down-type sector

Direct searches

September 14th 2020 <u>18 / 14</u>

LFU tests

Same cuts for electrons and muons necessary.

R_{π}^{D}	SM	$ C_9 = 0.5$	$ C_{10} = 0.5$	$ C_9 = \pm C_{10} = 0.5$			
full q^2	$1.00\pm \mathcal{O}(\%)$	SM-like	SM-like	SM-like			
low q^2	$0.95\pm \mathcal{O}(\%)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$	$\mathcal{O}(100)$			
high q ²	$1.00\pm \mathcal{O}(\%)$	0.211	37	217			
-0	1						
$R_{K}^{D_{s}}$	SM	$ C_9 = 0.5$	$ C_{10} = 0.5$	$ C_9 = \pm C_{10} = 0.5$			
$\frac{R_K^{D_s}}{\text{full } q^2}$	$\frac{SM}{1.00\pm\mathcal{O}(\%)}$	$ C_9 = 0.5$ SM-like	$\frac{ C_{10} = 0.5}{\text{SM-like}}$	$\frac{ C_9 = \pm C_{10} = 0.5}{\text{SM-like}}$			
$\frac{R_{K}^{D_{s}}}{\text{full } q^{2}}$ $\log q^{2}$	$\begin{array}{c} SM \\ \hline 1.00 \pm \mathcal{O}(\%) \\ 0.94 \pm \mathcal{O}(\%) \end{array}$	$ C_9 = 0.5$ SM-like 0.13.0	$ C_{10} = 0.5$ SM-like $1.3 \dots 1.5$	$\frac{ C_9 = \pm C_{10} = 0.5}{\text{SM-like}}$			
$\frac{R_{K}^{D_{s}}}{\text{full } q^{2}}$ $\text{low } q^{2}$ $\text{high } q^{2}$	$ \begin{array}{c} SM \\ 1.00 \pm \mathcal{O}(\%) \\ 0.94 \pm \mathcal{O}(\%) \\ 1.00 \pm \mathcal{O}(\%) \end{array} $	$ C_9 = 0.5$ SM-like $0.1 \dots 3.0$ $0.2 \dots 16$	$ C_{10} = 0.5$ SM-like 1.31.5 311	$\frac{ C_9 = \pm C_{10} = 0.5}{\text{SM-like}}$ 0.53.6 226			

Belle II Germany Meeting 2020

model		F_{Q_i}			F _{ui}			F_{d_i}			F_{L_i}			F_{e_i}			F_{ν_i}	
2	3	3	-6	-8	4	4	-10	10	0	-6	5	1	0	0	0	0	0	0
4	-1	-1	2	-1	2	-1	0	0	0	-1	1	0	-2	2	0	-2	-1	3
5	-1	-1	2	-1	2	-1	2	-1	-1	-1	1	0	-1	1	0	0	0	0
9	0	0	0	-11	-2	13	7	7	-14	-8	3	5	-6	16	-10	0	0	0
10	0	0	0	-13	6	7	-1	-14	15	-15	15	0	-14	18	-4	0	0	0
10μ	0	0	0	-13	6	7	-1	-14	15	-15	0	15	-14	-4	18	0	0	0

Marcel Golz

Belle II Germany Meeting 2020

September 14th 2020 20 /