$\bar{B}_q \rightarrow D_q^{(*)}$ Form Factors and Phenomenological Applications

Martin Jung

Belle II Germany Meeting 14th of September 2020

Introduction

Form Factors (FFs) parametrize fundamental mismatch:

Theory (e.g. SM) for partons (quarks) vs. Experiment with hadrons

 $\left\langle D_{q}^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_{q}(p)\right\rangle = (p+p')^{\mu}f_{+}^{q}(q^{2})+(p-p')^{\mu}f_{-}^{q}(q^{2}), \ q^{2} = (p-p')^{2}$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{\pm}(q^2)$: scalar functions of one kinematic variable

Issue: how to obtain q^2 -dependence?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
- Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B o D
- Calculations give usually one or few points
- **•** Knowledge of functional dependence on q^2 cruical
- This is where discussions start...

Give as much information as possible independent of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations

 q^2 dependence usually rewritten via conformal transformation:

$$z\left(t=q^{2},t_{0}
ight)=rac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$$

 $t_+ = (M_{B_q} + M_{D_q^{(*)}})^2$: pair-production threshold $t_0 < t_+$: free parameter for which $z(t_0, t_0) = 0$

Usually $|z| \ll 1$, e.g. $|z| \le 0.06$ for semileptonic $B \to D$ decays Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]

FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD properties (unitarity, crossing symmetry)
 dispersion relation
- 4. Calculate partonic part perturbatively (+condensates)

Result:

$$F(t)=\frac{1}{P(t)\phi(t)}\sum_{n=0}^{\infty}a_n[z(t,t_0)]^n.$$

- *a_n*: real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$
- Series in z with bounded coefficients (each $|a_n| \le 1$)!
- Uncertainty related to truncation is calculable!

5/10

$V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19]

(see also [Fajfer+,Nierste+,Bernlochner+,Bigi+,Grinstein+,Nandi+...]) Recent untagged analysis by Belle with 4 1D distributions [1809.03290] "Tension with the (V_{cb}) value from the inclusive approach remains"

Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^2 to include uncertainties
- 2018: no parametrization dependence

HQE parametrization

HQE parametrization uses additional information compared to BGL Heavy-Quark Expansion (HQE)

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+,'97] : HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \rightarrow D$ and $B \rightarrow D^*$) Dealt with by varying calculable ($(@1/m_{b,c})$) parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20], using [Falk/Neubert'92]

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

In [MJ/Straub'18,Bordone/MJ/vDyk'19] , we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
- LQCD for $f_{+,0}(q^2)$ ($B \to D$), $h_{A_1}(q_{\max}^2)$ ($B \to D^*$) [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- Consistent HQET expansion [Bernlocher+] to O(α_s, 1/m_b, 1/m_c²)
 improved description

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• Fits 3/2/1 and 2/1/0 are theory-only fits(!)

- k/l/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $ightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- \blacktriangleright Predicted shapes perfectly confirmed by $B \to D^{(*)} \ell \nu$ data
- V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• $B \rightarrow D^*$ BGL coefficient ratios from:

- 1. Data (Belle'17+'18) + weak unitarity (yellow)
- 2. HQE theory fit 2/1/0 (red)
- 3. HQE theory fit 3/2/1 (blue)

Again compatibility of theory with data

2/1/0 underestimates the uncertainties massively

For $b_i, c_i \ (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20] FFs also of central importance in non-leptonic decays:

- Complicated in general, $B
 ightarrow M_1 M_2$ dynamics
- Simplest cases: $\bar{B}_d \to D_d^{(*)} \bar{K}$ and $\bar{B}_s \to D_s^{(*)} \pi$ (5 diff. quarks)
 - Scolour-allowed tree, $1/m_b^0 @ \mathcal{O}(lpha_s^2)$ [Huber+'16] , factorizes at $1/m_b$
 - Amplitudes dominantly $\sim ar{B}_q o D_q^{(*)}$ FFs
 - Used to determine f_s/f_d at hadron colliders [Fleischer+'11]

Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

- Large effect, $\sim -30\%$ for BRs
- Ratios of BRs ok
- QCDf uncertainty $\mathcal{O}(1/m_b^2, \alpha_s^3)$
- Data consistent (too few abs. BRs)
- NP? $\Delta_P \sim \Delta_V \sim -20\%$ possible
- We will learn something important!

Conclusions

Form factors essential ingredients in precision-flavour physics!

- q² dependence critical
- Essential to have FF-independent data
- Inclusion of higher-order (theory) uncertainties important
- BGL: model-independent, truncation uncertainty limited
- $igstarrow B o D^*$: Reduced V_{cb} puzzle, somewhat lower $R(D^*)$ prediction
- Theory determinations for NP required \rightarrow HQE to relate FFs
- $\mathcal{O}(1/m_c)$ not good enough for precision analyses
- \blacktriangleright First analysis at $1/m_c^2$ provides all $B \rightarrow D^{(*)}$ FFs
- ► V_{cb} consistent w/ BGL
- 4.4 σ tension in non-leptonic decays!
- Belle II important for "profane" BR measurements

Central lesson: experiment and theory need to work closely together!

Thank you