Search for a long-lived scalar Sin $b \rightarrow s$ transitions at Belle II.

Sascha Dreyer, Torben Ferber

Long-lived particles at Belle II — FSP workshop 11.12.2020

sascha.dreyer@desy.de

The search.

 $\bullet e^+e^- \to \Upsilon(4S) \to \mathbf{B} \ (\to \mathbf{K}^{(*)} \ [\mathbf{S} \to f\bar{f} \]) \ B$

Reconstruct the signal *B* meson:

- Fixed tracks forming a displaced vertex \rightarrow Scalar
- Additional track(s) from interaction region \rightarrow Kaon
- Study the combined two track final states:
 - Set limits in scalar mass + lifetime (\rightarrow mixing angle) plane
 - Exclusive final states:

 $\blacktriangleright S \rightarrow \mu\mu, \pi\pi, KK$

Consider production with:

•
$$K^+$$
 (focus here), $K_S^0 \to \pi^+ \pi^-$,

•
$$K^{*0}_{(892)} \to K^+ \pi^-, \quad K^{*+}_{(1270)} \to K^+ \pi^+ \pi^-$$

Backgrounds

- standard model long lived particles
- random track combinations from prompt decays
- cosmics
- Reconstruction challenges
 - tracking algorithms not optimised for LLPs
 - need to understand reconstruction efficiencies, mass and vertex resolutions & particle identification
- Systematics
 - tracking + data/mc agreements for displaced tracks
 - particle identification, luminosity, MC statistics, (fit model)

Sascha Dreyer

e⁻ $K^{(*)}$

Reconstructing the event.

- 1. Reconstruct scalar candidate from two oppositely charged tracks with all three hypotheses: $S \to \mu \mu, \pi \pi, KK$
- 2. Particle identification requirements on one of the daughter tracks
- 3. Vertex fit both tracks and cut away small vertex distances
 - Cut out a window around the K_S^0 mass in the $S \to \pi\pi$ channel
- 4. Third track from interaction region: Kaon with particle identification
- 5. Form *B* meson candidate and impose kinematic constraints + other selection variables
- 6. If there are multiple candidates in the event: apply a best candidate selection

$$M_{\rm bc} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

Beam energy and measured particle momenta

- close to the B mass for true B events
- slightly affected by long lifetimes (small) mass sample has a larger lifetime at the same mixing angle)
- 'standard' technique at B-factories

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

- Beam energy, measured particle momenta and mass
 - close to zero for true B events
 - sensitive to wrongly assigned particle hypotheses
- Is affected more by large-lifetime effects for small scalar masses
- 'standard' technique at B-factories
- Best candidate selection: smallest $|\Delta E|$

DESY.

Selection: Fox Wolfram R2.

- Checks geometrical distribution of measured momenta
 - \blacktriangleright Large \rightarrow momenta more strongly aligned (continuum)
 - Small \rightarrow momenta more spherically distributed ($B\bar{B}$ events)
- Lower boost at large scalar masses \rightarrow more spherical

$$R_2 = \frac{H_2}{H_0} \sim \frac{\text{jetty}}{\text{spherical}}$$

Selection: distance between first hit and vertex.

- LLP tracks should not have detector hits closer to the interaction point than the vertex (production point)
- Check hit nearest to the interaction point for both tracks
- Compare the minimum of both to the vertex displacement
 - > 0: there are hits 'in front' of the vertex
 - < 0: only hits further away than the vertex</p>

- Current event selection (previous variables, particle identification, vertex fit χ^2)
- Remaining backgrounds
 - mostly at small displacements
 - dominated by continuum samples
 - mostly random combinations left
- Vertex displacement cut will be made dependent on tested scalar lifetime

- Current event selection
- Mass resolution < bin size here (see next slide)</p>
- Fixed Two spikes from remaining K_S^0 reconstructed as $\mu\mu$ around 0.4 GeV/ c^2 and as *KK* around 1 GeV/ c^2
 - will be tackled by re-computing scalar mass with pion hypothesis and cutting the same mass window

- Reconstructed scalar mass distribution in $S \rightarrow \mu\mu$ fit with the sum of two gaussians
- Full width at half maximum computed as resolution
- Good resolution in most of the detector regions except for very large displacements
- No errors shown

Performance – reconstruction efficiency.

- Reconstruction efficiency for $S \rightarrow \mu\mu$
- As a function of true vertex displacement
 - good reconstruction efficiency at low displacement
 - dropping after a few centimetres
 - current tracking algorithms optimised for tracks far from the interaction point
- Lower efficiency for larger masses
 - One of the tracks often lies outside the detector acceptance
 - One track is pointing towards the interaction region, the second track does not due to the large angle between them

- Reconstruction of LLPs at Belle II is possible but does pose challenges.
- Presented distributions based on simulated data, to give you a flavour of how to perform such an analysis.
- Probably will not reach "zero background" conditions, efficiency is small for LLPs far into the detector.
- We expect results based on existing data and data to be collected in the coming year.

Backup.

Sascha Dreyer

Long-lived scalar search

DESY.