Dark showers at Belle II

Elias Bernreuther

RWTH Aachen University

including material from

arXiv:1907.04346 and arXiv:2011.06604

with Felix Kahlhoefer, Michael Krämer and Patrick Tunney

and work in progress (preliminary)

Strongly interacting dark sectors

Well-motivated DM scenario: dark sector may resemble QCD

$$\mathcal{L} \supset -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu,a} + \overline{q_{\rm d}} i \mathcal{D} q_{\rm d} - \overline{q_{\rm d}} M_q q_{\rm d}$$

with

- N_f dark quarks $q_{\rm d}$ in the fundamental representation of a new confining gauge group, e.g. $SU(N_{\rm d})$
- ullet dark gluons $F^a_{\mu
 u}$
- In this talk consider $N_d=3$ and diagonal mass matrix $M_q={
 m diag}(m_q)$

Dark sector bound states

- Below some scale $\Lambda_{\rm d}$ the dark sector confines.
- N_f^2-1 dark pions $\pi_{\rm d}$ as (Pseudo-)Goldstone bosons (massive if $m_{q_{\rm d}}>0$)
- If they carry another conserved charge, at least the lightest charged dark mesons (π_d^+, π_d^-) are stable.
- For $N_f=2$ and $Q={
 m diag}(1,-1)$ the $\pi_{
 m d}^0$ is stable. Berlin et al., 1801.05805 (crucial for cosmological viability of dark sector)
- Dark pions are excellent dark matter candidates.
- Heavier dark mesons are generically unstable, in particular $\rho_{\rm d}^0$, which can mix with other vector bosons, e.g. Z' or dark photon.

$$c au_{
ho_{
m d}^0} \propto {\Lambda^4\over m_{
ho_{
m d}}^5}$$
 where, e.g. for mixing with B-L Z' mediator, $\Lambda={m_{Z'}\over \sqrt{e_{
m d}g_{B-L}}}$

Forbidden annihilations

- (Inverse) decays of $ho_{
 m d}^0$ keep it in equilibrium with the SM bath in the early Universe provided that $\Gamma_{
 ho_{
 m d}^0}>H$.
- $\pi_{\rm d}$ -to- $\rho_{\rm d}$ conversions set the dark pion relic abundance.
- Dominant freeze-out process: $\pi_{\rm d}$ $\pi_{\rm d} \to \rho_{\rm d}$ $\rho_{\rm d}$
- Annihilation of lighter into heavier state possible at finite temperature, but Boltzmann suppressed

D'Agnolo, Ruderman, 1505.07107

$$\sigma_{\pi_{\mathrm{d}}\pi_{\mathrm{d}}\to\rho_{\mathrm{d}}\rho_{\mathrm{d}}} \propto \frac{g^2}{m_{\pi}^2} e^{-2\Delta x_f}$$

$$\Delta = (m_{\rho} - m_{\pi})/m_{\pi}$$

- Mechanism works for wide range of masses

Phenomenology of strongly interacting dark sectors

 Dark pions can scatter off electrons via dark rho exchange:

 Strong interactions in dark sector can induce large self-interactions:

$$\sigma \propto \frac{g^4}{m_{\pi_{\rm d}}^2}$$

bullet cluster implies

$$m_{\pi_{\rm d}} \gtrsim 30~{\rm MeV}$$

$$\Gamma_{\rho_{\rm d}^0} < H$$

Dark vector meson mass

Dark showers at colliders

If $\Lambda_{\rm d} \ll \sqrt{s}$ — pair production of dark quarks leading to dark shower and hadronisation

Large number of dark mesons in an event, depending on their mass

- Most (75%) escape the detector as \mathcal{E}_T
- The $\rho_{\rm d}^0$ mesons decay to visible SM particles

Range of novel signatures

prompt decays -> semi-visible jets

Cohen et al., 1503.00009, 1707.05326

displaced decays -> emerging jets (if mostly visible) Schwaller et al., 1502.05409

DV+MET (if mostly invisible) EB et al., 2011.06604

At the LHC:

Dark showers at Belle II

• LHC (ATLAS/CMS) searches for displaced vertices and MET are sensitive to $m_{\rm LLP} \gtrsim 5~{\rm GeV}$.

- Opportunity for Belle II on sub-GeV scale
- Typical multiplicity depends on dark meson mass:

EB et al., 2011.06604

- For small masses, typically multiple decaying mesons
- For large masses, no decaying mesons in large fraction of events

Dark showers at Belle II

Single-photon searches are sensitive to events where a fully invisible dark shower is produced together with an ISR photon.

projections from Essig et al. 1309.5084

More interesting:

dark shower becomes partly visible

displaced decays+ missing energy

prompt SM particles+ missing energy

Final states

Branching fractions of dark meson decays depend on portal interaction

Figures from Ilten et al., 1801.04847

$ho_{ m d}^0$ mixes with B-L Z'

dominantly leptonic decays, in particular $\mu^+\mu^-$ (for $m_{\rho_d} \gtrsim 200~{\rm MeV}$)

$ho_{ m d}^0$ mixes with dark photon

dominantly hadronic decays (for $m_{\rho_{\rm d}} \gtrsim 600~{
m MeV}$), in particular $\pi^+\pi^-$

DV + MET signature

- Displaced dark mesons have sizeable energy and transverse momentum.
- Signature: fully reconstructable two-body decay to $\pi^+\pi^-$ / $\mu^+\mu^$
 - ullet with invariant mass equal to $m_{
 ho_{
 m d}}$
 - multiple such vertices in large fraction of events if $m_{
 ho_{
 m d}}$ is small
 - + missing energy

Conclusions

- Dark pions are well-motivated dark matter candidates.
- Strongly interacting dark sectors are cosmologically viable.
- Dark showers give rise to exciting new signatures at the LHC and at Belle II.
- Dark showers can be simulated (with caveats).
- Attractive recasting target for standard searches: single photon.
- Motivation for new searches at Belle II:
 - prompt or displaced decays (with decay lengths of $\mathcal{O}(mm)$)
 - hadronic $(\pi^+\pi^-)$ and/or leptonic $(\mu^+\mu^-)$ decays, depending on model
 - + missing energy

Lots of exciting future work