Belle II Status and Highlights

Toru lijima Kobayashi-Maskawa Institute (KMI) Nagoya University

IPNS, KEK

Belle II spokesperson

on behalf of the Belle II collaboration

September 21, 2020

19th International Conference on B-Physics at Frontier Machines, BEAUTY 2020

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Belle II at SuperKEKB

Plan to collect 50 ab⁻¹ of collisions at and near $\Upsilon(4S)$ Successor to Belle at KEKB (1.05 ab⁻¹)

At $\Upsilon(4S)$, $E_{CM} = 10.58 \text{ GeV}$ 4 GeV e^+ (LER; Low Energy Ring) Belle II detector $\mathscr{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \frac{I_{\pm}\xi_{\pm y}}{\beta_y^*} \left(\frac{R_L}{R_y}\right)$

5.9 → 0.3 mm **SuperKEKB** KEKB

Physics motivations

- New physics search in $B, B_{\rm s}, D, \tau$ decays
- Direct search for light new particles
- Precise measurement of Standard Model
- Hadron physics

Belle II detector

Superconducting solenoid (1.5 T)

K_L and μ detector

Resistive plate chamber (outer barrel) Scintillator + MPPC

(inner 2 barrel layers, end-caps)

Particle ID detectors

TOP (Time-of-Propagation) counter (barrel)
Aerogel RICH (forward end-cap)

Trigger and DAQ Max L1 rate: 0.5→30 kHz Pipeline readout

GRID computing

Electromagnetic calorimeter

CsI(TI), waveform sampling

Tracking detector

Drift chamber (He + C_2H_6) of small cell, longer lever arm with fast readout electronics

Silicon vertex detecto

- 1→2 layers DEPFET (pixel)
- 4 outer layers DSSD

Better performance even at the higher trigger rate and beam background

Belle II Collaboration

- ~1050 active members
 - ~220/~140/~70 (Ph.D/Msc/Undergrad.) students
- I 20 institutes
- 26 countries

T.I.

Belle II Physics Program

- Precision CKM
- CPV in $b \rightarrow s$ penguin decays
- Tauonic decays
- FCNC
- Charm decays
- LFV ⊤ decays
- Hadron spectroscopy
- Dark sector

"Belle II Physics Book" B2TIP (Belle II Theory Interface Platform) PTEP 2019, no. 12, 123C01 (2019)

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
ϕ_1 [°]	***	0.4	Belle II
$\phi_2 [\circ]$	**	1.0	Belle II
ϕ_3 [°]	***	1.0	LHCb/Belle II
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	***	0.01	Belle II
$\mathcal{A}(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$\mathcal{A}(B \to K^+ \pi^-)$ [10 ⁻²]	***	0.20	LHCb/Belle II
(Semi-)leptonic			1
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu)$ $[10^{-6}]$	**	7%	Belle II
$R(B \rightarrow D\tau\nu)$	***	3%	Belle II
$R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			1
$\mathcal{B}(B \to X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{sd\gamma}) \ [10^{-2}]$	***	0.005	Belle II
$S(B \to K_c^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			2010 11/11/00
$\mathcal{B}(D_s \to \mu\nu)$	***	0.9%	Belle II
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_{C}^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$ a/p (D^0 \to K_0^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \to K^0_{\alpha} \pi^+ \pi^-) \ [^\circ]$	***	4	Belle II
<u>∀(₽ / ₽5" " /[]</u> Tau		*	Dono 11
$\tau \rightarrow \mu \gamma [10^{-10}]$	***	< 50	Belle II
$\tau \rightarrow e \sim [10^{-10}]$	***	< 100	Belle II
$\tau $ (10^{-10})	***	< 3	Bollo II/I UCL
$\eta \rightarrow \mu \mu \mu [10]$	-	< 0	

Measurements with ultimate precisions down to theory errors !

Advantage of e⁺e⁻ Flavor Factory

- Clean environment
 - Efficient detection of neutrals (γ , π^0 , η , ...)
- Quantum correlated B⁰B⁰ pairs
 - High effective flavor tagging efficiency : ~34%(Belle II) ~3% (LHCb)
- Large sample of τ leptons
 - Search for LFV τ decays at O(10-9)
- Full reconstruction tagging possible
 - A powerful tool to measure;
 - b→u semileptonic decays (CKM)
 - decays with large missing energy
- Good hermeticity
 - e+/e- beam energies less asymmetric than Belle, BaBar
- Systematics different from LHCb
 - Two experiments are required to establish NP

