

Charmless Decays at Belle II

Benedikt Wach

Max-Planck-Institute for Physics, Munich

September 14th, 2020

Hadronic Charmless B-Decays

- mediated through Cabibbo-suppressed b→u and/or loop-suppressed
 b→d/s transitions
- for transitions governed by penguin diagrams → room for new physics contributions in loops
- theory calculations prone to hadronic uncertainties → test of QCD factorization approach and SU(3) breaking effects
- investigate long-standing $K\pi$ –puzzle
- isospin-related modes can be combined to cancel experimental and theoretical uncertainties

 $\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$

- low branching ratios (order < 10⁻⁵)
- usually strongly dominated by continuum background

BIG BANG SCALE

Seems to be a big

difference

SYMMETE

recently in the Belle II charmless group ...

- first **BR and direct CPV** measurements in a number of modes
- using all 2019–2020 Y(4S) good-quality runs collected until May 14, 2020 corresponding to an integrated luminosity of **34.6 fb⁻¹**

Eldar Ganiev: ICHEP 2020 talk

FSP Belle II Meeting

Analysis Workflow / Strategy

1. Reconstruction

• combine candidates in kinematic fits to fill list of B-meson candidates

2. Selection

 now: loose baseline selection followed by optimized continuum suppression and particle identification cuts

3. Modelling

- use simulated data (MC) to model relevant features in $\Delta E \equiv E_B^* \sqrt{s}/2$
- determine selection efficiencies for BR calculations
- 4. Fit to data & calculate physics quantities
- 5. Assess systematic uncertainties

Continuum Suppression

- continuum background strongly dominating
- exploit kinematic, topological differences between $B\bar{B}$ and $q\bar{q}$
- employ binary boosted decision tree (FastBDT) to create classifier variable from 39 variables
- optimize simultaneously cut on classifier and PID to maximize FOM = S/sqrt(S+B)

2-Body: $B^0 \rightarrow K^+\pi^-$, $B^0 \rightarrow \pi^+\pi^-$

signal yield	61^{+11}_{-10}				
BR Fit [x 10 ⁻⁶]	5.6 ^{+1.0} _{-0.9} (stat) ± 0.3 (sys)				
BR PDG [x 10 ⁻⁶]	5.12 ± 0.19				

s per 0.01 GeV	100 80 60	$\int L dt = 34.6 \text{ fb}^{-1}$ $\int L dt = 34.6 \text{ fb}^{-1}$ $\int B^{0} \rightarrow K^{+}\pi^{-} + \text{c.c.}$ $B^{0} \rightarrow \pi^{+}\pi^{-} + \text{c.c.}$ $Background$ $W = SXF$
andidate	40 20	
0	0 0	15 -0.1 -0.05 0 0.05 0.1 0.1

signal yield	289 ⁺²² ₋₂₁				
BR Fit [x 10 ⁻⁶]	18.9 ^{+1.4} (stat) ± 0.7 (sys)				
BR PDG [x 10 ⁻⁶]	19.6 ± 0.5				

2-Body: $B^+ \rightarrow K^+ \pi^0$, $B^+ \rightarrow \pi^+ \pi^0$

 $\pi^+\pi^0$

2-Body: $B^+ \rightarrow K_S^0 \pi^+$, $B^0 \rightarrow K_S^0 \pi^0$

signal yield	65 ⁺¹⁰				
BR Fit [x 10 ⁻⁶]	21.8 $^{+3.3}_{-3.0}$ (stat) ± 2.9 (sys)				
BR PDG [x 10 ⁻⁶]	23.7 ± 0.8				

 $K_S^0 \pi^0$

signal yield	35 ⁺⁹ ₋₉
BR Fit [x 10 ⁻⁶]	10.9 $^{+2.9}_{-2.6}$ (stat) ± 1.6 (sys)
BR PDG [x 10 ⁻⁶]	9.9 ± 0.5

