Long-lived Particle reconstruction at Belle II

FSP Workshop : Long-lived particles at Belle II

bscavino@uni-mainz.de

JGU JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

10th December 2020

Typical Y(4S) event: >

- > On average 11 charged tracks with soft momentum spectrum
- > High machine background: number of background hits about 2 orders of magnitude larger than signal hits
- Operated at asymmetric collider SuperKEKB, CM boosted > Precise measurement of primary and secondary vertices >

Typical Y(4S) event: >

- > On average 11 charged tracks with soft momentum spectrum
- > High machine background: number of background hits about 2 orders of magnitude larger than signal hits
- Operated at asymmetric collider SuperKEKB, CM boosted Precise measurement of primary and secondary vertices

- > Standard Model V^os
 - **>** K_s: cτ ~ 2.7 cm
 - > Λ: ct ~ 7.9 cm
- In some sense they are long-lived particles / can be used in benchmark studies for LLP
- ...not without downsides
 - K_s: "short" LLP
 - $> \Lambda$: asymmetric

Name "V0" derives from the peculiar signature in the detector > > Two charged tracks appearing from nowhere

> We will refer in particular to 2 specific decays > Ks $\rightarrow \pi^+ \pi^-$ [BR = 69.2 %]

$$\rightarrow \land \rightarrow
ho \pi^{-}$$
 [BR = 63.9 %]

- > Detection methods have changed with time
 - > Bubbles became hits
- > The signature of the signal is always the same > Two charged particles originating from a neutral one

Fig: Bubble chamber trace of the first observed Ω baryon event at Brookhaven National Laboratory

Name "V0" derives from the peculiar signature in the detector > > Two charged tracks appearing from nowhere

> We will refer in particular to 2 specific decays > Ks $\rightarrow \pi^+ \pi^-$ [BR = 69.2 %]

$$\rightarrow \land \rightarrow
ho \pi^{-}$$
 [BR = 63.9 %]

- > Detection methods have changed with time
 - > Bubbles became hits
- > The signature of the signal is always the same > Two charged particles originating from a neutral one

Name "V0" derives from the peculiar signature in the detector
Two charged tracks appearing from nowhere

> We will refer in particular to 2 specific decays > Ks $\rightarrow \pi^+ \pi^-$ [BR = 69.2 %]

$$\rightarrow \land \rightarrow
ho \pi^{-}$$
 [BR = 63.9 %]

- > Detection methods have changed with time
 - > Bubbles became hits
- The signature of the signal is always the same
 Two charged particles originating from a neutral one

University of Mainz

Belle II detector - tracking systems

Bianca Scavino

University of Mainz

Z

Belle II detector - tracking systems

PXD: PiXel Detector **SVD:** Silicon Vertex Detector **CDC:** Central Drift Chamber

Belle II VOs, theory

Bianca Scavino

(*) POCA: Point Of Closest Approach

> After the reconstruction, the individual hit patterns are not available to the standard user

> The final object delivered to analysts is a track > Collection of 5 parameters at the POCA (*)

track parameters = $[dO, zO, tan\lambda, \phi, \omega]$

 $\rightarrow +z$

Belle II VOs, theory

Bianca Scavino

(*) POCA: Point Of Closest Approach

> After the reconstruction, the individual hit patterns are not available to the standard user

> The final object delivered to analysts is a track > Collection of 5 parameters at the POCA (*)

> V0s: two tracks with a common vertex and opposite charge

Track description is not ideal for displaced vertices (and displaced tracks in general) > Material effects

> Extrapolated to the IP, less precise

 $\rightarrow +z$

Belle II VOs, theory

Bianca Scavino

- During reconstruction we have a dedicated treatment for V0s
- Sefore throwing away the precious information from the hit patterns, we exploit it performing the vertex fit of possible V0 candidates
- > When the fit succeeds, we store the object and deliver it to analysts

Final "analysis" V0s: Combination of these objects and offline V0s

 $\rightarrow +z$

> What does everything I just said mean *practically?*

University of Mainz

6

Belle II VOs, practice

The full samples are the most inclusive that one can get
Contain huge combinatorial background

Adding kinematics cuts and exploiting PID information
 We can get a cleaner peak

As a side note: From now on I will focus on Λ , I am sorry for K_s fans

The full samples are the most inclusive that one can get
Contain huge combinatorial background