 $B \rightarrow \pi I \nu$

 $B \rightarrow \tau \nu, D \tau \nu$

 $B \rightarrow K \vee V$

Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Belle II roll-in (2017.4.17)

Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Phase 2 (w/ QCS/Belle II but w/o VXD)

- Verification of nano-beam scheme
- Understand beam background
- Collision run w/oVTX

Belle II roll-in (2017.4.17)

Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Phase 2 (w/ QCS/Belle II but w/o VXD)

- Verification of nano-beam scheme
- Understand beam background
- Collision run w/oVTX

Installation of VXD

Belle II roll-in (2017.4.17)

Phase I (w/o QCS/Belle II)

 Accelerator tuning w/ single beams

Phase 2 (w/ QCS/Belle II but w/o VXD)

- Verification of nano-beam scheme
- Understand beam background
- Collision run w/oVTX

Phase 3 (w/ full detector)

• Production of physics data

Belle II roll-in (2017.4.17)

Ist collision (2018.4.26)

Installation of VXD

Phase 3 physics run (2019.3.25~)

Major issues in the operation

- Detector lifetime (in particular TOP counter)
 - To keep the MCP-PMT QE within an acceptable level (QE/QE₀ > 80%) until 50 ab⁻¹, the Touschek and beam gas backgrounds, which increase with (beam current)², have to be kept constant by collimators, beam tuning, additional shielding, ...
 - \rightarrow TOP PMT hit rate could limit the luminosity.
- Permanent damage on PXD and SVD by accidental huge beam loss.
- Synchrotron radiation from HER beam on PXD
 - \rightarrow Should be carefully monitored not to irradiate PXD unnecessarily.

Belle II under COVID-19

- SuperKEKB/Belle II was operated under Covid-19 pandemic while minimizing risk of infection:
 - Minimize person-to-person contact and avoid 3C
 - Remote control room shifts and expert shifts
 - Travel restrictions (~40 Belle II colleagues on-site)
 - Online meetings
 - Hygiene (face mask, alcohol disinfection, ventilation, ...)

KEK campus Beam background (SpeakApp) HV ctrl (RocketChat) Belle II Exp Hall Accelerator ctrl room Another bldg Ctrl room Safety shift Remote ctrl room shift VPN

SuperKEKB Luminosity in 2020a, b

- Max current = 770mA(LER) / 660mA(HER)
- $L_{peak} = 2.4 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- Int. luminosity/day = 1.346 fb⁻¹/1.498 fb⁻¹

KEKB record

- $L_{peak} = 2.11 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
- $L_{day}^{max} = 1.48 \text{ fb}^{-1} (2009.6.14)$
- LER: $\beta_x^* / \beta_y^* = 80 \text{ mm} / 1 \text{ mm} \rightarrow 60 \text{ mm} / 0.8 \text{ mm}$
- HER: $\beta_x^*/\beta_y^* = 60 \text{ mm/ I mm} \rightarrow 60 \text{ mm/ 0.8 mm}$

Belle II Operation

Belle II data taking efficiency has been improved to 84%.

- Less DAQ errors and more prompt recovery from the errors by experts' consistent effort
- ✓ Error analysis and monitor by ELK (Elasticsearch Logstash Kibana)
- ✓ More experienced shifters
- ✓ Controlled injection veto dead time (avg. 4.9%) as a result of injection background studies

Search for Dark Sector ¹² $Z' \rightarrow invisible$ Talk by Savino Longo

- A novel result on the dark sector (Z' → nothing) recoiling against di-muons or an electron-muon pair.
- Both possibilities are poorly constrained at

Limit on g' (Lµ-LT model)

The first physics paper ! (Phys. Rev. Lett. 124, 141801 (2020))

Search for Dark Sector $Z' \rightarrow invisible$ Talk by Savino Longo

- A novel result on the dark sector (Z' \rightarrow nothing) recoiling against di-muons or an electron-muon pair.
- Both possibilities are poorly constrained at

12

Limit on g' (Lµ-LT model)

The first physics paper ! (Phys. Rev. Lett. 124, 141801 (2020))

Search for Axion Like Particle (ALP)

- Appear in SM extensions after some global (i.e. family) symmetry breaking
- Pseudo-Goldstone bosons → Naturally light
- Cold dark matter candidates if ma is sub MeV
- Couple naturally to photons
- Search for3-photon final states via ALPstrahlung either in
 - recoil invariant mass (high ma)
 - di-photon mass (low ma)
- assume $Br(a \rightarrow \gamma \gamma) = 100\% \rightarrow g_{a\gamma\gamma}$