3-Body: $B^+ \rightarrow K^+ \pi^- \pi^+$, $B^+ \rightarrow K^+ K^- K^+$

 $K^+\pi^-\pi^+$

signal yield	449^{+37}_{-37}				
BR Fit [x 10 ⁻⁶]	48.0 ^{+3.8} (stat) ± 3.3 (sys)				
BR PDG [x 10 ⁻⁶]	51.0 ± 2.9				

 $K^+K^-K^+$

signal yield	359^{+25}_{-25}				
BR Fit [x 10 ⁻⁶]	32. 0 ^{+2.2} _{-2.2} (stat) ± 1.4 (sys)				
BR PDG [x 10 ⁻⁶]	34.0 ± 1.4				

September 14th, 2020

FSP Belle II Meeting

3-Body: direct CPV

Conclusion

- observed ~1500 charmless decays in 35 fb⁻¹ of Υ(4S) data
- first measurements of branching fractions and direct CPV of charmless *B* decays at Belle II
- results show good agreement with world averages!
- plenty of room for improvement (multidimensional fits, selection, ...)

 $\mathcal{B}(B^0 \to K^+ \pi^-) = [18.9 \pm 1.4 (\text{stat}) \pm 1.0 (\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^+ \to K^+ \pi^0) = [12.7^{+2.2}_{-2.1}(\text{stat}) \pm 1.1(\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^+ \to K^0 \pi^+) = [21.8^{+3.3}_{-3.0}(\text{stat}) \pm 2.9(\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^0 \to K^0 \pi^0) = [10.9^{+2.9}_{-2.6}(\text{stat}) \pm 1.6(\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^0 \to \pi^+\pi^-) = [5.6^{+1.0}_{-0.9}(\text{stat}) \pm 0.3(\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^+ \to \pi^+ \pi^0) = [5.7 \pm 2.3(\text{stat}) \pm 0.5(\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^+ \to K^+ K^- K^+) = [32.0 \pm 2.2 (\text{stat.}) \pm 1.4 (\text{syst})] \times 10^{-6},$ $\mathcal{B}(B^+ \to K^+ \pi^- \pi^+) = [48.0 \pm 3.8(\text{stat}) \pm 3.3(\text{syst})] \times 10^{-6},$ $\mathcal{A}_{\rm CP}(B^0 \to K^+ \pi^-) = 0.030 \pm 0.064 ({\rm stat}) \pm 0.008 ({\rm syst}),$ $\mathcal{A}_{\rm CP}(B^+ \to K^+ \pi^0) = 0.052^{+0.121}_{-0.119}(\text{stat}) \pm 0.022(\text{syst}),$ $\mathcal{A}_{\rm CP}(B^+ \to K^0 \pi^+) = -0.072^{+0.109}_{-0.114}(\text{stat}) \pm 0.024(\text{syst}),$ $\mathcal{A}_{\rm CP}(B^+ \to \pi^+ \pi^0) = -0.268^{+0.249}_{-0.322}(\text{stat}) \pm 0.123(\text{syst}),$ $\mathcal{A}_{CP}(B^+ \to K^+ K^- K^+) = -0.049 \pm 0.063 \text{(stat)} \pm 0.022 \text{(syst)}, \text{ and}$ $\mathcal{A}_{\rm CP}(B^+ \to K^+ \pi^- \pi^+) = -0.063 \pm 0.081 ({\rm stat}) \pm 0.023 ({\rm syst}).$

Backup

 $B \rightarrow VV: B^+ \rightarrow \phi K^{*+}, B^0 \rightarrow \phi K^{*0}$

Require full angular analysis.