> Adding kinematics cuts and exploiting PID information
> We can get a cleaner peak

As a side note: From now on I will focus on Λ , I am sorry for K_s fans

Effect of the inner detectors on the resolution

Effect of the inner detectors on the resolution

Effect of the inner detectors on the resolution

- Real life is not so easy
- We have to deal with high machine background
 Random hits firing your detector that make the pattern recognition of real particles harder
- > Not easy to simulate in a realistic way
- We use two different types of BG, a simulated one and random triggered events
- We also simulate higher background levels with respect to the "nominal" expected background (BGx1)
 (BGx0,) BGx1, BGx2, BGx5

Simple situation: particle gun

- > Consider a very simple situation
 - > 1 $\Lambda \rightarrow p \pi$ per event (generated with a particle gun)
 - Event display of Monte Carlo truth

Simple situation: particle gun

- > Consider a very simple situation
 - > 1 $\Lambda \rightarrow p \pi$ per event (generated with a particle gun)
 - Event display of Monte Carlo truth
- We take this same event and
 - Simulate the detector response including different levels of background (BGx0, BGx1, BGx2, BGx5)
 - > Reconstruct the event
- Also, making use of the Monte Carlo truth, we compute the reconstruction efficiency (*) in such cases, as a function of the xy-distance of the vertex
- (*) # generated events = 20K

> Simulate the detector response and reconstruct the event in a background-free environment (BGx0)

> Simulate the detector response and reconstruct the event with nominal background (BGx1)

> Simulate the detector response and reconstruct the event with 2x nominal background (BGx2)

> Simulate the detector response and reconstruct the event with 5x nominal background (BGx5)

> Drop in efficiency (vs xy-distance) as a function of BG level is more severe for Λ decaying far from the interaction point

We need a way to monitor the background effects on data

- In simulation everything is easy to monitor, we know the Monte Carlo truth.
- For this we rely on two observations:

 - Some event-based measured quantities depend on the background level

Example: *nExtraCDCSegments*

- >Number of segments reconstructed using CDC informations and not used in any of the tracks in the event
- > Very intuitively:
 - In a clean environment all segments would belong to a track
 - > Increasing the number of backgrounds hits will increase the number of fake segments

Bianca Scavino

segments: collection of points

> Drop in efficiency (vs xy-distance) as a function of BG level is more severe for A decaying far from the interaction point

University of Mainz

We need a way to monitor the background effects on data

- Divide the Lambda sample in two categories, "short" and "long"
 - "short" Lambda: xy-distance < 15 cm</p>
 - > "long" Lambda: xy-distance \geq 15 cm (decaying outside the SVD volume)
- Divide the considered background-dependent variable in bins
- For each bin count the number of long and short Λ and plot the ratio between long and short >

University of Mainz

Short and long Λs

Long/short ratio VS nExtraCDCSegments

Bianca Scavino

Iong/short VS nExtraCDCSegments in simulation

> The study is ongoing, we are double checking the results with different samples

> K_s from B decays

> Exclusive Λ sample (from Λ_{c^+} decay)

Long/short ratio VS nExtraCDCSegments

Bianca Scavino

Iong/short VS nExtraCDCSegments in simulation

> The study is ongoing, we are double checking the results with different samples

- > K_s from B decays
- > Exclusive Λ sample (from Λ_{c}^{+} decay)

Summary

- The Belle II experiment is optimized for B physics (SM) long-lived particles not originally considered priority > Nevertheless the interest is alive and we do have dedicated tools
- For LLP, high background level is a problem > > Clear degradation of the performance as a function of the xy-distance of the vertex from the interaction point
- We are developing a way to monitor the background impact directly on LLP using data (without relying on the Monte Carlo truth)
 - > The study is ongoing, data and Monte Carlo show fair agreement
- Last thing worth mentioning (not part of this talk): >
 - > There are ideas and possibilities to improve the tracking algorithms specifically for LLP

Backup slides

Belle II detector

EM Calorimeter

CsI(TI), waveform sampling electronics

electrons (7 GeV)

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber

Smaller cell size, long lever arm

Bianca Scavino

KL and muon detector

117

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps , inner 2 barrel layers)

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Belle II TDR, arXiv:1011.0352