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CONTEXT: ALP SEARCH

* When axion-like particles couple to SU(2) gauge bosons, they

can be produced in rare B decays
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CONTEXT: ALP SEARCH

* We perform the first search for ALPs in this process

a— Y

* Most of parameter space:
prompt ALPs

e For masses < 1 GeV,
nowever, we end up with

ong-lived ALPs

. Beam dump

* We did not design a
separate long-lived search,
but needed to assess
sensitivity to long-lived ALPs
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BABAR EXPERIMENT
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1999-2008

High Energy Ring

e 432/tb data
collected on

T (4S5) peak

» Corresponds
to 2.4 x 10°
pairs of BT B~

mesons

* Blind analysis strategy: use 8% of total dataset as optimization
sample used to determine analysis method, discard for final results
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ANALYSIS STRATEGY

e Reconstruct B~ — K~—a, a — 7y candidates, look for narrow
peak in diphoton invariant mass spectrum

 Train a BDT using signal & background MC events, include shape
variables, kinematic information, track/cluster multiplicities, PID,...
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SIGNAL EXTRACTION

* Use a low-order polynomial to model continuum background, MC

for peaking background, signal MC for signal shape
 Perform fits in diphoton mass intervals of width (30 — 70)c

e Signal MC resolution is validated by data/MC comparisons of
BT 4 K*x% and B* — K*n , found to be consistent within 3%

 Assess systematic uncertainties by varying continuum, peaking
background, and signal models



LLP SIGNAL SHAPE
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LLP SIGNAL SHAPE

* Problem: we don't know
where the LLP decays!

* We made some (mostly unsuccesstul) attempts to correct the signal

shape (for example, in the kinematic fit to the B meson mass of the
kaon + 2 photons)

» Used “out-of-the-box" loose photon PID

 For our search, major limiting factor is not generally a drop in photon

ID efficiency, but rather the smearing of the signal shape
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LLP -> PHOTON IMPROVEMENTS?

* For LLP analysis where the photons are produced in association with
charged particles, can constrain photons to originate from DV

* Pointing information from the EMC? Seems difficult

* Timing information (TOP detector): useful if there are other charged
particles in the event!

* Dedicated LLP -> photon reconstruction could help improve signal
efficiency, as could algorithms that take into account overlapping
shower shapes from boosted ALP

e Validation could be done with K7, — a7V ?
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PRESSING AHEAD...

* In the preliminary results presented at ICHEP, we simply ran the
same procedure as the prompt analysis, but with the long-lived
signal template (and some tweaks to the fit intervals)

* This conservative approach leads to a sub-optimal determination of
the background shape, weaker limits, and larger systematics

* We are currently improving our background modelling, in
particularly putting more constraints on the background diphoton
mass distribution using MC and control regions
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PRESSING AHEAD...

* No significant signal, set Bayesian 90% CL limits assuming a flat

prior in the branching fraction

90% CL limit

BABAR
preliminary

Vm

m, (GeV

BF(B* — K*a) x BF(a — vyy)

11

o

0.5

T 1
90% CL limit ]

BABAR ~ —CT,=0 -
limi ---CT, =1 mm ]
pre |m|nary_._c1a =10 mm ]
--ct, =100 mm  _

I 1 1 I 1 1 1 1 I

1.5 2 2.5

m, (GeV)



LIMITS ON ALP COUPLING

* The coupling g,w predicts both ALP BF and lifetime

e Use limit on BF as function of lifetime to set limit on g,w

10°

10°®

— BABAR 90% CL

BABAR preliminary
1 I 1 1 1

1

1

,m, (GeV)

* Improve limit on
coupling by over
2 orders of
magnitude for
many masses!



SUMMARY

* Displaced photons are well motivated by many hidden-sector
models

* Time and person-power constraints for the BABAR ALP search
necessitated an LLP interpretation of a prompt search rather than a
dedicated search

* Mis-reconstruction of long-lived ALPs degrades signal resolution,
and makes the search more challenging

A dedicated long-lived ALP search would greatly improve sensitivity
and the techniques used could potentially be applied to many
searches!
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BACKUP SLIDES



ANALYSIS STRATEGY

e Reconstruct B— — K-

-a, a — 7y candidates, look for narrow

peak in diphoton invariant mass spectrum

e Measure B~ — K—a,

a — ¥y branching fraction for

0.1 GeV < m, < 4.78 GeV

e Exclude mass intervals in

vicinity of peaking 7° /n/n’ backgrounds:

