Belle 2 Pixel Detector (PXD) Status

FSP Belle II Germany Meeting 14.9.2020

Bjoern Spruck, JGU Mainz

Belle II & Vertex Detectors

A Little Bit of History

- Phase 1 (2016) SuperKEKB accelerator commissioning, no Belle II
- Phase 2 (2018) 1/10 of PXD (1 slice of VXD), "Beast II"
 - Goals: commissioning, safety (beam abort), background, first physics
- Phase 3 (2019) full VXD
 - Currently only inner layer + 2 outer ladders due to production delay due to low yield in ladder assembly (solved by now)
 - Full PXD in Belle II in 2022

A Little Bit of History

- Phase 1 (2016) SuperKEKB accelerator commissioning, no Belle II
- Phase 2 (2018) 1/10 of PXD (1 slice of VXD), "Beast II"
 - Goals: commissioning, safety (beam abort), background, first physics
- Phase 3 (2019) full VXD
 - Currently only inner layer + 2 outer ladders due to production delay due to low yield in ladder assembly (solved by now)
 - Full PXD in Belle II in 2022

Combining Vertex Detector (One Half Shell)

DEPFET Pixel Detector Concept

- Depleted P-channel Field-Effect Transistor pixels on fully depleted silicon bulk
- Fast charge collection (~ns) into internal gate
- Readout current is modulated by collected charge
 - Internal amplification, large Signal-to-Noise
- Gate must be cleared after readout
- Low energy consumption and heat dissipation

PXD Sensors

- Mechanically self-supporting 75µm thin sensors
- Pixel size down to 50x55µm²
- Rolling shutter read-out → low power
 - $50 \text{kHz} \rightarrow 20 \ \mu \text{s}$ integration time
- Design: 1% occupancy in layer 1
 - 3% occupancy limit (DHP, DAQ, tracking)
- Rad. hard sensor and ASICs
- 40 sensors, 250x768 pixels each
- Power is dissipated mainly in the ASICs at the end of stave
 - 2 phase CO₂ cooling _{DHP}

Digital processing Zero suppression Pedestal and common mode correction Trigger and timing

PXD DAQ Scheme

- PXD unfiltered raw data rate \rightarrow 10x that of other Belle II detectors
 - Separate readout path
 - Goal: Remove data not belonging to tracks
 - Data reduction to 1/10 by High Level Trigger based "Region Of Interest" calculation from CDC and SVD track information
 - Feedback to PXD readout and selection of pixels within rectangular ROIs
- Proven to work: ROI calculation on HLT is always on but filtering is currently turned off as data rates are still low

PXD Calibration and Optimization

- Sensors characterized before installation, but continuous optimization of working points needed
- Analog Common Mode Correction
- Switchable currents at input of Drain Current Digitizer used to compress spread of drain currents from sensor

Noise of 0.6 ADU

- Narrow and stable pedestals
- Low noise (<1ADU, <100e ENC)</p>

Signal to Noise and Gain Homogenity

- Sensor reached current limit on HV
 - Set voltage not reached → drop in efficiency & cluster charge
 - Unexpected, reason unclear
 - Not a problem (currents are still low), but power supplies were limiting
 - Modified PSU for higher limit (>2mA) this summer
- Further studies planned this week

Hit Efficiency

- Defined by hits found close to track intercepting points in modules
- Influenced by tracking quality and alignment
- Take only tracks with good tracking and $p_T > 1 \text{ GeV/c}$

 $\epsilon = \frac{nr \text{ of } tracks \text{ with } hit \text{ near } track \text{ intercept}}{nr \text{ of } good track intercepting a module}$

Dead gates (4 rows each) degrade overall hit efficiency by 2 .5% (good regions > 99 % hit efficiency)

Vertex Resolution

- Measuring the point of closest approach from particles from the interaction point in x, y in di-muon events
 - Exploit small and flat transverse beam spot size in SuperKEKB
- Vertex resolution with PXD is close to MC expectations
 - d_0 resolution of 14.1 µm (data), MC 12.5 µm

Vertex Resolution

- Measuring the point of closest approach from particles from the interaction point in x, y in di-muon events
 - Exploit small and flat transverse beam spot size in SuperKEKB
- Vertex resolution with PXD is close to MC expectations
 - d_0 resolution of 14.1 µm (data), MC 12.5 µm
- Vertex resolution \rightarrow Physics: life time measurement

Beam Incidents Affecting PXD

- Several incidents in 2019 and 2020:
 - QCS power supply failure
 - Instable beam due to beam dust particles (?), collimator damaged
 - Mis-operation of fast orbit feedback system
 - Beam abort not issued by diamond sensor
- Large <u>instant</u> radiation burst before beam was dumped (estimate: 300 rad in <40µs)
- Permanent damage in PXD: "dead" gates
 - Dangerous for QCS and other detectors, too

