Status of Lepton Flavour Universality

Virtual FSP Belle II Germany Meeting

Simon Wehle 14.09.2020 Hamburg

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Motivation

- The Standard Model (SM) is very successful in describing the world at particle level
- Almost all SM predictions seem to fit experimental data precisely... Almost?

Motivation

- The Standard Model (SM) is very successful in describing the world at particle level
- Almost all SM predictions seem to fit experimental data precisely... Almost?

The Flavour Anomalies

The Flavour Anomalies

(maybe only "local" anomalies...)

> 3.5 σ enhanced $B \rightarrow D^{(*)} au
u$ rates

3.3 σ suppressed branching ratio of $B_s o \phi \mu^+ \mu^-$

 $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$

- $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $> 3\sigma~$ anomalies in angular distributions of ${\it B}
 ightarrow {\it K}^* \ell \ell$

2.6 σ lepton flavor non-universality in $B \to \kappa^{(*)} \mu^+ \mu^-$ vs. $B \to \kappa^{(*)} e^+ e^-$

The Flavour Anomalies

(maybe only "local" anomalies...)

- > 3.5 σ enhanced $B \rightarrow D^{(*)} au
 u$ rates
 - 3.3 σ suppressed branching ratio of $B_s o \phi \mu^+ \mu^-$

 $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$

- $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $> 3\sigma~$ anomalies in angular distributions of ${\it B}
 ightarrow {\it K}^* \ell \ell$

2.6 σ lepton flavor non-universality in $B \to K^{(*)} \mu^+ \mu^-$ vs. $B \to K^{(*)} e^+ e^-$

 $\frac{15}{q^2} \frac{20}{[\text{GeV}^2/c^4]}$

JHEP 06 (2015) 115

10

JHEP 11(2016)047

JHEP 04(2017)142

 q^{15} q^{2} [GeV²/ c^{4}]

JHEP 09 (2015)179

The Flavour Anomalies

(maybe only "local" anomalies...)

> 3.5 σ enhanced $B \rightarrow D^{(*)} au
u$ rates

DESY.

- 3.3 σ suppressed branching ratio of $B_s \rightarrow \phi \mu^+ \mu^-$
- $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{ub}|$
- $\sim 3\sigma~$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $> 3\sigma~$ anomalies in angular distributions of ${\it B}
 ightarrow {\it K}^* \ell \ell$

2.6 σ lepton flavor non-universality in $B \to \kappa^{(*)} \mu^+ \mu^-$ vs. $B \to \kappa^{(*)} e^+ e^-$

1.5

 B^0

 π

 K^+

The b \rightarrow s transition

The b \rightarrow s transition

Testing for Lepton Flavour Universality

Smoking gun to overcome theory uncertainties

• Angular observables might have residual uncertainties from form-factors

Testing for Lepton Flavour Universality

Smoking gun to overcome theory uncertainties

- All SM forces couple universal to the lepton flavour
 - Only differences from mass/phasespace
- Most data seems to support the SM
- NP models can introduce flavour dependent couplings
- Non-universal flavour coupling would be a strong sign for physics beyond the SM

[PDG2020, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]

Most simple approach: Ratio of Branching Ratios

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-}_{\text{mperial College}}}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{\text{London}})} R_{K}^{*} = \frac{\mathcal{B}(B^{0} \to K^{*0} \mu^{+} \mu^{-})}{\mathcal{B}(B^{0} \to K^{*0} e^{+} e^{-})}$$

Status of Lepton Flavour Universality | Simon Wehle | DESY, 14.09.2020

DESY.

R_K analysis Results for RK

- All measurements in agreement with recent results and SM
- The combined result is the weighted average of the B⁺ and B⁰ modes

Testing for lepton flavour universality in angular observables

Smoking gun to overcome theory uncertainties

- Performing the angular analysis separately for electron an muon modes
- Largest discrepancy in muons mode with 2.6 σ while 1.1 σ in the electron mode

Overview of the b \rightarrow sll Puzzle

Combining the results

• Effective Hamiltonian approach

right-handed part suppressed in SM

- Effective Operators O_i
- Effective Couplings C_i

LHCb SM from ABSZ

 $q^2 \,[{
m GeV}^2/c^4]$

10

Combined Fit for New Physics

Fit for New Physics

DESY.

