# *B*-lifetime and time-dependent *CP*-violation measurement at Belle II

Thibaud Humair, on behalf of the Belle II collaboration thumair@mpp.mpg.de

Beauty 2020, Tokyo IPMU



22<sup>nd</sup> September, 2020

### Status of sin $2\phi_1$ measurements

In the SM, CP violation arrises via non-zero phase in CKM matrix...

... or equivalently: CKM triangle has non-zero area;

Over-constraining the CKM triangle by measuring its sides and angles provides a stringent precision test of the Standard Model.



**Today:** focus on Belle II's preparation for precision measurement of  $\sin 2\phi_1$ 

- World average:  $\sin 2\phi_1 = 0.699 \pm 0.017$  (HFLAV2019)
- ▶ Result using full Belle dataset:  $\sin 2\phi_1 = 0.667 \pm 0.023 \pm 0.012$  (PRL108(2012)171802)
- Final aim at Belle II: reduce uncertainty by factor 5-10 to reach  $\sim$  0.5% precision.

#### 2 Beauty 2020

### CP violation in interference between mixing and decay

CKM parameter  $\phi_1$  is accessible using  $B^0$  decays to CP-eigenstates such as  $J/\psi K_S^0$ ;



Measure asymmetry between number of  $B^0 \rightarrow J/\psi K_S^0$  and  $\overline{B}^0 \rightarrow J/\psi K_S^0$  decays as a function of the  $B^0$  decay time.

$$\mathcal{A}_{\mathrm{CP}}(t) = rac{\mathcal{B}(\overline{B}^0 o J/\psi \mathcal{K}^0_{\mathcal{S}})(t) - \mathcal{B}(B^0 o J/\psi \mathcal{K}^0_{\mathcal{S}})(t)}{\mathcal{B}(\overline{B}^0 o J/\psi \mathcal{K}^0_{\mathcal{S}})(t) + \mathcal{B}(B^0 o J/\psi \mathcal{K}^0_{\mathcal{S}})(t)} = \sin(2\phi_1)\sin(\Delta m_d t)$$

3 Beauty 2020

### Time dependent CP violation at the B factories



Three main ingredients are necessary for precise  $\phi_1$  measurement in a B factory environment:

- 1. Large dataset,  $\mathcal{B}(B^0 \to J/\psi(\ell^+\ell^-)K^0_S(\pi^+\pi^-)) \approx 3.6 \times 10^{-5};$
- 2. Precise decay-time difference  $\Delta t$  measurement;
- 3. Good flavour tagging performance.

#### 4 Beauty 2020

### Time dependent CP violation at the B factories



Three main ingredients are necessary for precise  $\phi_1$  measurement in a B factory environment:

- 1. Large dataset,  $\mathcal{B}(B^0 \to J/\psi(\ell^+\ell^-)K^0_S(\pi^+\pi^-)) \approx 3.6 \times 10^{-5};$
- 2. Precise decay-time difference  $\Delta t$  measurement;
- 3. Good flavour tagging performance.

#### 4 Beauty 2020

### Time dependent CP violation at the B factories



Three main ingredients are necessary for precise  $\phi_1$  measurement in a B factory environment:

- 1. Large dataset,  $\mathcal{B}(B^0 \to J/\psi(\ell^+\ell^-)K^0_S(\pi^+\pi^-)) \approx 3.6 \times 10^{-5};$
- 2. Precise decay-time difference  $\Delta t$  measurement;
- 3. Good flavour tagging performance.

#### 4 Beauty 2020

### Achieving high luminosity at Belle II

Belle II will achieve a very high luminosity using so-called nano-beam scheme.



So far achieved:

Peak luminosity:

 $2.4\times10^{34}~\text{cm}^{-2}\text{s}^{-1}\text{, world record!}$ 

• Integrated luminosity for physics data recorded between February 2019 and July 2020: 74.1 fb<sup>-1</sup> ( $\sim 1/10$  of Belle)

### Boost and $\Delta t$ precision

Belle II has a reduced boost compared to Belle:

 $\beta \gamma = 0.43 \longrightarrow \beta \gamma = 0.29$ 

 $\Rightarrow$  added a two-layer pixel detector to recover precision on  $\Delta t$ .

Second layer not yet fully installed but one layer is currently enough as the machine needs time to ramp up to the nominal luminosity.

Simulation studies show the precision on  $\Delta t$  should be comparable to that of Belle:





### Lifetime measurement

 $B^0$  lifetime measured using 2019 data (8.7 fb<sup>-1</sup>). Important test of Belle II time measurement capabilities with real data.

► Use hadronic *B*<sup>0</sup> decays:

 $B^0 
ightarrow D^{(*)-}\pi^+$  and  $B^0 
ightarrow D^{(*)-}
ho^+$ ;

- Select events based on PID, kinematic and event shape variables;
- Perform mass fit to extract the signal fraction;
- Perform fit to the Δt distribution to extract lifetime;

Result:

 $au_{B^0} = 1.48 \, \pm \, 0.28 \, \pm \, 0.06$  ps



### Flavour tagger performance

Flavour tagger performance characterised by

wrong tag fraction w;

• effective efficiency  $\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} \cdot (1 - 2w)^2$ .