B. Spruck, FSP PXD Status, 14.09.2020, p. 15

QCS: Superconducting quadrupole coils close to interaction point

Damaged collimator head

Mitigations

- Assumption & Studies
 - Single Event Effect (SEE) in Switcher ASIC?
 - → Several dedicated irradiation test for ASICs and sensor with e- beam at MAMI (next one scheduled end of this week)
 - Study tolerance to radiation burst
 - Can switching off prevent damage to the modules?
- The present emergency shutdown did not protect the sensors
 - \rightarrow Upgrade the power supplies with a much faster system is ongoing O(100ms \rightarrow 100us)
 - Connected the PXD power supplies directly to the beam loss/diamond sensors
- From accelerator side
 - Understand and prevent this kind of uncontrolled beam losses
 - Faster beam abort and beam loss detection
 - Improve beam collimators

Synchrotron Radiation

- Large photon background was observed for some runs in a few modules in -X
- IR designed such that no direct SR photons hit the central Be beam pipe
 - Secondary photons!
 - May result in inhomogeneous irradiation of sensor
 - Stemming from injection, clear time structure
- Observation of photon components from other sources
- New beampipe (in preparation for 2022)
 - Switch from betatron to synchrotron injection (to be tested)

Gated Mode

- SuperKEKB is using top up injection
- PXD can be "blinded" to suppress the noise from a freshly injected bunch
- Gating: change the voltages (potentials) such, that no new charge is collected while preserving the already stored charge.
- Gating two times per readout cycle
- Concept proved to work, but not ready for use in physics runs
 - Not needed now as overall occupancy is still low

Summary

- Belle II first particle physics experiment to use a DEPFET pixel vertex detector
 - Challenging operating conditions close to the IP
- Good performance demonstrated
 - Vertex resolution close to MC expectations
- Suffering from damages due to to instantaneous radiation bursts

Outlook

- Understand and prevent damage by "beam incidents"
- Production, assembly and testing of new modules is ongoing
 - Replace current PXD with all full detector setup in 2022

Backup

COVID-19

- SuperKEKB and Belle II continued to run until scheduled summer break
 - Operation will restart in October
- Impact
 - No external collaborators (international and nation) allowed on campus from March on
 - Distancing of shifters (Control Room, sub-detectors)
 - \rightarrow Remote shifts introduced even for control room shifts
- PXD was already prepared for remote operation from the beginning!
 - Minimal impact on operations
 - But problematic for maintenance work over summer

SuperKEKB

PXD Schedule – Conservative Scenario

					Jan '21				Feb '21			Mar'2	1		Apr '21		May '21			Jun '21				Aug'21		Sep '21			Oct '21		Nov		
	Task Name 👻	Start 👻	Finish 👻	Duration	13 2	0 27	03 1	.0 17	24 31	07	14 21	28 07	14 2	21 28	04 11	18 25	02 09	16 23	30 0	6 13	20 2	7 04 11	18 2	5 01 (08 15 2	2 2	29 05	12 1	19 26	03 10	17	24 3	31
1	⊿ PXD2	Mon 03/02/20	Fri 15/10/21	445 dys																													
2	PXD9-21: 12 wafers Phase 2-3	Mon 04/05/20	Fri 08/01/21	9 mons																													
3	sensors from PXD9-21a	Fri 08/01/21	Fri 08/01/21	0 dys				08 Jan '	21																								
4	4 L2 module assembly	Mon 20/04/20	Fri 12/06/20	40 dys																													
5	assemble all available L2 Ladders	Mon 20/04/20	Fri 12/06/20	8 wks																													
6	first batch L2 ladders available	Fri 12/06/20	Fri 12/06/20	0 dys						+ +	-		+ +		-				1														
7	L1 Module assembly	Mon 03/02/20	Fri 23/04/21	320 dys																													
8	batch PXD21-1 (2 L1 pairs) ready	Mon 03/02/20	Mon 03/02/20	0 dys						1			1			<u> </u>		1					<u> </u>			-					1		
9	Phase 2 modules (1 L1 pair) ready	Mon 03/02/20	Mon 03/02/20	0 dys																													
10	2 L1 ladders ready	Mon 03/02/20	Mon 03/02/20	0 dys																													
11	✓ batch PXD21-3a (7 pairs)	Mon 11/01/21	Fri 12/03/21	45 dys			ļ						1																				
12	FC, SMD, possibly rework	Mon 11/01/21	Fri 26/02/21	7 wks								j :			<u> </u>	<u>i i i</u>							<u> </u>			-				<u>: :</u>			
13	Kapton attachment	Mon 15/02/21	Fri 12/03/21	4 wks						4			5																				
14	module char.: BN/DESY/HLL/MPP	Mon 01/03/21	Fri 23/04/21	8 wks									: :	- : - :		<u> </u>																	
15	All Modules done	Fri 23/04/21	Fri 23/04/21	0 dys												2	Apr 21																
16	assemble 7 remaining L1 ladders	Mon 12/04/21	Fri 14/05/21	5 wks						1			1		<u>+ +</u>		_	÷	8 8											<u> </u>			
17	Half Shell Assembly	Mon 17/05/21	Fri 15/10/21	110 dys																													
18	HS1	Mon 17/05/21	Fri 28/05/21	2 wks																													
19	HS1 Test at DESY	Mon 31/05/21	Fri 06/08/21	10 wks															:														
20	Half Shell 1 ready	Fri 06/08/21	Fri 06/08/21	0 dys																					06 Aug 21					<u> </u>			
21	HS2	Mon 31/05/21	Fri 11/06/21	2 wks																										<u> </u>			
22	HS2 test at DESY	Mon 09/08/21	Fri 15/10/21	10 wks																										<u> </u>	1		
23	Half Shell 2 ready	Fri 15/10/21	Fri 15/10/21	0 dys																											15	Oct '21	1
24	Ship Half Shells to KEK	Fri 15/10/21	Fri 15/10/21	0 dys																										<u> </u>	15	Oct '21	L .

