Search for inelastic Dark Matter at Belle II

FSP Workshop: Long-lived particles at Belle II

10.12.2020

Savino Longo

savino.longo@desy.de

Deutsches Elektronen-Synchrotron (DESY)

Inelastic Dark Matter (iDM)

- Introduces Dark Photon mediator (A') in addition to Dark Matter states χ_1 and χ_2 [1].
 - $\rightarrow \chi_1$ is stable (relic)
 - $\Rightarrow \chi_2$ is long-lived at small values of ϵ (kinetic-mixing coupling), decays via $\chi_2 \rightarrow \chi_1 l^+ l^-$.
- Unconstrained by direct detection experiments as required χ_1 up-scattering is suppressed.

 $\Delta \equiv m_{\chi_2} - m_{\chi_1}$

The Belle II Detector

- Operates at the SuperKEKB asymmetric e^+e^- collider, $\sqrt{s} = 10.58$ GeV.
- Dataset to-date of 74 fb⁻¹ and counting, with high energy photon trigger enabled.
 - Records events with at least one photon with $E^{CMS} > 2$ GeV.
- Tracking layers extend radially from 1.4 111.14 cm.
- Displaced vertex (V^0) reconstruction via:

Track finding \rightarrow Vertex constrained fit

 K_L^0/μ Detector: Scintillating Strips in inner barrel/endcaps. Resistive Plate Counters in outer barrel.

> CsI(TI) electromagnetic calorimeter: Measures energy, time and pulse shape.

Charged Particle Identification: Barrel: Time-of-Propagation counter Backward Endcap: Aerogel Ring-Imaging Cherenkov counter

Magnet: 1.5 T

iDM Belle II Detector Signature

- Distinct detector signature containing:
 - Initial state radiation photon
 - Displaced vertex which is non-pointing
 - Missing energy
- Analysis Strategy: Background suppression via V^0 then search for localized peak in distribution of photon energy in CMS frame.

iDM V^0 Reconstruction

- Analysis covers range of χ_2 decay lengths. Selection requires V^0 transverse displacement of > 0.5 cm.
- Track Distance of Closest Approach (DOCA) peaks at zero, demonstrating V^0 's are well reconstructed.
 - Track finding of <0.1 GeV/c tracks with large displacements challenging, limits reach for $\Delta/m_{\chi 1} < 0.2$ models.
- Additional quality requirements:
 - Vertex is in central region with good tracking coverage.
- Radius of first tracking detector layer of tracks is not before vertex location.

 $\chi_2 \to \chi_1 l^+ l^-$

Background Suppression

- Displaced l^+l^- vertex rejects significant majority of prompt $e^+e^- \rightarrow f^+f^-(\gamma)$ backgrounds.
- Backgrounds with displaced signatures arise from:

→ $e^+e^- \rightarrow \gamma\gamma(\gamma)$: Photon conversion or photo-nuclear interactions

 $ightarrow e^+e^-
ightarrow K^0_S K^0_L(\gamma)$: K^0_S decays

- Plot shows V^0 momentum after selection, excluding cut on V^0 momentum.
- Undetected χ_1 emitted in $\chi_2 \rightarrow \chi_1 l^+ l^-$ lowers momentum of signal V^0 relative to backgrounds.

DESY. Savino Longo (savino.longo@desy.de)

V⁰ Pointing Angle

- Pointing angle, α_{PA} , is power tool for background suppression.
 - \rightarrow Plot shows V^0 pointing angle after selection, excluding cut on pointing angle.
- Background V^0 's are mainly from 2-body processes.
- 3-body nature of iDM decay produces a non-pointing V^0 .
- Significant suppression of K_S^0 and photon conversions achieved without mass window veto.

 χ_2

Remaining Background and V^0 Mass Threshold

- Distribution of V^0 invariant mass shown for backgrounds after selection with different signal models overlaid.
- Source of V^0 in backgrounds remaining after selections found to be:
 - $e^+e^- \rightarrow \gamma\gamma(\gamma)$: Photon conversion (peak at zero) or photo-nuclear interactions (high mass)
 - $ightarrow e^+e^-
 ightarrow K^0_S K^0_L(\gamma)$: K^0_S decays
- V^0 mass distribution of signal has property that $m_{V^0} < \Delta$, where $\Delta = m_{\chi 2} m_{\chi 1}$
 - Maximize sensitivity to given iDM model by final cut of $m_{V^0} < \Delta$ to reject backgrounds with high mass V^{0} 's.

Data Validation Strategy

• V^{0} 's in remaining $e^{+}e^{-} \rightarrow \gamma \gamma(\gamma)$ background originate from photon conversion or photo-nuclear interaction.

• Data validation ongoing with control sample: $e^+e^- \rightarrow e^+e^-(\gamma), \gamma \rightarrow V^0$

DESY. Savino Longo (savino.longo@desy.de)

Inelastic Dark Matter Belle II Prospects

Signal yield estimated per 100 fb⁻¹ determined by counting number of signal events in ISR photon window.
 Note final analysis plans to perform template fit of ISR photon energy spectrum to measure yield.

DESY. Savino Longo (savino.longo@desy.de)

10

Conclusions

- Belle II search for inelastic Dark Matter is enabled by new low multiplicity high energy photon triggers.
- iDM features a long-lived particle detector signature.
- Displaced vertex from LLP decay allows for significant background suppression.
- Primary background component after selections is from $e^+e^- \rightarrow \gamma\gamma(\gamma)$, data validation studies ongoing using $e^+e^- \rightarrow e^+e^-(\gamma), \gamma \rightarrow V^0$.
- Using 2020/2021 dataset, Belle II plans to explore new regions of iDM parameter space.