Eldar Ganiev ICHEP 2020

 $B \rightarrow VP: B^+ \rightarrow \phi K^+, B^0 \rightarrow \phi K^0$

Require advanced analysis techniques. Belle II preliminary Belle II Belle II preliminary Belle II Belle II reliminary preliminar GeV/c²) 8 GeV/c²) (0.02 GeV) 0.02 (0.002 025 025 1.03 1.04 5.26 5.27 5.28 -0.1 0.1 5.25 5.26 5.27 5.28 5.29 _0 1 0.1 1 01 1 02 0.2 M_{bc} [GeV/c²] ∆E [GeV] m(K⁺K⁻) [GeV/c²] M_{bc} [GeV/c²] ∆E [GeV] m(K⁺K⁻) [GeV/c²] Belle II preliminar Belle II preliminar $B^0 \rightarrow \phi K_{c}^0$ Belle II Belle II $B^+ \rightarrow \phi K^+$ $\int L dt = 34.6 \text{ fb}^{-1}$ L dt = 34.6 fb⁻¹ its / 0. data data total pdf total pdf signal pdf signal pdf continuum pdf continuum pdf -0.5 cos θμ cos θμ C'out $B^0 \to \phi K^0$ $B^+ \to \phi K^+$ $N_{sig}(B^0 \rightarrow \phi K_s^0)$ 16 ± 5 $N_{sig}(B^+ \rightarrow \phi K^+) = 55 \pm 9$ **First reconstruction in Belle II data!** First reconstruction in Belle II data! \mathscr{B} [10⁻⁶] 6.7 ± 1.1(stat.) ± 0.5(syst.) \mathscr{B} [10⁻⁶] 5.9 ± 1.8(stat.) ± 0.7(syst.) **PDG** PDG $8.8^{+0.7}_{-0.6}$ **B** [10⁻⁶] **B** [10⁻⁶] 7.3 ± 0.7 13

Eldar Ganiev **ICHEP 2020**

Belle II

Systematic Uncertainties

Source	$K^+\pi^-$	$K^+\pi^0$	$K^0\pi^+$	$K^0\pi^0$	$\pi^+\pi^-$	$\pi^+\pi^0$	$K^+K^-K^+$	$K^+\pi^-\pi^+$
Tracking	1.8%	0.9%	2.7%	1.8%	1.8%	0.9%	2.7%	2.7%
$K_{\rm S}^0$ efficiency	-	-	12.5%	11.6%	-	-	-	-
π^0 efficiency	-	6.5%	-	6.5%	-	6.5%	-	-
PID and continuum-supp. eff.	1.1%	2.6%	0.9%	1.4%	1.3%	2.7%	2.3%	1.0%
$N_{B\bar{B}}$	2.7~%	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%	2.7%
Signal model	1.1%	2.3%	< 0.1%	< 0.1%	4.5%	0.5%	0.6%	3.5%
Continuum bkg. model	4.2%	3.1%	1.5%	4.8%	< 0.1%	3.6%	0.3%	4.6%
$B\overline{B}$ bkg. model	0.4%	< 0.1%	-	-	1.6%	0.4%	-	0.2%
Total	5.5%	8.5%	13.2%	14.6%	5.9%	8.4%	4.5%	7.0%

syst. uncertainties: 1) branching ratios

- Tracking efficiency: 0.91% per charged track as suggested by TG
- K_s rec. efficiency: 1% per cm average flight length
- **PID/CS efficiency**: stat. uncert. of selection efficiency using control channel $B^- \rightarrow D^0$ ($\rightarrow K^+\pi^-$) π^-
- **N**_{BB}: combination of uncertainties in \mathcal{L} , $\sigma(\Upsilon(4S))$, $f_{00}(f_{+})$ and beam energy spread $\rightarrow 2.7 \%$
- Signal modeling:
 - **a. shape**: fit with 2 Gaussians instead, difference as systematic
 - **b. nCDCHits mismodeling:** require > 4 hits in CDC for each track, difference as systematic
- **Background modeling**: fit with first order poly. instead, difference as systematic
- Peaking background: fix peak. bkg. ratio instead of floating, difference as systematic

syst. uncertainties: 2) charge-asymmtry

- Signal+SxF modeling: allow for independent mean shifts for both charges, difference as systematic
- **Background modeling**: allow for independent background shapes for both charges, difference as systematic
- Instrumental correction: use stat. uncertainty of asymmetry measurement in control channel as sys. uncertainty