- After half shell assembly assume long (2x10 weeks) testing time before transport to KEK in mid October 2021
- Current base plan:
 - extract and dismount present VXD in January 2022
 - even under above conservative assumptions have ~ 3 months contingency for PXD completion
- If new beam pipe ready, aligned and tested early enough then mounting of PXD could already start in 2021

System Layout

- PXD Slow Control uses EPICS
 - Interfaces to IPBus, IPMI, UNICOS, NSM2, ...
- 20x200 PVs alone from Power Supply control
- Configuration from ConfigDB
 - Sophisticated sequences for powering the modules (ASICs)
- Archiver (13k PVs, 1.4 GB/day)
- Logging: DB with Elasticsearch, elog, Rocket.Chat
- Control and Monitoring GUI
 - Control System Studio
- Alarm System (BEAST)
- Scaled from 4 to 20 (40) modules from Phase $2 \rightarrow 3$

Online ROI Selection

- Region Of Interest selection needs accurate ROI calculation on High Level Trigger
- Hit maps for different modules of same event: clusters fit to ROI computed on HLT

Compensation for Radiation Damage

- MPV for cluster changes with irradiation
- Expected, must be corrected for by increasing voltages
- Voltages adjusted to have same source current (100 mA) again
- Radiation dose from diamond sensors → scaling needed

Vertex Resolution

- Measuring the point of closest approach from particles from the interaction point in x, y in di-muon events
- Vertex resolution with PXD is close to MC expectations
 - d_0 resolution of 14.5 µm achieved

Continuous Injection Backgrounds

- Increased luminosity by continuous (top-up) injection, max 50 Hz
- Large background during HER injection (noisy bunch) → can lead to readout problems
- Belle II Trigger Veto (=no readout)
 - Full veto during injection (1-2 ms) and then for ~10 ms each time the bunch passes by (~2 μs)
- For PXD: Possible to blind detector while keeping stored charges (Gated Mode)

Rolling shutter! Integrated over 20 $\mu s.$

Gated Mode

Online Monitoring

Histograms from local DAQ

Histograms from express reconstruction for online monitoring performance

VXD Installation

Phase 2 VXD and BEAST II

Background in Pixel detector

- Occupancy of PXD dominated by background
 - physics <1% occupancy</p>
- Beam related background by
 - Synchrotron radiation
 - Beam gas reactions
 - Touschek effect intra-beam scattering because of high particle density
- Interaction background
 - Radiative QED, two photon processes
- Can be studied and decomposed with single beams and varying currents
- Big uncertainty in extrapolations
 - Backgrounds much too high (not only in PXD!)
 - LER background dominates
 - Mitigation needed

PXD Module

Ladder Gluing

Ladder: Two modules glued together

gap: glue gap between Al

dx: lateral displacement

dH: step between modules

DEPFET Module Production

DEPFET Pixel sensor

The Belle II vertex detector

Pixel Detector (PXD)
2 layers of DEPFET pixels
r = 1.4 cm, 2.2 cm
L = 12 cm
~ 0.027 m²

• Silicon Vertex Detector (SVD) 4 layers of DSSD r = 3.9 cm, 8.0 cm, 10.4 cm, 13.5 cm

L = 62 cm~ 1 m²

Vertex Detector (One Half Shell)

Waver