LFU ~ 3σ pull from SM

LFU in tau decays

Discussion

• Most new physics models imply large contributions to the tau modes

- New Physics may couple to mass of the τ \rightarrow enhance sensitivity by $|m_{\tau}/m_{\mu}|^2 \simeq 286$
- Both Z' and leptoquark models predict large enhancements [1704.05340]

LFU in tau decays

Motivation for $\mathbf{B} \rightarrow \mathbf{K}^{+} \tau \tau$

- Strong hints for new physics in b→sll decays
- Deviations occur dominantly in muon modes
 - NP couples to mass?
 - tau modes could be dominant
 - ► $\mathcal{B}(B^+ \to K^+ au au)^{SM} < 1.44(15) imes 10^{-7}$
 - Some models may lead to a strong enhancement
 B(B→ Kτ[−]τ⁺)^{MLFV} < 2 × 10^{−4}
 - Only experimental constraints by BaBar with $\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3} \text{ at } 90\% \text{ C.L.}$

Prediction of the $b \rightarrow s \tau \tau$ branching fraction

Lepton Flavour Universality in R_D^*

- Tree level decay
- Clean theoretical observable
- Neutrinos in the final state

Lepton Flavour Universality in R_D^*

Present and Future

Now

- ~3.1 σ tension with SM
- ~30% effect against SM for taus in tree level decays

Soon

Belle II Early Physics program

Rediscovery and performance studies

- Validation and performance studies
- Rediscovery for $B \rightarrow XsII$ and $B \rightarrow KII$ soon

B2TiP

DESY.

Belle II and LHCb Projections for $b \rightarrow sII$

J. Albrecht et al., Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCb

Individual Measurements

- Already with a few ab⁻¹ Belle II might be able to confirm the b->s anomalies
- Belle II has excellent electron momentum resolution and neutrals performance

Summary and Conclusion

Prospects for $b \rightarrow s \ell \ell$ decays at Belle II

- LFU tests in rare decays provide excellent tests for new physics
- Belle II can probe unique channels and provide an independent validation of the current anomalies
 - Inclusive analyses, full event interpretation, very good electron and neutral particle efficiency
- Discovery of b→sττ could be in reach of Belle II if anomalies persist
- But not only Belle II also the LHC experiments will be able to shed more light upon the anomalies

Appendix

B→K*II Analysis at Belle

Belle Analysis

- Similar electron and muon performance
- limited statistics
- Neural network based reconstruction in order to maximise efficiency

Angular Analysis

Parametrisation of the differential decay rate

$$\frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi}\sum_{i=1}^9(I_i+\bar{I}_i)f_i(\cos\theta_\ell,\cos\theta_K,\phi)$$

$$S_i^{(a)} = rac{I_i^{(a)} + \overline{I}_i^{(a)}}{\mathrm{d}\left(\Gamma + \overline{\Gamma}
ight) / \mathrm{d}q^2}$$
 $A_i^{(a)} = rac{I_i^{(a)} - \overline{I}_i^{(a)}}{\mathrm{d}\left(\Gamma + \overline{\Gamma}
ight) / \mathrm{d}q^2}.$

Angular Analysis

Full expansion of the differential decay rate

"clean" observables

$$P'_{i=4,5,6,8} = rac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

cancel form-factor uncertainties

 B^0

K

 π

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K & \mathbf{Ca} \\ + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_L \\ - F_L\cos^2\theta_K\cos2\theta_L + S_3\sin^2\theta_K\sin^2\theta_L\cos2\phi \\ + S_4\sin2\theta_K\sin2\theta_L\cos\phi + S_5\sin2\theta_K\sin\theta_L\cos\phi \\ + S_6\sin^2\theta_K\cos\theta_L + S_7\sin2\theta_K\sin\theta_L\sin\phi \\ + S_8\sin2\theta_K\sin2\theta_L\sin\phi + S_9\sin^2\theta_K\sin^2\theta_L\sin2\phi \end{bmatrix}$$

using definitions of J. High Energy Phys. 01 (2009) 019.

$$S_{i}^{\text{obs}} = S_{i} - A_{i}(A_{\mathcal{CP}} + \kappa A_{P} + A_{D})$$

Most simple approach: Ratio of Branching Ratios

The new Belle result

DESY.

• Separate results B⁰ and B⁺

SM prediction by: <u>10.1007/JHEP10(2016)075</u>

Testing for lepton flavour universality in angular observables

Smoking gun to overcome theory uncertainties

 Testing for LFU can overcome this with very clean observables

$$D_i = P_i^{\prime \mu} - P_i^{\prime e}$$

DESY.