Search for Axion Like Particle (ALP)

- Appear in SM extensions after some global (i.e. family) symmetry breaking
- Pseudo-Goldstone bosons → Naturally light
- Cold dark matter candidates if ma is sub MeV
- Couple naturally to photons
- Search for3-photon final states via ALPstrahlung either in
 - recoil invariant mass (high ma)
 - di-photon mass (low ma)
- assume $Br(a \rightarrow \gamma \gamma) = 100\% \rightarrow g_{a\gamma\gamma}$

2nd physics paper by Belle II arXiv: 2007.13071, submitted to PRL

Toward Φ_1 , Φ_2 , Φ_3 measurements

Talk by Thibaud Humair 15

TDCPV $(B \rightarrow J/\psi K_{S^0})$

Candidates / (0.5 ps)

- The golden channel $B^0 \rightarrow J/\psi(II)K_{S^0}(\pi^+\pi^-)$ is studied.
- CPV is assumed only from the B^0 mixing (A_{CP}=0)

Talk by Andrea Fodor 16

Semileptonic B decays

$|V_{cb}|$ from exclusive $B \rightarrow D^* I v$ (untag)

• Extract signal in the $cos \theta_B$ dist.

 $\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$

• Obtain $|V_{cb}|$ from the rate at the zero recoil limit with more statistics

$|V_{cb}|$ from inclusive $b \rightarrow c$

- Hadronic FEI tag to measure Mx (hadronic invariant mass)
- Mx moment to constrain nonperturbative parameters

$|V_{cb}|$ from inclusive $b \rightarrow u$

- Untag
- Lepton at the end-point (less b→c background)

BELLE2-CONF-PH-2020-011

T mass measurement

- Select $\tau \rightarrow 3\pi\nu$ decays in e+e- $\rightarrow \tau + \tau$ -
- T mass estimated by pseudo mass and fit the distribution at the edge.

 $M_{min} \equiv \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le m_{\tau}$ $m_{\tau} = 1777.28 \pm 0.75 (\text{stat.}) \pm 0.33 (\text{syst.})$ $m_{\tau} (\text{PDG}) = 1776.86 \pm 0.12 \text{MeV}$

• Systematic errors are already comparable to Belle, BaBar

Systematic uncertainty	MeV/c^2
Momentum shift due to the B-field map	0.29
Estimator bias	0.12
Choice of p.d.f.	0.08
Fit window	0.04
Beam energy shifts	0.03
Mass dependence of bias	0.02
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Decay model	≤ 0.01
Tracking efficiency	≤ 0.01

Belle II talks in BEAUTY2020

- Thibaud Humair "B-lifetime and time-dependent CP violiation measurement at Belle II"
- Keisuke Yoshihara "b→s Penguin Analysis Updates from Belle II"
- Yun-Tsung Lai "Updates in Charmless B-Meson Decays at Belle II"
- Hulya Atamacan" Measurement of R(D) and $R(D^{\ast})$ at Belle II"
- Andrea Fodor "Measurement of $B \rightarrow Xu$, I, nu at Belle II"
- Guanda Gong" Charmed-Meson Physics at Belle II"
- Savino Longo "Dark-matter and ALP search at Belle II"
- Kiyoshi Tanida "Spectroscopy Study at Belle II"
- Eiasha Waheed "Measurement of the CKM angle phi3 at Belle II"
- Phillip Urquijo "Short and longer-term future of B physics" (plenary)

Near Term Prospects

- The data taken by 2020b(+ by this JFY) provides world competitive or leading results;
 - B→D* I v, D lifetime, T mass etc.
 - Results of dark sector search
- Belle II is ready to accumulate more data; comparable to Belle by 2021 summer and >lab⁻¹ target before the long shutdown.

Mid-Long Term Plan

• Recently updated based on the past results.

Summary

- The Belle II experiment at SuperKEKB aims to find New Physics beyond the SM with ultimate precision measurement (a few %, typically) of heavy flavor decays.
- SuperKEKB has achieved $L_{peak} = 2.4 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (world highest luminosity)
- Belle II is performing as expected, and obtained early physics results.
 - Accumulated 74fb⁻¹ by summer 2020.
 - World leading results for dark sector physics
- Belle II is ready to accumulate more luminosity.
 - Belle/BaBar data size and beyond by 2021
- SuperKEKB/Belle II aims at accumulate 50ab⁻¹ by ~2030, by further improving the luminosity performance.

Stay Tuned !

Thank you !

Belle II Group Photo @ B2GM, June 2020

Backup Slides