*w* is measured with 2019 data, time-integrated:

- Reconstruct signal in flavour specific  $B^0 \rightarrow D^{(*)-}h^+$  final states;
- Measure asymmetry between mixed/unmixed events:

$$\frac{N(B\overline{B}) - N(BB, \overline{BB})}{N(B\overline{B}) + N(BB, \overline{BB})} = (1 - 2w)(1 - 2\chi_d)$$

( $\chi_d$  mixing prob from PDG) Find  $\varepsilon_{\text{eff}}$  compatible with Belle:

Belle: 
$$arepsilon_{ ext{eff}} = (30.1 \pm 0.4)$$
%,



Belle II: 
$$arepsilon_{
m eff} = (33.8 \pm 3.9)\%$$

### Belle II first time-dependent CPV measurement

Using 8.7 fb<sup>-1</sup> of data, could show that Belle II performs well in measuring decay time and in flavour tagging.

 $\Rightarrow$  use 34.6 fb<sup>-1</sup> to perform first time-dependent CPV measurement.

Use signal  $B^0 \to J/\psi {\cal K}_S$  with  $J/\psi \to \mu^+\mu^-,~e^+e^-$  to measure

$$a_{\mathrm{CP}}(\Delta t) = \frac{N(B_{\mathrm{tag}}^{0}) - N(\overline{B}_{\mathrm{tag}}^{0})}{N(B_{\mathrm{tag}}^{0}) + N(\overline{B}_{\mathrm{tag}}^{0})}(\Delta t) = \sin(2\phi_{1})\sin(\Delta m_{d}\Delta t)(1 - 2w) * \mathcal{R}(\Delta t),$$

where  $a_{\rm CP}$  is the raw asymmetry and  $\mathcal{R}$  the  $\Delta t$  resolution function.

w is extracted by performing a time-dependent measurement of the mixing probability using  $B^0 \rightarrow D^- \pi^+$  as flavour specific signal:

$$p_{\text{mix}}(\Delta t) = \frac{N(B\overline{B}) - N(BB, \overline{BB})}{N(B\overline{B}) + N(BB, \overline{BB})} (\Delta t) = \cos(\Delta m_d \Delta t) (1 - 2w) * \mathcal{R}(\Delta t)$$

#### 9 Beauty 2020

### Time-dependent mixing result



 $\Delta m_d = (0.531 \pm 0.046 \text{ (stat.)} \pm 0.013 \text{ (syst.)}) \text{ ps}^{-1}$ 

Compatible with PDG:  $\Delta m_d = (0.5065 \pm 0.0019) \text{ ps}^{-1}$ .

10 Beauty 2020

### Time-dependent CP-violation result



 $sin(2\phi_1) = 0.55 \pm 0.21 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$ 

2.7  $\sigma$  evidence for time-dependent CPV!

11 Beauty 2020

### Towards precision measurements

The Belle II measurements presented so far show that the detector performs well and as expected.

 $\Rightarrow$  next step is to get ready for precision measurements!

This involves:

- Refining description of the Δt resolution. So far simple 1D model is used, a more complex parametric model can be used to reduce detector-related systematics;
- Adding other modes, i.e.  $\psi(2S)K_S$ ,  $J/\psi K_L$ ,  $J/\psi K^*(K_S\pi^0)$ , etc;
- Improving vertex resolution;



. . .

Time-dependent measurements can benefit from the small beamspot.

- Measure beam spot size and position using  $ee \rightarrow \mu\mu$  events;
- Use momentum conservation to constrain  $B_{\text{tag}}^0$  vertex.



Was not yet implemented in analyses presented today.

13 Beauty 2020

Time-dependent measurements can benefit from the small beamspot.

• Measure beam spot size and position using  $ee \rightarrow \mu\mu$  events;

• Use momentum conservation to constrain  $B_{\text{tag}}^0$  vertex.



Was not yet implemented in analyses presented today.

Time-dependent measurements can benefit from the small beamspot.

• Measure beam spot size and position using  $ee \rightarrow \mu\mu$  events;

• Use momentum conservation to constrain  $B_{\text{tag}}^0$  vertex.



Was not yet implemented in analyses presented today.

Time-dependent measurements can benefit from the small beamspot.

- Measure beam spot size and position using  $ee \rightarrow \mu\mu$  events;
- Use momentum conservation to constrain  $B_{\text{tag}}^0$  vertex.



Was not yet implemented in analyses presented today.

#### 13 Beauty 2020

## $B^0 ightarrow \phi(K^+K^-)K^{(*)0}$ analysis

Time-dependent analyses of charmless  $B^0$  decays interesting:

small branching-fraction  $\Rightarrow$  potentially sensitive to New Physics

Analysis of  $B^0 \rightarrow \phi(K^+K^-)K^{(*)0}$  on arXiv.

Not yet enough data to perform time-dependent analysis, but:

- Used multivariate selection to rediscover this mode;
- Fitted  $K^+K^-$  helicity angle to:
- 1: discriminate  $\phi$  (P-wave) from S-wave;

2: measure longitudinal polarization fraction  $f_L$  for  $B^0 \rightarrow \phi K^{*0}$ . Result:

$$f_L(B^0 o \phi {\cal K}^{*0}) = 0.57~\pm~0.20~{
m (stat.)}~\pm~0.04~{
m (syst.)}$$



### Conclusions and outlook

Using up to 34.6  ${\rm fb}^{-1}$  of data, Belle II has shown:

- ▶ Good vertex resolution and ability to measure *B* lifetime;
- Good flavour tagging performance;
- Ability to perform complete time-dependent CPV analyses.

We are now accumulating more data and improving our analysis techniques to:

- Perform precision measurements of the flavour parameters;
- Analyse rare modes sensitive to New Physics.

Dawn of an exciting era of heavy flavour physics with LHCb and Belle II!