0.1-0.175 GeV, 0.45-0.63 GeV, 0.91-1.01 GeV

e For m, < 2.5 GeV, ALPs can be long lived, and we additionally

determine signal BFs for

ct, = 1, 10, 100 mm
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MONTE CARLO SIMULATIONS

* Signal: simulated with EVTGEN, promptly decaying samples for 24
ALP mass points (0.1-4.78 GeV), long-lived samples for 16 ALP mass
points (0.1-2.5 GeV)

» Background: samples generated & weighted to data luminosity
e eTe —qq (¢ =u,d,s,c) (JETSET)
e« e¢Te” — BB (EVTGEN)
e eTe” —ete (v) (BHWIDE)
e eTe” —wutuT (), 7T () (KK with TAUOLA)

» Detector eftects fully simulated with GEANT4
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SELECTIONS

e Preselection: Reconstruct BT candidates from KT candidate and
two photons

2+ ;- pp)”
* Require Mmges = \/(8/ +£2 PB) p% > 5.0 GeV

IAE|=1|vs5/2 — E5M| < 0.3 GeV

 Perform kinematic fit requiring photon and kaon to originate from
beamspot, constrain mass to M p+ and energy to beam energy

e Train 2 Boosted Decision Trees: each is trained on MC for one of

the two predominant backgrounds:

e ete” = qq (¢g=u,d,s,c)
« ete” - BTB~
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SELECTIONS

e 13 BDT training observables:

MEgSs

AE

cosine of angle between
sphericity axes of B candidate
and rest of event (ROE)

PID info for kaon candidate
2nd Legendre moment of ROE,
calculated relative to B thrust
axis

helicity angle of most energetic
photon, and of kaon
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energy of most energetic
photon in @ candidate
invariant mass of ROE
multiplicity of neutral clusters
invariant mass of diphoton
oair, with 1 photon in B
candidate and 1 photon in
ROE, closest to each of

™, n, 0



Entries / 0.03

FINAL SELECTIONS

e Cut of > 0.13 on continuum-trained BDT output, > 0.15 on
T B™-trained BDT output

» Adopted same BDT cuts for all signal masses
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SIGNAL EXTRACTION

Perform unbinned maximum likelihood fits for signal peak over smooth
background

476 mass hypotheses, step size between adjacent mass hypotheses is
given by the signal resolution, O

O is determined by fitting a double-sided Crystal Ball function to signal
MC at various masses, interpolating for intermediate values

Resolution ranges from 8 MeV at m, = 0.175 GeV to 14 MeV at
mq = 2 GeV, decreasing back to 2 MeV at m, = 4.78 GeV as a result of
the kinematic fit

Signal MC resolution is validated by data/MC comparisons of
BT - K*7% and BT — K*n  found to be consistent within 3%

Signal efficiency derived from MC, ranges from 2% at m, = 4.78 GeV
to 33% at m, = 2 GeV
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FIT PROPERTIES

Fits are performed over intervals of length (30 — 70)o depending on ALP
mass, restricted to the range 0.11 GeV < m, < 4.8 GeV

Likelihood function includes contributions from signal, continuum
background, peaking background

Signal PDF: modeled from signal MC and interpolated between
simulated mass points

Continuum background PDF: second-order polynomial for
mg < 1.35 GeV, first-order polynomial at higher masses

Peaking background PDF: each SM diphoton resonance is modeled as
a sum of a signal template and a broader Gaussian distribution with
parameters fixed to fits in MC — this component arises from continuum
production of 7% /n/n’ that is broadened because of kinematic fit
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SYSTEMATIC UNCERTAINTIES

Assess uncertainty on signal yield from fit by varying order of polynomial
for continuum background (3rd-order for m, < 1.35 GeV, constant at
higher mass), varying shape of peaking background within uncertainties,
and using next-nearest neighbor for interpolating signal shape

» Dominates total uncertainty for some masses in vicinity of 7° /n

Systematic uncertainty on signal yield from varying signal shape width
within uncertainty is on average 3% of statistical uncertainty

6% systematic uncertainty on signal efficiency, derived from data/MC
ratio in vicinity of "

Other systematic effects negligible by comparison, including on limited
signal MC statistics, luminosity
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